This file is indexed.

/usr/share/singular/LIB/ncdecomp.lib is in singular-data 4.0.3+ds-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
//////////////////////////////////////////////////////////////////////////////
version="version ncdecomp.lib 4.0.0.0 Jun_2013 "; // $Id: cdb78216d4cb2c0f8aa563e5e67052fb5e228be2 $
category="Noncommutative";
info="
LIBRARY:  ncdecomp.lib     Decomposition of a module into its central characters
AUTHORS:  Viktor Levandovskyy,     levandov@mathematik.uni-kl.de.

OVERVIEW:
@* This library presents algorithms for the central character decomposition of a module,
@* i.e. a decomposition into generalized weight modules with respect to the center.
@* Based on ideas of O. Khomenko and V. Levandovskyy (see the article [L2] in the
@* References for details).

PROCEDURES:
CentralQuot(M,G);       central quotient M:G,
CentralSaturation(M,T); central saturation ((M:T):...):T) ( = M:T^infinity),
CenCharDec(I,C);        decomposition of I into central characters w.r.t. C
IntersectWithSub(M,Z);  intersection of M with the subalgebra, generated by pairwise commutative elements of Z.
";

  LIB "ncalg.lib";
  LIB "primdec.lib";
  LIB "central.lib";

///////////////////////////////////////////////////////////////////////////////

proc testncdecomplib()
{
  example CentralQuot;
  example CentralSaturation;
  example CenCharDec;
  example IntersectWithSub;
}

