This file is indexed.

/usr/share/singular/LIB/nfmodstd.lib is in singular-data 4.0.3+ds-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
////////////////////////////////////////////////////////////////////////////////
version="version nfmodstd.lib 4.0.1.0 Sep_2014 ";  // $Id: 839b0962067d1dafb230a592100f65f85495b25f $
category="Commutative Algebra";
info="

LIBRARY:   nfmodstd.lib  Groebner bases of ideals in polynomial rings
                           over algebraic number fields
AUTHORS:   D.K. Boku       boku@mathematik.uni-kl.de
@*         W. Decker       decker@mathematik.uni-kl.de
@*         C. Fieker       fieker@mathematik.uni-kl.de

OVERVIEW:
  A library for computing the Groebner basis of an ideal in the polynomial
  ring over an algebraic number field Q(t) using the modular methods, where t is
  algebraic over the field of rational numbers Q. For the case Q(t) = Q, the procedure
  is inspired by Arnold [1]. This idea is then extended
  to the case t not in Q using factorization as follows:
  Let f be the minimal polynomial of t.
  For I, I' ideals in Q(t)[X], Q[X,t]/<f> respectively, we map I to I' via the map sending
  t to t + <f>.
  We first choose a prime p such that f has at least two factors in characteristic p and
  add each factor f_i to I' to obtain the ideal J'_i = I' + <f_i>.
  We then compute a standard basis G'_i of J'_i for each i and combine the G'_i to G_p
  (a standard basis of I'_p) using chinese remaindering for polynomials. The procedure is
  repeated for many primes p, where we compute the G_p in parallel until the
  number of primes is sufficiently large to recover the correct standard basis G' of I'.
  Finally, by mapping G' back to Q(t)[X], a standard basis G of I is obtained.

REFERENCES:
  [1] E. A. Arnold: Modular algorithms for computing Groebner bases.
      J. Symb. Comp. 35, 403-419 (2003).

PROCEDURES:
  chinrempoly(l,m);       chinese remaindering for polynomials
  nfmodStd(I);          standard basis of I over algebraic number field using modular methods
";

LIB "modstd.lib";

////////////////////////////////////////////////////////////////////////////////

static proc testPrime(int p, ideal I)
{
    /*
     * test whether a prime p divides the denominator(s)
     * and leading coefficients of generating set of ideal
     */
    int i,j;
    poly f;
    number num;
    bigint d1,d2,d3;
    for(i = 1; i <= size(I); i++)
    {
        f = cleardenom(I[i]);
        if(f == 0)
        {
            return(0);
        }
        num = leadcoef(I[i])/leadcoef(f);
        d1 = bigint(numerator(num));
        d2 = bigint(denominator(num));
        if( (d1 mod p) == 0)
        {
            return(0);
        }
        if((d2 mod p) == 0)
        {
            return(0);
        }
        for(j = size(f); j > 0; j--)
        {
            d3 = bigint(leadcoef(f[j]));
            if( (d3 mod p) == 0)
            {
                return(0);
            }
        }
    }
    return(1);
}

////////////////////////////////////////////////////////////////////////////////
/* return 1 if the number of factors are in the required bound , 0 else */

static proc minpolyTask(poly f,int p)
{
    /*
     * bound for irreducible factor(s) of (f mod p)
     * see testfact()
     */
    int nr,k,ur;
    ur=deg(f);
    list L=factmodp(f,p);
    if(degtest(L[2])==1)
    {
        // now each factor is squarefree
        if(ur<=3)
        {
            return(1);
        }
        else
        {
            nr = testfact(ur);
            k=ncols(L[1]);
            if(nr < k && k < (ur-nr))// set bound for k
            {
                return(1);
            }
        }
    }
    return(0);
}

