This file is indexed.

/usr/share/singular/LIB/phindex.lib is in singular-data 4.0.3+ds-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
//////////////////////////////////////////////////////////////////////////
version="version phindex.lib 4.0.0.0 Jun_2013 "; // $Id: eda795cc37258ffdc1cfc71971e6814ac18bd9dd $
category=" ";
info="
LIBRARY : phindex.lib Procedures to compute the index of real analytic vector fields
AUTHOR: Victor Castellanos

NOTE: To compute the Poincare-Hopf index of a real analytic vector field
      with an algebraically isolated singularity at 0 (w. an a. i. s),
      we use the algebraic formula for the degree of the real analytic map
      germ  found by Eisenbud-Levine in 1997. This result was also proved by
      Khimshiashvili. If the isolated singularity is non algebraically
      isolated  and the vector field has similar reduced complex zeroes of
      codimension 1, we use a formula as the Eisenbud-Levine found by Victor
      Castellanos, in both cases is necessary to use a local order (ds,...).
      To compute the signature of a quadratic form (or symmetric matrix)
      we use the method of Lagrange.

PROCEDURES:
 signatureL(M[,n]);   signature of symmetric matrix M, method of Lagrange.
 signatureLqf(h[,n]); signature of quadratic form h, method of Lagrange.
 PH_ais(I)            P-H index of real analytic vector field I w. an a. i. s.
 PH_nais(I)           P-H index of real analytic vector field I w. a non a. i. s
";

LIB "primdec.lib";
LIB "zeroset.lib";

/////////////////////////////////////////////////////////////////////////////
proc signatureL(matrix M,int #)
"USAGE:    signatureL(M[,r]); M symmetric matrix, r int (optional).
RETURN:   the signature of M of type int or if r is given and !=0 then
          intvec with (signature, nr. of +, nr. of -) is returned.
THEORY:   Given the matrix M, we construct the quadratic form associated. Afterwards
          we use the method of Lagrange to compute the signature. The law of
          inertia for a real quadratic form A(x,x) says that in a
          representation of A(x,x) as a sum of independent squares
                            A(x,x)=sum_{i=1}^r a_iX_i^2.
          The number of positive and the number of negative squares are
          independent of the choice of representation. The signature -s- of
          A(x,x) is the difference between the number -pi- of positive squares
          and the number -nu- of negative squares in the representation of
          A(x,x). The rank -r- of M (or A(x,x)) and the signature -s-
          determine the numbers -pi- and -nu- uniquely, since
                            r=pi+nu,   s=pi-nu.
          The method of Lagrange is a procedure to reduce any real quadratic
          form to a sum of squares.
          Ref. Gantmacher, The theory of matrices, Vol. I, Chelsea Publishing
               Company, NY 1960, page 299.
EXAMPLE:  example signatureL; shows an example
"
{
  if(typeof(M)!="matrix")
  {
    ERROR("** The argument is not a matrix type");
  }
  option(noprot);
  option(noredefine);
  int nv1=ncols(M);
  matrix zero[nv1][nv1]=0;
  if (transpose(M)!=M)
    {
      ERROR("** The matrix is non symmetric");
    }
  if (M==0)
    {
      ERROR("** The matrix is zero");
    }
  option(noprot);
  option(noredefine);
  def h=basering;
  int chr=char(h);
  ring signLagrange=chr,(x(1..nv1)), lp; //ring to compute the quadratic form associated to M
  matrix Ma=fetch(h,M);
  int nv=ncols(Ma);
  matrix X[1][nv]=maxideal(1);
  matrix Ax=X*Ma*transpose(X);
  poly Axx=Ax[1,1]; //quadratic form associated to matrix M
  if (size(#)==0)
    {
      def sal=SigntL(Axx);
      return(sal[1]);
    }
  else
    {
      return(SigntL(Axx));
    }
}
example
{ "EXAMPLE:"; echo = 2;
  ring r=0,(x),ds;
  matrix M[5][5]=0,0,0,1,0,0,1,0,0,-1,0,0,1,0,0,1,0,0,3,0,0,-1,0,0,1;
  signatureL(M,1); //The rank of M is 3+1=4
  matrix H[5][5]=0,-7,0,1,0,-7,1,0,0,-1,0,0,1,0,0,1,0,0,-3,5,0,-1,0,5,1;
  signatureL(H);
}
////////////////////////////////////////////////////////////////////////
proc signatureLqf(poly h,int #)
"USAGE:    signatureLqf(h); h quadratic form (poly type).