static proc CharKernel(list L, int i)
{
 // todo: think on more effective way of doing it...
// compute \cup L[j], j!=i
  int sL = size(L);
  if ( (i<=0) || (i>sL))  { return(0); }
  int j;
  list Li;
  if (i ==1 )
  {
    Li = L[2..sL];
  }
  if (i ==sL )
  {
    Li = L[1..sL-1];
  }
  if ( (i>1) && (i < sL))
  {
    Li = L[1..i-1];
    for (j=i+1; j<=sL; j++)
    {
      Li[j-1] = L[j];
    }
  }
//  print("intersecting kernels...");
  module Cres = intersect(Li[1..size(Li)]); // uses std, try modulo!
  return(Cres);
}
///////////////////////////////////////////////////////////////////////////////
static proc CentralQuotPoly(module M, poly g)
{
// here an elimination of components should be used !
  int N=nrows(M); // M = A^N /I_M
  module @M;
  int i,j;
  for(i=1; i<=N; i++)
  {
   @M=@M,g*gen(i);
  }
  @M = simplify(@M,2);
  @M = @M,M;
  module S = syz(@M);
  matrix s = S;
  module T;
  vector t;
  for(i=1; i<=ncols(s); i++)
  {
    t = 0*gen(N);
    for(j=1; j<=N; j++)
    {
      t = t + s[j,i]*gen(j);
    }
    T[i] = t;
  }
  T = simplify(T,2);
  return(T);
}
///////////////////////////////////////////////////////////////////////////////
static proc MyIsEqual(module A, module B)
{
// both A and B are submodules of free module
  option(redSB);
  option(redTail);
  if (attrib(A,"isSB")!=1)
  {
    A = slimgb(A);
  }
  if (attrib(B,"isSB")!=1)
  {
    B = slimgb(B);
  }
  int ANSWER = 1;
  if ( ( ncols(A) == ncols(B) ) && ( nrows(A) == nrows(B) ) )
  {
    module @AB = module(matrix(A)-matrix(B));
    @AB = simplify(@AB,2);
    if (@AB[1]!=0) { ANSWER = 0; }
  }
  else { ANSWER = 0; }
  return(ANSWER);
}
///////////////////////////////////////////////////////////////////////////////
proc CentralQuot(module I, ideal G)
"USAGE:  CentralQuot(M, G), M a module, G an ideal
ASSUME: G is an ideal in the center of the base ring
RETURN:  module
PURPOSE: compute the central quotient M:G
THEORY:  for an ideal G of the center of an algebra and a submodule M of A^n,
@* the central quotient of M by G is defined to be
@* M:G  :=  { v in A^n | z*v in M, for all z in G }.
NOTE:    the output module is not necessarily given in a Groebner basis
SEE ALSO: CentralSaturation, CenCharDec
EXAMPLE: example CentralQuot; shows examples
"{
/* check assupmtion. Elt's of G must be central */
  if (! inCenter(G) )
  {
    ERROR("ideal in the 2nd argument is not in the center of the base ring!");
  }
  int i;
  list @L;
  for(i=1; i<=size(G); i++)
  {
    @L[i] = CentralQuotPoly(I,G[i]);
  }
  module @I = intersect(@L[1..size(G)]);
  if (nrows(@I)==1)
  {
    @I = ideal(@I);
  }
  return(@I);
}
example
{ "EXAMPLE:"; echo = 2;
   option(returnSB);
   def a = makeUsl2();
   setring a;
   ideal I = e3,f3,h3-4*h;
   I = std(I);
   poly C=4*e*f+h^2-2*h;  // C in Z(U(sl2)), the central element
   ideal G = (C-8)*(C-24);  // G normal factor in Z(U(sl2)) as an ideal in the center
   ideal R = CentralQuot(I,G);  // same as I:G
   R;
}
///////////////////////////////////////////////////////////////////////////////
proc CentralSaturation(module M, ideal T)
"USAGE:  CentralSaturation(M, T), for a module M and an ideal T
ASSUME: T is an ideal in the center of the base ring
RETURN:  module
PURPOSE: compute the central saturation of M by T, that is M:T^{\infty}, by repititive application of @code{CentralQuot}
NOTE:    the output module is not necessarily a Groebner basis
SEE ALSO: CentralQuot, CenCharDec
EXAMPLE: example CentralSaturation; shows examples
"{
/* check assupmtion. Elt's of T must be central */
  if (! inCenter(T) )
  {
    ERROR("ideal in the 2nd argument is not in the center of the base ring!");
  }
  option(redSB);
  option(redTail);
  option(returnSB);
  module Q=0;
  module S=M;
  while ( !MyIsEqual(Q,S) )
  {
    Q = CentralQuot(S, T);
    S = CentralQuot(Q, T);
  }
  if (nrows(Q)==1)
  {
    Q = ideal(Q);
  }
//  Q = std(Q);
  return(Q);
}
example
{ "EXAMPLE:"; echo = 2;
   option(returnSB);
   def a = makeUsl2();
   setring a;
   ideal I = e3,f3,h3-4*h;
   I = std(I);
   poly C=4*e*f+h^2-2*h;
   ideal G = C*(C-8);
   ideal R = CentralSaturation(I,G);
   R=std(R);
   vdim(R);
   R;
}
///////////////////////////////////////////////////////////////////////////////
proc CenCharDec(module I, def #)
"USAGE:  CenCharDec(I, C);  I a module, C an ideal
ASSUME: C consists of generators of the center of the base ring
RETURN:  a list L, where each entry consists of three records (if a finite decomposition exists)
@*       L[*][1] ('ideal' type), the central character as a maximal ideal in the center,
@*       L[*][2] ('module' type), the Groebner basis of the weight module, corresponding to the character in  L[*][1],
@*       L[*][3] ('int' type) is the vector space dimension of the weight module (-1 in case of infinite dimension);
PURPOSE: compute a finite decomposition of C into central characters or determine that there is no finite decomposition
NOTE:     actual decomposition is the sum of L[i][2] above;
@*        some modules have no finite decomposition (in such case one gets warning message)
@*        The function @code{central} in @code{central.lib} may be used to obtain C, when needed.
SEE ALSO: CentralQuot, CentralSaturation
EXAMPLE: example CenCharDec; shows examples
"
{
  list Center;
  if (typeof(#) == "ideal")
  {
    int cc;
    ideal tmp = ideal(#);
    for (cc=1; cc<=size(tmp); cc++)
    {
      Center[cc] = tmp[cc];
    }
    kill tmp;
  }
  if (typeof(#) == "list")
  {
    Center = #;
  }