////////////////////////////////////////////////////////////////////////////////
/* return 1 if both testPrime(p,J) and minpolyTask(f,p) is true, 0 else */

static proc PrimeTestTask(int p, list L)
{
    /* L=list(I), I=J,f; J ideal , f minpoly */
    int sz,nr,dg;
    ideal J=L[1];
    sz=ncols(J);
    poly f=J[sz];
    dg=deg(f);
    if(!testPrime(p,J) or !minpolyTask(f,p))
    {
        return(0);
    }
    return(1);
}

////////////////////////////////////////////////////////////////////////////////
/* compute factors of f mod p with multiplicity */

static proc factmodp(poly f, int p)
{
    def R=basering;
    list l=ringlist(R);
    l[1]=p;
    def S=ring(l);
    setring S;
    list L=factorize(imap(R,f),2);
    ideal J=L[1];
    intvec v=L[2];
    list scx=J,v;
    setring R;
    return(imap(S,scx));
    kill S;
}

////////////////////////////////////////////////////////////////////////////////
/* set a bound for number of factors w.r.t degree nr*/

static proc testfact(int nr)
{
    // nr must be greater than 3
    int i;
    if(nr>3 and nr<=5)
    {
        i=1;
    }
    if(nr>5 and nr<=10)
    {
        i=2;
    }
    if(nr>10 and nr<=15)
    {
        i=3;
    }
    if(nr>15 and nr<=20)
    {
        i=4;
    }
    if(nr>20 and nr<=25)
    {
        i=5;
    }
    if(nr>25 and nr<=30)
    {
        i=6;
    }
    if(nr>30)
    {
        i=10;
    }
    return(i);
}

///////////////////////////////////////////////////////////////////////////////
// return 1 if v[i]>1 , 0 else

static proc degtest(intvec v)
{
    for(int j=1;j<=nrows(v);j++)
    {
        if(v[j]>1)
        {
            return(0);
        }
    }
    return(1);
}

////////////////////////////////////////////////////////////////////////////////

static proc chinRm(list m, list ll, list lk,list l1,int uz)
{
    poly ff,c;

    for(int i=1;i<=uz;i++)
    {
        c = division(l1[i]*ll[i],m[i])[2][1];
        ff = ff + c*lk[i];
    }
    return(ff);
}

////////////////////////////////////////////////////////////////////////////////

proc chinrempoly(list l,list m)
"USAGE:  chinrempoly(l, m); l list, m list
RETURN:  a polynomial (resp. ideal) which is congruent to l[i] modulo m[i] for all i
NOTE: The procedure applies chinese remaindering to the first argument w.r.t. the
      moduli given in the second. The elements in the first list must be of same type
      which can be polynomial or ideal. The moduli must be of type polynomial. Elements
      in the second list must be distinct and co-prime.
SEE ALSO: chinrem
EXAMPLE: example chinrempoly; shows an example
"
{
    int i,j,sz,uz;
    uz = size(l);
    sz = ncols(ideal(l[1]));
    poly f=1;
    for(i=1;i<=uz;i++)
    {
        f=f*m[i];
    }

    ideal I,J;
    list l1,ll,lk,l2;
    poly c,ff;
    for(j=1;j<=uz;j++)
    {
        lk[j]=f/m[j];
        ll[j]=extgcd(lk[j],m[j])[2];
    }

    for(i=1;i<=sz;i++)
    {
        for(j=1;j<=uz;j++)
        {
            I = l[j];
            l1[j] = I[i];
        }
        J[i] = chinRm(m,ll,lk,l1,uz);
    }
    return(J);
}
example
{ "EXAMPLE:"; echo = 2;
    ring rr=97,x,dp;
    poly f=x^7-7*x + 3;
    ideal J=factorize(f,1);
    J;
    list m=J[1..ncols(J)];
    list l= x^2+2*x+3, x^2+5, x^2+7;
    ideal I=chinrempoly(l,m);
    I;
    ring s=0,x,dp;
    list m= x^2+2*x+3, x^3+5, x^4+x^3+7;
    list l=x^3 + 2, x^4 + 7, x^5 + 11;
    ideal I=chinrempoly(l,m);
    I;
    int p=prime(536546513);
    ring r = p, (x,y,a), (dp(2),dp(1));
    poly minpolynomial = a^2+1;
    ideal kf=factorize(minpolynomial,1);//return factors without multiplicity
    kf;
    ideal k=(a+1)*x2+y, 3x-ay+ a+2;
    option(redSB);
    ideal k1=k,kf[1];
    ideal k2 =k,kf[2];
    k1=std(k1);
    k2=std(k2);
    list l=k1,k2;
    list m=kf[1..ncols(kf)];
    ideal I=chinrempoly(l,m);
    I=simplify(I,2);
    I;
}