RETURN:   the signature of h of type int or if r is given and !=0 then
          intvec with (signature, nr. of +, nr. of -) is returned.
THEORY:   To compute the signature we use the method of Lagrange. The law of
          inertia for a real quadratic form h(x,x) says that in a
          representation  of h(x,x) as a sum of independent squares
          h(x,x)=sum_{i=1}^r a_i*X_i^2 the number of positive and the number of negative squares are
          independent of the choice of representation. The signature -s- of
          h(x,x) is the difference between the number -pi- of positive squares
          and the number -nu- of negative squares in the representation of
          h(x,x). The rank -r- of h(x,x) and the signature -s- determine the
          numbers -pi- and -nu- uniquely, since
                             r=pi+nu,   s=pi-nu.
          The method of Lagrange is a procedure to reduce any real quadratic
          form to a sum of squares.
          Ref. Gantmacher, The theory of matrices, Vol. I, Chelsea Publishing
               Company, NY 1960, page 299.
EXAMPLE:  example signatureLqf; shows an example
"
{
  if(typeof(h)!="poly")
  {
    ERROR("** The argument is not a poly type");
  }
  option(noprot);
  option(noredefine);
  poly M=h;
  int nv1=nvars(basering);
  if (M==0)
   {
     ERROR("** The quadratic form is zero");
   }
  poly Axx=M;
  poly Bxx;
  poly bxx1;
  poly bxx2;
  def coe1;
  int i;
  int jb;
  int k;
  int haycuadrados;
  int haycruzados;
  int positivo=0;
  int negativo=0;
  int lAxx;
  while (Axx<>0) //Lagrange method to compute the signature
    {
      haycruzados=1;
      haycuadrados=1;
      lAxx=size(Axx);
      i=1;
      while (i<=lAxx and haycuadrados)
    {
      jb=1;
      while (jb<=nv1 and haycuadrados)
        {
          if (leadmonom(Axx[i])/(x(jb)^2)==1) //there is squares
        {
          Bxx=Axx;
          if (leadcoef(Axx[i])>0)
            {
              positivo=positivo+1;
            }
          else
            {
              negativo=negativo+1;
            }
          coe1=1/(4*leadcoef(Bxx[i]));
          Axx=Bxx-coe1*(diff(Bxx,x(jb)))^2;
          haycuadrados=0;
        }
          jb=jb+1;
        }
      i=i+1;
    }
      if (haycruzados) //there is no squares
    {
      int ia=1;
      int ja=1;
      int ka=1;
      while (ia<=nv1 and haycruzados)
        {
          while (ja<=nv1 and haycruzados)
        {
          ka=ja+1;
          while (ka<=nv1 and haycruzados)
            {
              if (leadmonom(Axx[ia])/leadmonom(x(ja)*x(ka))==1)
            {
              Bxx=Axx;
              bxx1=diff(Bxx,x(ja))+diff(Bxx,x(ka));
              bxx2=diff(Bxx,x(ja))-diff(Bxx,x(ka));
              coe1=1/(4*leadcoef(Bxx[ia]));
              Axx=Bxx-coe1*(bxx1^2-bxx2^2);
              positivo=positivo+1;
              negativo=negativo+1;
              haycruzados=0;
            }
              ka=ka+1;
            }
          ja=ja+1;
        }
          ia=ia+1;
        }
    }
    }
 if (size(#)==0)
    {
      def sal=positivo-negativo;
      return(sal);
    }
  else
    {
      int sig=positivo-negativo;
      intvec dat=sig,positivo,negativo;
      return(dat);
    }
}
example
{ "EXAMPLE:"; echo = 2;
  ring r=0,(x(1..4)),ds;
  poly Ax=4*x(1)^2+x(2)^2+x(3)^2+x(4)^2-4*x(1)*x(2)-4*x(1)*x(3)+4*x(1)*x(4)+4*x(2)*x(3)-4*x(2)*x(4);
  signatureLqf(Ax,1); //The rank of Ax is 3+1=4
  poly Bx=2*x(1)*x(4)+x(2)^2+x(3)^2;
  signatureLqf(Bx);
}
/////////////////////////////////////////////////////////////////////////////
proc PH_ais(def I)
"USAGE:    PH_ais(I); I ideal of coordinates of the vector field.
RETURN:   the Poincare-Hopf index of type int.
NOTE:     the isolated singularity must be algebraically isolated.
