This file is indexed.

/usr/share/singular/LIB/perron.lib is in singular-data 4.0.3+ds-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
//////////////////////////////////////////////////////////////////////////////
version="version perron.lib 4.0.0.0 Jun_2013 "; // $Id: bd7cde64b139f9376272b52f8102d69ba8af6397 $
category="Noncommutative";
info="
LIBRARY:  perron.lib         computation of algebraic dependences
AUTHOR:   Oleksandr Motsak   U@D, where U={motsak}, D={mathematik.uni-kl.de}

PROCEDURES:
perron(L[, D]);  relations between pairwise commuting polynomials

KEYWORDS:  algebraic dependence; relations
";

LIB "central.lib";

//////////////////////////////////////////////////////////////////////////////
proc perron( ideal L, list # )
"USAGE:  perron( L [, D] )
RETURN:  commutative ring with ideal `Relations`
PURPOSE: computes polynomial relations ('Relations') between pairwise
         commuting polynomials of L [, up to a given degree bound D]
NOTE:    the implementation was partially inspired by the Perron's theorem.
EXAMPLE: example perron; shows an example
"
{
  int N, D, i;
  N = size(L);
  if( N == 0 )
  {
    ERROR( "Input ideal must be non-zero!" );
  }
  intvec W; // weights
  for ( i = N; i > 0; i-- )
  {
    W[i] = deg(L[i]);
  }
  ////////////////////////////////////////////////////////////////////////
  D = -1;
  // Check whether the degree bound 'D' is given:
  if( size(#)>0 )
  {
    if ( typeof(#[1]) == typeof(D) )
    {
      D = #[1];
      if( D <= 0 )
      {
        ERROR( "An optional parameter D must be positive!" );
      }
    }
  }

  // , otherwise we try to estimate it according to Perron's Th:
  if( D < 0 )
  {
    D = 1;
    int d;
    int min = -1;

    for ( i = size(L); i > 0 ; i-- )
    {
      d = W[i];
      D = D * d;
      if( min == -1)
      {
        min = d;
      }
      else
      {
        if( min > d )
        {
          min = d;
        }
      }
    }
    if( (D == 0) or (min <= 0) )
    {
      ERROR( "Wrong set of polynomials!" );
    }
    D = D div min;
  }
  ////////////////////////////////////////////////////////////////////////
  def NCRING = basering;
  def CurrentField = ringlist( NCRING )[1];

  // We are going to construct a commutative ring in N variables F(i),
  // with the field specified by 'CurrentField':

  ring TEMPRING = 0, ( F(1..N) ), dp;
  list RingList = ringlist( TEMPRING );
  setring NCRING;

  if( !defined(RingList) )
  {
    list RingList = imap( TEMPRING, RingList );
  }
  RingList[1] = CurrentField;

  // New Commutative Ring with correct field!
  def COMMUTATIVERING = ring( RingList );

  ////////////////////////////////////////////////////////////////////////

  setring COMMUTATIVERING; // we are in COMMUTATIVERING now

  ideal PBWBasis = PBW_maxDeg( D ); // All monomials of degree(!) <= D.

  // TODO: it would be better to compute weighted monomials of weight
  // <= W[1] \cdots W[N].

  setring NCRING; // and back to NCRING

  map Psi = COMMUTATIVERING, L; // F(i) \mapsto L[i]

  ideal Images = Psi( PBWBasis ); // Corresponding products of polynomials
                                  // from L

  // ::MAIN STEP:: // Compute relations in NC ring:
  def T = linearMapKernel( Images );

  ////////////////////////////////////////////////////////////////////////

  // check the output of 'linearMapKernel':
  int t = 0;

  if( (typeof(T) != "module") and (typeof(T) != "int" ) )
  {
    ERROR( "Wrong output from function 'linearMapKernel'!" );
  }

  if( typeof(T) == "int" )
  {
    t = 1;
    if( T != 0 )
    {
      ERROR( "Wrong output from function 'linearMapKernel'!" );
    }
  }

  ////////////////////////////////////////////////////////////////////////

  // Go back to commutative case in both cases:
  setring COMMUTATIVERING;

  ideal Relations; // And generate Relations:

  if( t == 0 ) // T is a module
  {
    module KER = imap( NCRING, T );
    Relations = linearCombinations( PBWBasis, KER );
  }
  else
  { // T == int(0) => all images are zero =>
    Relations = PBWBasis;
  }

  ////////////////////////////////////////////////////////////////////////

  // we compute an std basis of the relations:

  // save options
  intvec v = option( get );

  // set right options
  option( redSB );
  option( redTail );

  // reduce everything in as far as possible
  Relations = simplify( groebner( Relations ), 1 + 2 + 8 );

  // restore options
  option( set, v );

  //    Relations;
  export Relations;

  return( COMMUTATIVERING );
}
example
{ "EXAMPLE:"; echo = 2;
  int p = 3;
  ring AA = p,(x,y,z),dp;
  matrix D[3][3]=0;
  D[1,2]=-z; D[1,3]=2*x; D[2,3]=-2*y;
  def A = nc_algebra(1,D); setring A; // this algebra is U(sl_2)
  ideal I = x^p, y^p, z^p-z, 4*x*y+z^2-2*z; // the center
  def RA = perron( I, p );
  setring RA;
  RA;
  Relations; // it was exported from perron to be in the returned ring.

  // perron can be also used in a commutative case, for example:
  ring B = 0,(x,y,z),dp;
  ideal J = xy+z2, z2+y2, x2y2-2xy3+y4;
  def RB = perron(J);
  setring RB;
  Relations;
  // one more test:
  setring A;
  map T=RA,I;
  T(Relations);  // should be zero
}