////////////////////////////////////////////////////////////////////////////////

static proc check_leadmonom_and_size(list L)
{
    /*
     * compare the size of ideals in the list and
     * check the corresponding leading monomials
     * size(L)>=2
     */
    ideal J=L[1];
    int i=size(L);
    int sc=ncols(J);
    int j,k;
    poly g=leadmonom(J[1]);
    for(j=1;j<=i;j++)
    {
        if(ncols(L[j])!=sc)
        {
            return(0);
        }
    }
    for(k=2;k<=i;k++)
    {
        for(j=1;j<=sc;j++)
        {
            if(leadmonom(J[j])!=leadmonom(L[k][j]))
            {
                return(0);
            }
        }
    }
    return(1);
}

////////////////////////////////////////////////////////////////////////////////

static proc LiftPolyCRT(ideal I)
{
    /*
     * compute std for each factor and combine this result
     * to modulo minpoly via CRT for poly over char p>0
     */
    int u,in,j;
    list LL,Lk;
    ideal J,K,II;
    poly f;
    u=ncols(I);
    J=I[1..u-1];
    f=I[u];
    K=factorize(f,1);
    in=ncols(K);
    for(j=1;j<=in;j++)
    {
        LL[j]=K[j];
        ideal I(j)=J,K[j];
        I(j)=std(I(j));
        if(size(I(j))==1)
        {
            Lk[j]=I(j);
        }
        else
        {
            I(j)[1]=0;
            I(j)=simplify(I(j), 2);
            Lk[j]=I(j);
        }
    }
    if(check_leadmonom_and_size(Lk))
    {
        // apply CRT for polynomials
        II =chinrempoly(Lk,LL),f;
    }
    else
    {
        II=0;
    }
    return(II);
}

////////////////////////////////////////////////////////////////////////////////

static proc PtestStd(string command, list args, ideal result, int p)
{
    /*
     * let G be std of I which is not yet known whether it is the correct
     *  standard basis or not. So this procedure does the first test
     */
    def br = basering;
    list lbr = ringlist(br);
    if (typeof(lbr[1]) == "int")
    {
        lbr[1] = p;
    }
    else
    {
        lbr[1][1] = p;
    }
    def rp = ring(lbr);
    setring(rp);
    ideal Ip = fetch(br, args)[1];
    ideal Gp = fetch(br, result);
    attrib(Gp, "isSB", 1);
    int i;
    for (i = ncols(Ip); i > 0; i--)
    {
        if (reduce(Ip[i], Gp, 1) != 0)
        {
            setring(br);
            return(0);
        }
    }
    Ip = LiftPolyCRT(Ip);
    attrib(Ip,"isSB",1);
    for (i = ncols(Gp); i > 0; i--)
    {
        if (reduce(Gp[i], Ip, 1) != 0)
        {
            setring(br);
            return(0);
        }
    }
    setring(br);
    return(1);
}

////////////////////////////////////////////////////////////////////////////////

static proc cleardenomIdeal(ideal I)
{
    int t=ncols(I);
    if(size(I)==0)
    {
        return(I);
    }
    else
    {
        for(int i=1;i<=t;i++)
        {
            I[i]=cleardenom(I[i]);
        }
    }
    return(I);
}

