This file is indexed.

/usr/share/singular/LIB/hyperel.lib is in singular-data 4.0.3+ds-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
//////////////////////////////////////////////////////////////////////////////
version="version hyperel.lib 4.0.0.0 Jun_2013 "; // $Id: c5138c4fc23f4b2d2fa03a8f7dfdd92b661521c1 $
category="Teaching";
info="
LIBRARY:    hyperel.lib
AUTHOR:     Markus Hochstetter, markushochstetter@gmx.de

NOTE: The library provides procedures for computing with divisors in the
      jacobian of hyperelliptic curves. In addition procedures are available
      for computing the rational representation of divisors and vice versa.
      The library is intended to be used for teaching and demonstrating
      purposes but not for efficient computations.




PROCEDURES:
  ishyper(h,f)           test, if y^2+h(x)y=f(x) is hyperelliptic
  isoncurve(P,h,f)       test, if point P is on C: y^2+h(x)y=f(x)
  chinrestp(b,moduli)    compute polynom x, s.t. x=b[i] mod moduli[i]
  norm(a,b,h,f)          norm of a(x)-b(x)y in IF[C]
  multi(a,b,c,d,h,f)     (a(x)-b(x)y)*(c(x)-d(x)y)  in IF[C]
  ratrep (P,h,f)         returns polynomials a,b, s.t. div(a,b)=P
  divisor(a,b,h,f,[])    computes divisor of a(x)-b(x)y
  gcddivisor(p,q)        gcd of the divisors p and q
  semidiv(D,h,f)         semireduced divisor of the pair of polys D[1], D[2]
  cantoradd(D,Q,h,f)     adding divisors of the hyperell. curve y^2+h(x)y=f(x)
  cantorred(D,h,f)       returns reduced divisor which is equivalent to D
  double(D,h,f)          computes 2*D on y^2+h(x)y=f(x)
  cantormult(m,D,h,f)    computes m*D on y^2+h(x)y=f(x)

              [parameters in square brackets are optional]
";
///////////////////////////////////////////////////////////////////////////////


//=============== Test, if a given curve is hyperelliptic =====================

proc ishyper(poly h, poly f)
"USAGE:   ishyper(h,f); h,f=poly
RETURN:  1 if y^2+h(x)y=f(x) is hyperelliptic, 0 otherwise
NOTE:    Tests, if y^2+h(x)y=f(x) is a hyperelliptic curve.
         Curve is defined over basering. Additionally shows error-messages.
EXAMPLE: example ishyper; shows an example
"
{
  // constructing a copy of the basering (only variable x),
  // with variables x,y.
  def R=basering;
  list l= ringlist(R);
  list ll=l[2];
  ll="x","y";
  l[2]=ll;
  intvec v= l[3][1][2];
  v=v,1;
  l[3][1][2]=v;
  def s=ring(l);
  setring s;

  // test, if y^2 + hy - f is hyperelliptic.
  int i=1;
  poly h=imap(R,h);
  poly f=imap(R,f);
  poly F=y2 + h*y - f;
  ideal I=F, diff(F,x) , diff(F,y);
  ideal J=std(I);
  if ( J != 1 )
  {
      i=0;
      "The curve is singular!";
  }
  if ( deg(f) mod 2 != 1 )
  {
     i=0;
      "The polynomial ",f," has even degree!";
  }
  if ( leadcoef(f) != 1 )
  {
     i=0;
     "The polynomial ",f," is not monic!";
  }
  if ( 2*deg(h) > deg(f)-1 )
  {
    i=0;
     "The polynomial ",h," has degree ",deg(h),"!";
  }
  setring(R);
  return(i);
}
example
{ "EXAMPLE:"; echo = 2;
   ring R=7,x,dp;
   // hyperelliptic curve y^2 + h*y = f
   poly h=x;
   poly f=x5+5x4+6x2+x+3;
   ishyper(h,f);
}