THEORY:   The Poincare-Hopf index of a real vector field X at the isolated
          singularity 0 is the degree of the map (X/|X|) : S_epsilon ---> S,
          where S is the unit sphere, and the spheres are oriented as
          (n-1)-spheres in R^n. The degree depends only on the germ, X, of X
          at 0. If the vector field X is real analytic, then an invariant of
          the germ is its local ring
                            Qx=R[[x1..xn]]/Ix
          where R[[x1,..,xn]] is the ring of germs at 0 of real-valued analytic
          functions on R^n, and Ix is the ideal generated by the components
          of X. The isolated singularity of X is algebraically isolated if the
          algebra Qx is finite dimensional as real vector space, geometrically
          this mean that 0 is also an isolated singularity for the
          complexified vector field. In this case the Poincare-Hopf index is
          the signature of the non degenerate bilinear form <,> obtained by
          composition of the product in the algebra Qx with a linear
          functional map
                       <,> : (Qx)x(Qx) ---(.)--> Qx ---(L)--> R
          with L(Jo)>0, where Jo is the residue class of the Jacobian
          determinant in Qx. Here, we use a natural linear functional defined
          as follows. Suppose that E={E_1,..E_r} is a basis of Qx, then Jo can
          be written as
                      Jo=a_1E_{j1}+...+a_kE_{jk},  js\in {1...r}, s=1..k, k<=r,
          where a_s are constant. The linear functional L:Qx--->R is defined as
                                  L(E_{j1})=(a_1)/|a_1|=sign of a_1,
          the other elements of the base are sent to 0.
          Refs. -Eisenbud & Levine, An algebraic formula for the degree of
                 a C^\infty map germ, Ann. Math., 106, (1977), 19-38.
                -Khimshiashvili, On a local degree of a smooth map, trudi
                 Tbilisi Math. Inst., (1980), 105-124.
EXAMPLE:  example  PH_ais; shows an example.
"
{
  if(typeof(I)!="ideal")
  {
    ERROR("** The argument is not of ideal type");
  }
  ideal A=I;
  ideal qI=std(A);
  int siono=vdim(qI);
  int l;
  if (siono==-1)
    {
      ERROR("** The vector field does not have an algebraically isolated singularity");
    }
  if (siono!=0)
    {
      option(noredefine);
      option(noprot);
      def oldr=basering;
      def chr1=char(oldr);
      int n=nvars(oldr);
      ideal E=kbase(qI);
      int m=size(E);
      poly Jx=det(jacob(A));
      poly Jo=reduce(Jx,qI);
      ring newr=chr1,(x(1..m)),ds; //ring to compute the quadratic form
      int nv=nvars(basering);
      ideal E=fetch(oldr,E);
      ideal qI=fetch(oldr,qI);
      poly Jo=fetch(oldr,Jo);
      attrib(qI,"isSB",1);
      int scoef=1;
      int multby;
      poly Eik;
      poly Axx=0;
      int tEik;
      int stEik;
      def lcEik;
      if (leadcoef(Jo[1])<0)
    {
      scoef=-1;
    }
      for (int si=1; si<=nv; si++)
        {
          for (int sk=si; sk<=nv; sk++)
        {
          Eik=reduce(E[si]*E[sk],qI);
          tEik=size(Eik);
          for(int stEik=1; stEik<=tEik; stEik++)
        {
          if (leadmonom(Eik[stEik])==leadmonom(Jo[1]))
            {
              if (si==sk)
            {
              multby=1;
            }
              else
            {
              multby=2;
            }
              lcEik=leadcoef(Eik[stEik]);
              if (lcEik<0)
            {
              Axx=Axx-multby*scoef*lcEik*x(si)*x(sk);
            }
              else
            {
              Axx=Axx+multby*scoef*lcEik*x(si)*x(sk);
            }
            }
        }
        }
        }
      l=SignatLalt(Axx); //signature of billinear form
      kill newr;
    }
  else
    {
      l=0;
    }
  return(l);
}
example
{ "EXAMPLE"; echo = 2;
  ring r=0,(x,y,z),ds;
  ideal I=x3-3xy2,-y3+3yx2,z3;
  PH_ais(I);
}
///////////////////////////////////////////////////////////////////////////
proc PH_nais(def I)
"USAGE:    PH_nais(I); I ideal of coordinates of the vector field.
RETURN:   the Poincare-Hopf index of type int.
NOTE:     the vector field must be a non algebraically isolated singularity
          at 0, with reduced complex zeros of codimension 1.