////////////////////////////////////////////////////////////////////////////////

static proc modStdparallelized(ideal I)
{
    // apply modular.lib
    /* save options */
    intvec opt = option(get);
    option(redSB);
    I = modular("Nfmodstd::LiftPolyCRT", list(I), PrimeTestTask, Modstd::deleteUnluckyPrimes_std,
              PtestStd, Modstd::finalTest_std,536870909);
    attrib(I, "isSB", 1);
    option(set,opt);
    return(I);
}

////////////////////////////////////////////////////////////////////////////////
/* main procedure */
proc nfmodStd(ideal I, list #)
"USAGE:  nfmodStd(I, #); I ideal, # optional parameters
RETURN:  standard basis of I over algebraic number field
NOTE: The procedure passes to @ref{modStd} if the ground field has no
      parameter. In this case, the optional parameters # (if given)
      are directly passed to @ref{modStd}.
SEE ALSO: modStd
EXAMPLE: example nfmodStd; shows an example
"
{
    list L=#;
    def Rbs=basering;
    poly f;
    ideal J;
    int n=nvars(Rbs);
    if(size(I)==0)
    {
        return(ideal(0));
    }
    if(npars(Rbs)==0)
    {
        J=modStd(I,L);//if algebraic number is in Q
        if(size(#)>0)
        {
            return(cleardenomIdeal(J));
        }
        return(J);
    }
    list rl=ringlist(Rbs);
    f=rl[1][4][1];
    rl[2][n+1]=rl[1][2][1];
    rl[1]=rl[1][1];
    rl[3][size(rl[3])+1]=rl[3][size(rl[3])];
    rl[3][size(rl[3])-1]=list("dp",1);
    def S=ring(rl);
    setring S;
    poly f=imap(Rbs,f);
    ideal I=imap(Rbs,I);
    I = simplify(I,2);// eraze the zero generatos
    ideal J;
    if(f==0)
    {
        ERROR("minpoly must be non-zero");
    }
    I=I,f;
    J=modStdparallelized(I);
    setring Rbs;
    J=imap(S,J);
    J=simplify(J,2);
    if(size(#)>0)
    {
        return(cleardenomIdeal(J));
    }
    return(J);
}
example
{ "EXAMPLE:"; echo = 2;
    ring r1 =(0,a),(x,y),dp;
    minpoly =a^2+1;
    ideal k=(a/2+1)*x^2+2/3y, 3*x-a*y+ a/7+2;
    ideal I=nfmodStd(k);
    I;
    ring r2 =(0,a),(x,y,z),dp;
    minpoly =a^3 +2;
    ideal k=(a^2+a/2)*x^2+(a^2 -2/3*a)*yz, (3*a^2+1)*zx-(a+4/7)*y+ a+2/5;
    ideal IJ=nfmodStd(k);
    IJ;
    ring r3=0,(x,y),dp;// ring without parameter
    ideal I = x2 + y, xy - 7y + 2x;
    I=nfmodStd(I);
    I;
}

//////////////////////////////////////////////////////////////////////////////

/*
Benchmark Problems from

Boku, Decker, Fieker, Steenpass: Groebner Bases over Algebraic Number
Fields.

// 1
ring R = (0,a), (x,y,z), dp;
minpoly = (a^2+1);
poly f1 = (a+8)*x^2*y^2+5*x*y^3+(-a+3)*x^3*z
          +x^2*y*z;
poly f2 = x^5+2*y^3*z^2+13*y^2*z^3+5*y*z^4;
poly f3 = 8*x^3+(a+12)*y^3+x*z^2+3;
poly f4 = (-a+7)*x^2*y^4+y^3*z^3+18*y^3*z^2;
ideal I1 = f1,f2,f3,f4;