//================= Test, if a given ponit is on the curve ====================

proc isoncurve(list P, poly h, poly f)
"USAGE:   isoncurve(P,h,f); h,f=poly; P=list
RETURN:  1 or 0 (if P is on curve or not)
NOTE:    Tests, if P=(P[1],P[2]) is on the hyperelliptic curve y^2+h(x)y=f(x).
         Curve is defined over basering.
EXAMPLE: example isoncurve; shows an example
"
{
   if ( P[2]^2 + subst(h,var(1),P[1])*P[2] - subst(f,var(1),P[1]) == 0 )
   {
      return(1);
   }
   return(0);
}
example
{ "EXAMPLE:"; echo = 2;
   ring R=7,x,dp;
   // hyperelliptic curve y^2 + h*y = f
   poly h=x;
   poly f=x5+5x4+6x2+x+3;
   list P=2,3;
   isoncurve(P,h,f);
}


//====================== Remainder of a polynomial division ===================

proc divrem(poly f,poly g)
"USAGE:   divrem(f,g);  f,g poly
RETURN:  remainder of the division f/g
NOTE:    Computes R, s.t. f=a*g + R, and deg(R) < deg(g)
EXAMPLE: example divrem; shows an example
"
{
   return(reduce(f,std(g)));
}
example
{ "EXAMPLE:"; echo = 2;
   ring R=0,x,dp;
   divrem(x2+1,x2);
}


//================ chinese remainder theorem for polynomials ==================

proc chinrestp(list b,list moduli)
"USAGE:   chinrestp(b,moduli); moduli, b, moduli=list of polynomials
RETURN:  poly x, s.t. x= b[i] mod moduli[i]
NOTE:    chinese remainder theorem for polynomials
EXAMPLE: example chinrestp; shows an example
"
{
   int i;
   int n=size(moduli);
   poly M=1;
   for(i=1;i<=n;i++)
   {
      M=M*moduli[i];
   }
   list m;
   for(i=1;i<=n;i++)
   {
      m[i]=M/moduli[i];
   }
   list y;
   for(i=1;i<=n;i++)
   {
      y[i]= extgcd(moduli[i],m[i])[3];
   }
   poly B=0;
   for(i=1;i<=n;i++)
   {
      B=B+y[i]*m[i]*b[i];
   }
   B=divrem(B,M);
   return(B);
}
example
{ "EXAMPLE:"; echo = 2;
   ring R=7,x,dp;
   list b=3x-4, -3x2+1, 1, 4;
   list moduli=(x-2)^2, (x-5)^3, x-1, x-6;
   chinrestp(b,moduli);
}


//========================= norm of a polynomial ===============================

proc norm(poly a, poly b, poly h, poly f)
"USAGE:   norm(a,b,h,f);
RETURN:  norm of a(x)-b(x)y in IF[C]
NOTE:    The norm is a polynomial in just one variable.
         Curve C: y^2+h(x)y=f(x) is defined over basering.
EXAMPLE: example norm; shows an example
"
{
   poly n=a^2+a*b*h-b^2*f;
   return(n);
}
example
{ "EXAMPLE:"; echo = 2;
   ring R=7,x,dp;
   // hyperelliptic curve y^2 + h*y = f
   poly h=x;
   poly f=x5+5x4+6x2+x+3;
   poly a=x2+1;
   poly b=x;
   norm(a,b,h,f);
}


//========== multiplikation of polynomials in the coordinate ring =============

proc multi(poly a, poly b, poly c, poly d, poly h, poly f)
"USAGE:   multi(a,b,c,d,h,f);
RETURN:  list L with L[1]-L[2]y=(a(x)-b(x)y)*(c(x)-d(x)y) in IF[C]
NOTE:    Curve C: y^2+h(x)y=f(x) is defined over basering.
EXAMPLE: example multi; shows an example
"
{
   poly A=a*c + b*d*f;
   poly B=b*c +a*d + b*h*d;
   return (list(A,B));
}
example
{ "EXAMPLE:"; echo = 2;
   ring R=7,x,dp;
   poly h=x;
   poly f=x5+5x4+6x2+x+3;
   // hyperelliptic curve y^2 + h*y = f
   poly a=x2+1;
   poly b=x;
   poly c=5;
   poly d=-x;
   multi(a,b,c,d,h,f);
}