THEORY:   Suppose that 0 is an algebraically isolated singularity of the real
          analytic vector field X, geometrically this corresponds to the fact that the
          complexified vector field has positive dimension singular locus,
          algebraically this mean that the local ring Qx=R[[x1..xn]]/Ix
          where R[[x1,..,xn]] is the ring of germs at 0 of real-valued analytic
          functions on R^n, and Ix is the ideal generated by the components
          of X is infinite dimensional as real vector space. In the case that
          X has a reduced hypersurface as complex zeros we have the next.
          There exist a real analytic function f:R^n-->R, and a real analytic
          vector field Y s. t. X=fY. The function f does not change of sign
          out of 0 and
                      Mx=R[[x1..xn]]/(Ix : radical(Ix))
          is a finite dimensional sub-algebra of Qx. The Poincare-Hopf index
          of X at 0 is the sign of f times the signature of the non degenerate
          bilinear form <,> obtained by composition of the product in the
          algebra Mx with a linear functional map
                       <,> : (Mx)x(Mx) ---(.)--> Mx ---(L)--> R
          with L(Jp)>0, where Jp is the residue class of the Jacobian
          determinant of X, JX, over f^n, JX/(f^n) in Mx. Here, we use a
          natural linear functional defined as follows. Suppose that
          E={E_1,..E_r} is a basis of Mx, then Jp is writing as
                      Jp=a_1E_{j1}+...+a_kE_{jk},  js\in {1...r}, s=1..k, k<=r,
          where a_s are constant. The linear functional L:M--->R is defined as
                                  L(E_{j1})=(a_1)/|a_1|=sign of a_1,
          the other elements of the base are sent to 0.
          Refs. -Castellanos-Vargas, V., Una formula algebraica del indice de
                 Poincare-Hopf para campos vectoriales reales con una variedad
                 de ceros complejos, Ph. D. thesis CIMAT (2000), chapther 1,
                 Guanajuato Mexico.
                -Castellanos -Vargas, V. The index of non algebraically
                 isolated singularity, Bol. Soc. Mat. Mexicana, (3)
                 Vol. 8, 2002, 141-147.

EXAMPLE:  example  PH_nais; shows an example.
"
{
  if(typeof(I)!="ideal")
  {
    ERROR("** The argument is not of ideal type");
  }
  ideal A=I;
  int siono=vdim(std(A));
  int l;
  if (siono!=0)
    {
      if (siono!=-1)
    {
      ERROR("** The vector field has an algebraically isolated singularity, USE: PH_ais ");
    }
      option(noprot);
      option(noredefine);
      int n=nvars(basering);
      def oldr=basering;
      int chr1=char(oldr);
      ring newring=chr1,(x(1..n)), dp; //ring to compute the radical
      ideal A= fetch(oldr,A);
      ideal rI=radical(A);
      setring oldr;
      ideal rI=fetch(newring,rI);
      if (size(rI)!=1)
    {
      ERROR("** The vector field does not have a non algebraically isolated singularity of codimension 1");
    }
      ideal qI=std(quotient(A,rI));
      ideal E=kbase(qI);
      int m=size(E);
      poly Jx=det(jacob(A));
      poly Jy=Quotient(Jx,rI[1]^n)[1];
      poly Jo=reduce(Jy,qI);
      ring newr=chr1,(x(1..m)),ds; //ring to compute the quadratic form
      int nv=nvars(basering);
      ideal E=fetch(oldr,E);
      ideal qI=fetch(oldr,qI);
      poly Jo=fetch(oldr,Jo);
      attrib(qI,"isSB",1);
      int scoef=1;
      if (leadcoef(Jo[1])<0)
    {
      scoef=-1;
    }
      int multby;
      def lcEik;
      poly Eik;
      poly Axx=0;
      int si=1;
      int sk;
      int tEik;
      int stEik;
      while (si<=nv)
    {
      sk=si;
      while (sk<=nv)
        {
          Eik=reduce(E[si]*E[sk],qI);
          tEik=size(Eik);
          for(int stEik=1; stEik<=tEik; stEik++)
        {
          if (leadmonom(Eik[stEik])==leadmonom(Jo[1]))
            {
              if (si==sk)
            {
              multby=1;
            }
              else
            {
              multby=2;
            }
              lcEik=leadcoef(Eik[stEik]);
              if (lcEik<0)
            {
              Axx=Axx-multby*lcEik*scoef*x(si)*x(sk);
            }
              else
            {
              Axx=Axx+multby*lcEik*scoef*x(si)*x(sk);
            }
            }
        }
          sk=sk+1;
        }
      si=si+1;
    }
      l=SignatLalt(Axx); //signature of bilinear form
      return(l);
    }
  else
    {
      return(0);
    }
}
example
{"EXAMPLE:"; echo = 2;
  ring r=0,(x,y,z),ds;
  ideal I=x5-2x3y2-3xy4+x3z2-3xy2z2,-3x4y-2x2y3+y5-3x2yz2+y3z2,x2z3+y2z3+z5;
  PH_nais(I);
}
//////////////////////////////////////////////////////////////////////
static proc SigntL(poly M)  //static procedure to compute the signature of any quadratic form.