// 2
ring R = (0,a), (x,y,z), dp;
minpoly = (a^5+a^2+2);
poly f1 = 2*x*y^4*z^2+(a-1)*x^2*y^3*z
          +(2*a)*x*y*z^2+7*y^3+(7*a+1);
poly f2 = 2*x^2*y^4*z+(a)*x^2*y*z^2-x*y^2*z^2
          +(2*a+3)*x^2*y*z-12*x+(12*a)*y;
poly f3 = (2*a)*y^5*z+x^2*y^2*z-x*y^3*z
          +(-a)*x*y^3+y^4+2*y^2*z;
poly f4 = (3*a)*x*y^4*z^3+(a+1)*x^2*y^2*z
          -x*y^3*z+4*y^3*z^2+(3*a)*x*y*z^3
          +4*z^2-x+(a)*y;
ideal I2 = f1,f2,f3,f4;

// 3a
ring R = (0,a), (v,w,x,y,z), dp;
minpoly = (a^7-7*a+3);
poly f1 = (a)*v+(a-1)*w+x+(a+2)*y+z;
poly f2 = v*w+(a-1)*w*x+(a+2)*v*y+x*y+(a)*y*z;
poly f3 = (a)*v*w*x+(a+5)*w*x*y+(a)*v*w*z
          +(a+2)*v*y*z+(a)*x*y*z;
poly f4 = (a-11)*v*w*x*y+(a+5)*v*w*x*z
          +(a)*v*w*y*z+(a)*v*x*y*z
          +(a)*w*x*y*z;
poly f5 = (a+3)*v*w*x*y*z+(a+23);
ideal I3a = f1,f2,f3,f4,f5;

// 3b
ring R = (0,a), (u,v,w,x,y,z), dp;
minpoly = (a^7-7*a+3);
poly f1 = (a)*u+(a+2)*v+w+x+y+z;
poly f2 = u*v+v*w+w*x+x*y+(a+3)*u*z+y*z;
poly f3 = u*v*w+v*w*x+(a+1)*w*x*y+u*v*z+u*y*z
          +x*y*z;
poly f4 = (a-1)*u*v*w*x+v*w*x*y+u*v*w*z
          +u*v*y*z+u*x*y*z+w*x*y*z;
poly f5 = u*v*w*x*y+(a+1)*u*v*w*x*z+u*v*w*y*z
          +u*v*x*y*z+u*w*x*y*z+v*w*x*y*z;
poly f6 = u*v*w*x*y*z+(-a+2);
ideal I3b = f1,f2,f3,f4,f5,f6;

// 4
ring R = (0,a), (w,x,y,z), dp;
minpoly = (a^6+a^5+a^4+a^3+a^2+a+1);
poly f1 = (a+5)*w^3*x^2*y+(a-3)*w^2*x^3*y
          +(a+7)*w*x^2*y^2;
poly f2 = (a)*w^5+(a+3)*w*x^2*y^2
          +(a^2+11)*x^2*y^2*z;
poly f3 = (a+7)*w^3+12*x^3+4*w*x*y+(a)*z^3;
poly f4 = 3*w^3+(a-4)*x^3+x*y^2;
ideal I4 = f1,f2,f3,f4;

// 5
ring R = (0,a), (w,x,y,z), dp;
minpoly = (a^12-5*a^11+24*a^10-115*a^9+551*a^8
          -2640*a^7+12649*a^6-2640*a^5+551*a^4
          -115*a^3+24*a^2-5*a+1);
poly f1 = (2*a+3)*w*x^4*y^2+(a+1)*w^2*x^3*y*z
          +2*w*x*y^2*z^3+(7*a-1)*x^3*z^4;
poly f2 = 2*w^2*x^4*y+w^2*x*y^2*z^2
          +(-a)*w*x^2*y^2*z^2
          +(a+11)*w^2*x*y*z^3-12*w*z^6
          +12*x*z^6;
poly f3 = 2*x^5*y+w^2*x^2*y*z-w*x^3*y*z
          -w*x^3*z^2+(a)*x^4*z^2+2*x^2*y*z^3;
poly f4 = 3*w*x^4*y^3+w^2*x^2*y*z^3
          -w*x^3*y*z^3+(a+4)*x^3*y^2*z^3
          +3*w*x*y^3*z^3+(4*a)*y^2*z^6-w*z^7
          +x*z^7;
ideal I5 = f1,f2,f3,f4;