/* check assupmtion. Elt's of G must be central */
  if (! inCenter(Center) )
  {
    ERROR("ideal in the 2nd argument is not in the center of the base ring!");
  }
  int ppl = printlevel-voice+2;
// M = A/I
//1. Find the Zariski closure of Supp_Z M
// J = Ann_M 1 == I
// J \cap Z:
  option(redSB);
  option(redTail);
  option(returnSB);
  def @A = basering;
  setring @A;
  int sZ=size(Center);
  int i,j;
  poly t=1;
  for(i=1; i<=nvars(@A); i++)
  {
    t=t*var(i);
  }
  ring @Z=0,(@z(1..sZ)),dp;
//  @Z;
  def @ZplusA = @A+@Z;
  setring @ZplusA;
//  @ZplusA;
  ideal I     = imap(@A,I);
  list Center = imap(@A,Center);
  poly t      = imap(@A,t);
  ideal @Ker;
  for(i=1; i<=sZ; i++)
  {
    @Ker[i]=@z(i) - Center[i];
  }
  @Ker = @Ker,I;
  //  ideal @JcapZ = eliminate(@Ker,t);
  dbprint(ppl,"// -1-1- starting the computation of preimage in Z");
  dbprint(ppl-1, @Ker);
  ideal @JcapZ = slimgb(@Ker);
  @JcapZ = nselect(@JcapZ,intvec(1..nvars(@A)));
  dbprint(ppl,"// -1-2- finished the computation of preimage in Z");
  dbprint(ppl-1, @JcapZ);
// do not forget parameters of a basering!
// hmmm: todo ringlist
  string strZ="ring @@Z=("+charstr(@A)+"),(@z(1.."+string(sZ)+")),dp;";
//  print(strZ);
  execute(strZ);
  setring @@Z;
  ideal @JcapZ = imap(@ZplusA,@JcapZ);
  dbprint(ppl,"// -1-3- starting the cosmetic Groebner basis in Z");
  @JcapZ = slimgb(@JcapZ); // evtl. groebner?
//  @JcapZ;
  dbprint(ppl,"// -1-4- finished the cosmetic Groebner basis in Z");
  dbprint(ppl-1, @JcapZ);
  int sJ = vdim(@JcapZ);
  dbprint(ppl,"// -1-5- the K-dimension of support is "+string(sJ));
  if (sJ==-1)
  {
    "There is no finite decomposition";
    return(0);
  }
//  print(@JcapZ);
// 2. compute the min.ass.primes of the ideal in the center
  dbprint(ppl,"// -2-1- starting the computation of minimal primes in Z");
  list @L = minAssGTZ(@JcapZ);
  int sL = size(@L);
  dbprint(ppl,"// -2-2- finished the computation of " + string(sL)+ " minimal primes in Z");
//  print("etL:");
//  @L;
// exception: is sL==1, the whole ideal has unique cen.char
  if (sL ==1)
  {
    dbprint(ppl-1,"// -2-3- the whole module is gen. weight module itself");
    setring @A;
    map @M = @@Z,Center[1..size(Center)];
    list L = @M(@L);
    list @R;
    @R[1] = L[1];
    if (nrows(@R[1])==1)
    {
      @R[1] = ideal(@R[1]);
    }
    @R[2] = I;
    if (nrows(@R[2])==1)
    {
      @R[2] = ideal(@R[2]);
    }
    dbprint(ppl-1,"// -2-4- final cosmetic Groebner basis");
    @R[2] = slimgb(@R[2]);
    @R[3] = vdim(@R[2]);
    return(list(@R)); // for compliance with output a list
  }
  dbprint(ppl-1,"// -2-3- there are several characters");
  dbprint(ppl,"// -*- computing Groebner bases of components (commutative)");
  list @CharKer;
  for(i=1; i<=sL; i++)
  {
    @L[i] = slimgb(@L[i]);
  }
  dbprint(ppl,"// -*- finished computing Groebner bases of components");
// 3. compute the intersections of characters
  dbprint(ppl,"// -3- compute the intersections of characters");
  for(i=1; i<=sL; i++)
  {
    @CharKer[i] = CharKernel(@L,i);
  }
  dbprint(ppl,"// -3- the intersections of characters is done");