"USAGE:    SigntL(M); M is a quadratic form.
RETURN:   The signature of M of type int.
ASSUME:   M is a quadratic form (ply type).
"
{
  int nv1=nvars(basering);
  poly Axx=M;
  poly Bxx;
  poly bxx1;
  poly bxx2;
  def coe1;
  int i;
  int jb;
  int k;
  int haycuadrados;
  int haycruzados;
  int positivo=0;
  int negativo=0;
  int lAxx;
  while (Axx<>0)
    {
      haycruzados=1;
      haycuadrados=1;
      lAxx=size(Axx);
      i=1;
      while (i<=lAxx and haycuadrados)
    {
      jb=1;
      while (jb<=nv1 and haycuadrados)
        {
          if (leadmonom(Axx[i])/(x(jb)^2)==1)
        {
          Bxx=Axx;
          if (leadcoef(Axx[i])>0)
            {
              positivo=positivo+1;
            }
          else
            {
              negativo=negativo+1;
            }
          coe1=1/(4*leadcoef(Bxx[i]));
          Axx=Bxx-coe1*(diff(Bxx,x(jb)))^2;
          haycuadrados=0;
          haycruzados=0;
        }
          jb=jb+1;
        }
      i=i+1;
    }
      if (haycruzados)
    {
      int ia=1;
      int ja=1;
      int ka=1;
      while (ia<=nv1 and haycruzados)
        {
          while (ja<=nv1 and haycruzados)
        {
          ka=ja+1;
          while (ka<=nv1 and haycruzados)
            {
              if (leadmonom(Axx[ia])/leadmonom(x(ja)*x(ka))==1)
            {
              Bxx=Axx;
              bxx1=diff(Bxx,x(ja))+diff(Bxx,x(ka));
              bxx2=diff(Bxx,x(ja))-diff(Bxx,x(ka));
              coe1=1/(4*leadcoef(Bxx[ia]));
              Axx=Bxx-coe1*(bxx1^2-bxx2^2);
              positivo=positivo+1;
              negativo=negativo+1;
              haycruzados=0;
            }
              ka=ka+1;
            }
          ja=ja+1;
        }
          ia=ia+1;
        }
    }
    }
  int dat1=positivo-negativo;
  intvec dat=dat1,positivo,negativo;
  return(dat);
}
////////////////////////////////////////////////////////////////////////////
//NOTE: SignatLalt is a procedure to compute the signature of a special
//      bilinear form that is necessary to compute the Poincare-Hopf index.
static proc SignatLalt(poly M)
"USAGE:    SignatLalt(M); M is a quadratic form (a polynomial).
RETURN:   The signature of type int.
"
{
 int nv1=nvars(basering);
 if (M==0)
   {
     ERROR("** The quadratic form is zero");
   }
 poly Axx=M;
 poly Bxx;
 poly bxx1;
 poly bxx2;
 def coe1;
 int i;
 int jb;
 int k;
 int haycuadrados;
 int sihay=1;
 int positivo=0;
 int negativo=0;
 int variableactual=0;
 int posicion=1;
 int lAxx;
 while (Axx<>0 and sihay)
   {
     haycuadrados=1;
     lAxx=size(Axx);
     i=posicion;
     while (i<=lAxx and haycuadrados)
       {
     jb=variableactual+1;
     while (jb<=nv1 and haycuadrados)
       {
         if (leadmonom(Axx[i])/(x(jb)^2)==1)
           {
         Bxx=Axx;
         if (leadcoef(Axx[i])>0)
           {
             positivo=positivo+1;
           }
         else
           {
             negativo=negativo+1;
           }
         coe1=1/(4*leadcoef(Bxx[i]));
         Axx=Bxx-coe1*(diff(Bxx,x(jb)))^2;
         haycuadrados=0;
         variableactual=jb;
         posicion=i;
           }
         jb=jb+1;
       }
     if (i==lAxx and haycuadrados)
       {
         sihay=0;
       }
     i=i+1;
       }
   }
 return(positivo-negativo);
}