//================== polynomial expansion around a point ========================

proc darst(list P,int k, poly h, poly f)
"USAGE:   darst(P,k,h,f);
RETURN:  list c of length k
NOTE:    expansion around point P in IF[C], s.t.
         y=c[1]+c[2]*(x-P[1]) +...+c[k]*(x-P[1])^k-1 + rest.
         Curve C:y^2+h(x)y=f(x) is defined over basering.
EXAMPLE: example darst; shows an example
"
{

   if ( P[2] == -P[2]- subst(h,var(1),P[1]))
   {
    ERROR("no special points allowed");
   }
   list c;
   list r;
   list n;
   poly N;
   c[1]=P[2];
   r[1]=list(0,-1,1,0);
   poly r1,r2,r3,r4;
   // rational function are represented as (r1 - r2*y) / (r3 - r4*y)

   for (int i=1; i<k ; i++)
   {
      r1=r[i][1]-c[i]*r[i][3];
      r2=r[i][2]-c[i]*r[i][4];
      r3=r[i][3];
      r4=r[i][4];
      n=multi(r3,r4,r1+r2*h,-r2,h,f);
      N=r1*r1 + r1*r2*h-r2*r2*f;
      r[i+1]=list(N/(var(1)-P[1]),0,n[1],n[2]);
      while ((divrem(r[i+1][1],var(1)-P[1]) ==0) and (divrem(r[i+1][2],var(1)-P[1]) ==0) and (divrem(r[i+1][3],var(1)-P[1]) ==0) and (divrem(r[i+1][4],var(1)-P[1]) ==0))
      {
          // reducing the rationl function
          //(r[i+1][1] - r[i+1][2]*y)/(r[i+1][3] - r[i+1][4]) , otherwise there
          // could be a pole, s.t. conditions are not fulfilled.
          r[i+1][1]=(r[i+1][1]) / (var(1)-P[1]);
          r[i+1][2]=(r[i+1][2]) / (var(1)-P[1]);
          r[i+1][3]=(r[i+1][3]) / (var(1)-P[1]);
          r[i+1][4]=(r[i+1][4]) / (var(1)-P[1]);
      }
      c[i+1]=(subst(r[i+1][1],var(1),P[1]) - subst(r[i+1][2],var(1),P[1])*P[2]) / (subst(r[i+1][3],var(1),P[1]) - subst(r[i+1][4],var(1),P[1])*P[2]);
   }
   return(c);
}
example
{ "EXAMPLE:"; echo = 2;
   ring R=7,x,dp;
   // hyperelliptic curve y^2 + h*y = f
   poly h=x;
   poly f=x5+5x4+6x2+x+3;
   list P=5,3;
   darst(P,3,h,f);
}


//================ rational representation of a divisor =======================

proc ratrep1 (list P, poly h, poly f)
"USAGE:   ratrep1(P,k,h,f);
RETURN:  list (a,b)
NOTE:    Important: P has to be semireduced!
         Computes rational representation of the divisor
         P[1][3]*(P[1][1], P[1][2]) +...+ P[sizeof(P)][3]*
         *(P[sizeof(P)][1], P[sizeof(P)][2]) - (*)infty=div(a,b)
         Divisor P has to be semireduced.
         Curve C:y^2+h(x)y=f(x) is defined over basering.
SEE AlSO: ratrep
EXAMPLE: example ratrep1; shows an example
"
{
   poly a=1;
   list b;
   list m;
   list koef;
   int k;