// 6
ring R = (0,a), (u,v,w,x,y,z), dp;
minpoly = (a^2+5*a+1);
poly f1 = u+v+w+x+y+z+(a);
poly f2 = u*v+v*w+w*x+x*y+y*z+(a)*u+(a)*z;
poly f3 = u*v*w+v*w*x+w*x*y+x*y*z+(a)*u*v
          +(a)*u*z+(a)*y*z;
poly f4 = u*v*w*x+v*w*x*y+w*x*y*z+(a)*u*v*w
          +(a)*u*v*z+(a)*u*y*z+(a)*x*y*z;
poly f5 = u*v*w*x*y+v*w*x*y*z+(a)*u*v*w*x
          +(a)*u*v*w*z+(a)*u*v*y*z+(a)*u*x*y*z
          +(a)*w*x*y*z;
poly f6 = u*v*w*x*y*z+(a)*u*v*w*x*y
          +(a)*u*v*w*x*z+(a)*u*v*w*y*z
          +(a)*u*v*x*y*z+(a)*u*w*x*y*z
          +(a)*v*w*x*y*z;
poly f7 = (a)*u*v*w*x*y*z-1;
ideal I6 = f1,f2,f3,f4,f5,f6,f7;

// 7
ring R = (0,a), (w,x,y,z), dp;
minpoly = (a^8-16*a^7+19*a^6-a^5-5*a^4+13*a^3
          -9*a^2+13*a+17);
poly f1 = (-a^2-1)*x^2*y+2*w*x*z-2*w
          +(a^2+1)*y;
poly f2 = (a^3-a-3)*w^3*y+4*w*x^2*y+4*w^2*x*z
          +2*x^3*z+(a)*w^2-10*x^2+4*w*y-10*x*z
          +(2*a^2+a);
poly f3 = (a^2+a+11)*x*y*z+w*z^2-w-2*y;
poly f4 = -w*y^3+4*x*y^2*z+4*w*y*z^2+2*x*z^3
          +(2*a^3+a^2)*w*y+4*y^2-10*x*z-10*z^2
          +(3*a^2+5);
ideal I7 = f1,f2,f3,f4;

// 8
ring R = (0,a), (t,u,v,w,x,y,z), dp;
minpoly = (a^7+10*a^5+5*a^3+10*a+1);
poly f1 = v*x+w*y-x*z-w-y;
poly f2 = v*w-u*x+x*y-w*z+v+x+z;
poly f3 = t*w-w^2+x^2-t;
poly f4 = (-a)*v^2-u*y+y^2-v*z-z^2+u;
poly f5 = t*v+v*w+(-a^2-a-5)*x*y-t*z+w*z+v+x+z
          +(a+1);
poly f6 = t*u+u*w+(-a-11)*v*x-t*y+w*y-x*z-t-u
          +w+y;
poly f7 = w^2*y^3-w*x*y^3+x^2*y^3+w^2*y^2*z
          -w*x*y^2*z+x^2*y^2*z+w^2*y*z^2
          -w*x*y*z^2+x^2*y*z^2+w^2*z^3-w*x*z^3
          +x^2*z^3;
poly f8 = t^2*u^3+t^2*u^2*v+t^2*u*v^2+t^2*v^3
          -t*u^3*x-t*u^2*v*x-t*u*v^2*x-t*v^3*x
          +u^3*x^2+u^2*v*x^2+u*v^2*x^2
          +v^3*x^2;
ideal I8 = f1,f2,f3,f4,f5,f6,f7,f8;
*/