  //  dbprint(ppl-1,@CharKer);
// 4. Go back to the algebra and compute central saturations
  setring @A;
  map @M = @@Z,Center[1..size(Center)];
  list L = @M(@CharKer);
  list R,@R;
  dbprint(ppl,"// -4- compute the central saturations");
  dbprint(ppl-1,L);
  for(i=1; i<=sL; i++)
  {
    @R[1] = L[i];
    if (nrows(@R[1])==1)
    {
      @R[1] = ideal(@R[1]);
    }
    @R[2] = CentralSaturation(I,L[i]);
    if (nrows(@R[2])==1)
    {
      @R[2] = ideal(@R[2]);
    }
    @R[2] = slimgb(@R[2]);
    @R[3] = vdim(@R[2]);
     R[i] = @R;
  }
  dbprint(ppl,"// -4- central saturations are done");
  return(R);
}
example
{ "EXAMPLE:"; echo = 2; printlevel=0;
   option(returnSB);
   def a = makeUsl2(); // U(sl_2) in characteristic 0
   setring a;
   ideal I = e3,f3,h3-4*h;
   I = twostd(I);           // two-sided ideal generated by I
   vdim(I);                 // it is finite-dimensional
   ideal Cn = 4*e*f+h^2-2*h; // the only central element
   list T = CenCharDec(I,Cn);
   T;
   // consider another example
   ideal J = e*f*h;
   CenCharDec(J,Cn);
}
///////////////////////////////////////////////////////////////////////////////
proc IntersectWithSub (ideal M, def #)
"USAGE:  IntersectWithSub(M,Z),  M an ideal, Z an ideal
ASSUME: Z consists of pairwise commutative elements
RETURN:  ideal of two-sided generators, not a Groebner basis
PURPOSE: computes the intersection of M with the subalgebra, generated by Z
NOTE:    usually Z consists of generators of the center
@* The function @code{central} from @code{central.lib} may be used to obtain the center Z, if needed.
EXAMPLE: example IntersectWithSub; shows an example
"
{
  ideal Z;
  if (typeof(#) == "list")
  {
    int cc;
    list tmp = #;
    for (cc=1; cc<=size(tmp); cc++)
    {
      Z[cc] = tmp[cc];
    }
    kill tmp;
  }
  if (typeof(#) == "ideal")
  {
    Z = #;
  }
  // returns a submodule of M, equal to M \cap Z
  // assume/correctness: Z should consists of pairwise
  // commutative elements
  int nz = size(Z);
  int i,j;
  poly p;
  for (i=1; i<nz; i++)
  {
    for (j=i+1; j<=nz; j++)
    {
      p = bracket(Z[i],Z[j]);
      if (p!=0)
      {
        ERROR("generators of the subalgebra do not commute.");
        //        return(ideal(0));
      }
    }
  }
  // main action
  def B = basering;
  setring B;
  string s1,s2;
  // todo: make ringlist from it!
  s1 = "ring @Z = (";
  s2 = s1 + charstr(basering) + "),(z(1.." + string(nz)+")),Dp";
  //  s2;
  execute(s2);
  setring B;
  map F = @Z,Z;
  setring @Z;
  ideal PreM = preimage(B,F,M); // reformulate using gb engine? todo?
  PreM = slimgb(PreM);
  setring B;
  ideal T = F(PreM);
  return(T);
}
example
{
  "EXAMPLE:"; echo = 2;
  ring R=(0,a),(e,f,h),Dp;
  matrix @d[3][3];
  @d[1,2]=-h;   @d[1,3]=2e;   @d[2,3]=-2f;
  def r = nc_algebra(1,@d); setring r; // parametric U(sl_2)
  ideal I = e,h-a;
  ideal C;
  C[1] = h^2-2*h+4*e*f; // the center of U(sl_2)
  ideal X = IntersectWithSub(I,C);
  X;
  ideal G = e*f, h; // the biggest comm. subalgebra of U(sl_2)
  ideal Y = IntersectWithSub(I,G);
  Y;
}