This file is indexed.

/usr/share/singular/LIB/ntsolve.lib is in singular-data 4.0.3+ds-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
//////////////////////////////////////////////////////////////////////////////
version="version ntsolve.lib 4.0.0.0 Jun_2013 "; // $Id: db288a21f5e6b13c10c1226596c661ff6d0e7d03 $
category="Symbolic-numerical solving";
info="
LIBRARY:  ntsolve.lib     Real Newton Solving of Polynomial Systems
AUTHORS:  Wilfred Pohl, email: pohl@mathematik.uni-kl.de
          Dietmar Hillebrand

PROCEDURES:
 nt_solve(G,ini,[..]);        find one real root of 0-dimensional ideal G
 triMNewton(G,a,[..]);      find one real root for 0-dim triangular system G
";

LIB "general.lib";
///////////////////////////////////////////////////////////////////////////////

proc nt_solve (ideal gls, ideal ini, list #)
"USAGE:   nt_solve(gls,ini[,ipar]); gls,ini= ideals, ipar=list/intvec,@*
  gls: contains the equations, for which a solution will be computed@*
  ini: ideal of initial values (approximate solutions to start with),@*
  ipar: control integers (default: ipar = [100, 10])
  @format
 ipar[1]: max. number of iterations
 ipar[2]: accuracy (we have the l_2-norm ||.||): accepts solution @code{sol}
          if ||gls(sol)|| < eps0*(0.1^ipar[2])
          where eps0 = ||gls(ini)|| is the initial error
  @end format
ASSUME:  gls is a zerodimensional ideal with nvars(basering) = size(gls) (>1)
RETURN:  ideal, coordinates of one solution (if found), 0 else
NOTE:    if printlevel >0: displays comments (default =0)
EXAMPLE: example nt_solve; shows an example
"
{
    def rn = basering;
    int di = size(gls);
    if (nvars(basering) != di){
      ERROR("// wrong number of equations");}
    if (size(ini) != di){
      ERROR("// wrong number of initial values");}
    int prec = system("getPrecDigits"); // precision

    int i1,i2,i3;
    int itmax, acc;
    intvec ipar;
    if ( size(#)>0 ){
       i1=1;
       if (typeof(#[1])=="intvec") {ipar=#[1];}
       if (typeof(#[1])=="int") {ipar[1]=#[1];}
       if ( size(#)>1 ){
          i1=2;
          if (typeof(#[2])=="int") {ipar[2]=#[2];}
       }
    }

    int prot = printlevel-voice+2;  // prot=printlevel (default:prot=0)
    if (i1 < 1){itmax = 100;}else{itmax = ipar[1];}
    if (i1 < 2){acc = prec div 2;}else{acc = ipar[2];}
    if ((acc <= 0)||(acc > prec-1)){acc = prec-1;}

    int dpl = di+1;
    string out;
    out = "ring rnewton=(real,prec),("+varstr(basering)+"),(c,dp);";
    execute(out);

    ideal gls1=imap(rn,gls);
    module nt,sub;
    sub = transpose(jacob(gls1));
    for (i1=di;i1>0;i1--){
      if(sub[i1]==0){break;}}
    if (i1>0){
      setring rn; kill rnewton;
      ERROR("// one var not in equation");}

    list direction;
    ideal ini1;
    ini1 = imap(rn,ini);
    number dum,y1,y2,y3,genau;
    genau = 0.1;
    dum = genau;
    genau = genau^acc;

    for (i1=di;i1>0;i1--){
      sub[i1]=sub[i1]+gls1[i1]*gen(dpl);}
    nt = sub;
    for (i1=di;i1>0;i1--){
      nt = subst(nt,var(i1),ini1[i1]);}

    // now we have in sub the general structure
    // and in nt the structure with subst. vars

    // compute initial error
    y1 = ml2norm(nt,genau);
    dbprint(prot,"// initial error = "+string(y1));
    y2 = genau*y1;

  // begin of iteration
  for(i3=1;i3<=itmax;i3++){
     dbprint(prot,"// iteration: "+string(i3));

    // find newton direction
    direction=bareiss(nt,1,-1);

    // find dumping
    dum = linesearch(gls1,ini1,direction[1],y1,dum,genau);
    if (i3%5 == 0)
    {
      if (dum <= 0.000001)
      {
        dum = 1.0;
      }
    }
    dbprint(prot,"// dumping = "+string(dum));

    // new value
    for(i1=di;i1>0;i1--){
      ini1[i1]=ini1[i1]-dum*direction[1][i1];}
    nt = sub;
    for (i1=di;i1>0;i1--){
      nt = subst(nt,var(i1),ini1[i1]);}
    y1 = ml2norm(nt,genau);
    dbprint(prot,"// error = "+string(y1));
    if(y1<y2){break;} // we are ready
  }

    if (y1>y2){
      "// ** WARNING: iteration bound reached with error > error bound!";}
    setring rn;
    ini = imap(rnewton,ini1);
    kill rnewton;
    return(ini);
}
example
{
    "EXAMPLE:";echo=2;
    ring rsq = (real,40),(x,y,z,w),lp;
    ideal gls =  x2+y2+z2-10, y2+z3+w-8, xy+yz+xz+w5 - 1,w3+y;
    ideal ini = 3.1,2.9,1.1,0.5;
    intvec ipar = 200,0;
    ideal sol = nt_solve(gls,ini,ipar);
    sol;
}
///////////////////////////////////////////////////////////////////////////////

static proc sqrt (number wr, number wa, number wg)
{
  number es,we;
  number wb=wa;
  number wf=wb*wb-wr;
  if(wf>0){
    es=wf;}
  else{
    es=-wf;}
  we=wg*es;
  while (es>we)
  {
    wf=wf/(wb+wb);
    wb=wb-wf;
    wf=wb*wb-wr;
    if(wf>0){
      es=wf;}
    else{
      es=-wf;}
  }
  return(wb);
}

static proc il2norm (ideal H, number wg)
{
  number wa,wb;
  int wi,dpl;
  wa = leadcoef(H[1]);
  wa = wa*wa;
  for(wi=size(H);wi>1;wi--)
  {
    wb=leadcoef(H[wi]);
    wa=wa+wb*wb;
  }
  return(sqrt(wa,wa,wg));
}

static proc ml2norm (module H, number wg)
{
  number wa,wb;
  int wi,dpl;
  dpl = size(H)+1;
  wa = leadcoef(H[1][dpl]);
  wa = wa*wa;
  for(wi=size(H);wi>1;wi--)
  {
    wb=leadcoef(H[wi][dpl]);
    wa=wa+wb*wb;
  }
  return(sqrt(wa,wa,wg));
}

static
proc linesearch(ideal nl, ideal aa, ideal bb,
number z1, number tt, number gg)
{
  int ii,d;
  ideal cc,jn;
  number ss,z2,z3,mm;

  mm=0.000001;
  ss=tt;
  d=size(nl);
  cc=aa;
  for(ii=d;ii>0;ii--){cc[ii]=cc[ii]-ss*bb[ii];}
  jn=nl;
  for(ii=d;ii>0;ii--){jn=subst(jn,var(ii),cc[ii]);}
  z2=il2norm(jn,gg);
  z3=-1;
  while(z2>=z1)
  {
    ss=0.5*ss;
    if(ss<mm){return (mm);}
    cc=aa;
    for(ii=d;ii>0;ii--)
    {
      cc[ii]=cc[ii]-ss*bb[ii];
    }
    jn=nl;
    for(ii=d;ii>0;ii--){jn=subst(jn,var(ii),cc[ii]);}
    z3=z2;
    z2=il2norm(jn,gg);
  }
  if(z3<0)
  {
    while(z3<z2)
    {
      ss=ss+ss;
      cc=aa;
      for(ii=d;ii>0;ii--)
      {
        cc[ii]=cc[ii]-ss*bb[ii];
      }
      jn=nl;
      for(ii=d;ii>0;ii--){jn=subst(jn,var(ii),cc[ii]);}
      if(z3>0){z2=z3;}
      z3=il2norm(jn,gg);
    }
  }
  z2=z2-z1;
  z3=z3-z1;
  ss=0.25*ss*(z3-4*z2)/(z3-2*z2);
  if(ss>1.0){return (1.0);}
  if(ss<mm){return (mm);}
  return(ss);
}
///////////////////////////////////////////////////////////////////////////////
//
//   Multivariate Newton for triangular systems
//   algorithms for solving algebraic system of dimension zero
//   written by Dietmar Hillebrand
///////////////////////////////////////////////////////////////////////////////

proc triMNewton (ideal G, ideal a, list #)
"USAGE:  triMNewton(G,a[,ipar]); G,a= ideals, ipar=list/intvec
ASSUME:  G:   g1,..,gn, a triangular system of n equations in n vars, i.e.
  gi=gi(var(n-i+1),..,var(n)),@*
  a:   ideal of numbers, coordinates of an approximation of a common
       zero of G to start with (with a[i] to be substituted in var(i)),@*
  ipar: control integer vector (default: ipar = [100, 10])
  @format
  ipar[1]: max. number of iterations
  ipar[2]: accuracy (we have as norm |.| absolute value ):
           accepts solution @code{sol} if |G(sol)| < |G(a)|*(0.1^ipar[2]).
  @end format
RETURN:  an ideal, coordinates of a better approximation of a zero of G
EXAMPLE: example triMNewton; shows an example
"
{
    int prot = printlevel;
    int i1,i2,i3;
    intvec ipar;
    if ( size(#)>0 ){
       i1=1;
       if (typeof(#[1])=="intvec") {ipar=#[1];}
       if (typeof(#[1])=="int") {ipar[1]=#[1];}
       if ( size(#)>1 ){
          i1=2;
          if (typeof(#[2])=="int") {ipar[2]=#[2];}
       }
    }
    int itb, err;
    if (i1 < 1) {itb = 100;} else {itb = ipar[1];}
    if (i1 < 2) {err = 10;} else {err = ipar[2];}

    if (itb == 0)
    {
       dbprint(prot,"// ** iteration bound reached with error > error bound!");
       return(a);
    }

    int i,j,k;
    ideal p=G;
    matrix J=jacob(G);
    list h;
    poly hh;
    int fertig=1;
    int n=nvars(basering);

    for (i = 1; i <= n; i++)
    {
        for (j = n; j >= n-i+1; j--)
        {
            p[i] = subst(p[i],var(j),a[j]);
            for (k = n; k >= n-i+1; k--)
            {
                J[i,k] = subst(J[i,k],var(j),a[j]);
            }
        }
        if (J[i,n-i+1] == 0)
        {
            ERROR("// ideal not radical");
            return();
        }

        // solve linear equations
        hh = -p[i];
        for (j = n; j >= n-i+2; j--)
        {
            hh = hh - J[i,j]*h[j];
        }
        h[n-i+1] = number(hh/J[i,n-i+1]);
    }

    for (i = 1; i <= n; i++)
    {
        if ( absValue(h[i]) > (1/10)^err)
        {
            fertig = 0;
            break;
        }
    }
    if ( not fertig )
    {
        if (prot > 0)
        {
           "// error:"; print(absValue(h[i]));
           "// iterations to be performed: "+string(itb);
        }
        for (i = 1; i <= n; i++)
        {
            a[i] = a[i] + h[i];
        }
        ipar = itb-1,err;
        return(triMNewton(G,a,ipar));
    }
    else
    {
        return(a);
    }
}
example
{ "EXAMPLE:"; echo = 2;
   ring r = (real,30),(z,y,x),(lp);
   ideal i = x^2-1,y^2+x4-3,z2-y4+x-1;
   ideal a = 2,3,4;
   intvec e = 20,10;
   ideal l = triMNewton(i,a,e);
   l;
}
///////////////////////////////////////////////////////////////////////////////