   // Determination of the polynomial b[i] for each point using procedure darst
   for (int i=1 ; i<= size(P); i++)
   {
      a=a*(var(1)-P[i][1])^(P[i][3]);    // computing polynomial a
      m[i]=(var(1)-P[i][1])^(P[i][3]);
      b[i]=P[i][2];
      k=1;

      while (divrem(b[i]*b[i] + b[i] *h - f,(var(1)-P[i][1])^(P[i][3])) != 0)
      {
          k=k+1;   // b[i]=P[i][2];
          koef=darst(list (P[i][1],P[i][2]), k, h,f);
          // could be improved, if one doesn't compute list coef completely new
          // every time
          b[i]=b[i]+ koef[k]*(var(1)-P[i][1])^(k-1);
      }
   }
   // Return polynomial a and b. Polynomial b is solution of the congruencies
   // b[i] mod m[i] .
   return(list(a,chinrestp(b,m)));

}
example
{ "EXAMPLE:"; echo = 2;
   ring R=7,x,dp;
   // hyperelliptic curve y^2 + h*y = f
   poly h=x;
   poly f=x5+5x4+6x2+x+3;
   //divisor P
   list P=list(-1,-3,1),list(1,1,1);
   ratrep1(P,h,f);
}


//================ rational representation of a divisor =======================

proc ratrep (list P, poly h, poly f)
"USAGE:   ratrep(P,k,h,f);
RETURN:  list (a,b)
NOTE:    Importatnt: P has to be semireduced!
         Computes rational representation of the divisor
         P[1][3]*(P[1][1], P[1][2]) +...+ P[sizeof(P)][3]*
         *(P[sizeof(P)][1], P[sizeof(P)][2]) - (*)infty=div(a,b)
         Divisor P has to be semireduced.
         Curve C:y^2+h(x)y=f(x) is defined over basering.
         Works faster than ratrep1.
SEE ALSO: ratrep1
EXAMPLE: example ratrep; shows an example
"
{
   poly a=1;
   list b;
   list m;
   list koef;
   int k;

   poly c;
   list r;
   list n;
   poly Norm;
   poly r1,r2,r3,r4;

   // Determination of the polynomial b[i] for each point using procedure darst
   for (int i=1 ; i<= size(P); i++)
   {
      a=a*(var(1)-P[i][1])^(P[i][3]);     // computing polynomial a
      m[i]=(var(1)-P[i][1])^(P[i][3]);
      b[i]=P[i][2];
      k=1;
      c=P[i][2];
      r=0,-1,1,0;
      while (divrem(b[i]*b[i] + b[i] *h - f,(var(1)-P[i][1])^(P[i][3])) != 0)
      {
          k=k+1;
          // here, the procedure darst was integrateg. In every pass a new
          // coefficient c[i] is determined.
          r1=r[1]-c*r[3];
          r2=r[2]-c*r[4];
          r3=r[3];
          r4=r[4];
          n=multi(r3,r4,r1+r2*h,-r2,h,f);
          Norm=r1*r1 + r1*r2*h-r2*r2*f;
          r=list(Norm/(var(1)-P[i][1]),0,n[1],n[2]);
          while ((divrem(r[1],var(1)-P[i][1]) ==0) and (divrem(r[2],var(1)-P[i][1]) ==0) and (divrem(r[3],var(1)-P[i][1]) ==0) and (divrem(r[4],var(1)-P[i][1]) ==0))
          {

           // reducing the rationl function
           // (r[1]-r[2]y)/(r[3]-r[4]y) , otherwise there
           // could be a pole, s.t. conditions are not fulfilled.
              r[1]=(r[1]) / (var(1)-P[i][1]);
              r[2]=(r[2]) / (var(1)-P[i][1]);
              r[3]=(r[3]) / (var(1)-P[i][1]);
              r[4]=(r[4]) / (var(1)-P[i][1]);
          }
          c=(subst(r[1],var(1),P[i][1]) - subst(r[2],var(1),P[i][1])*P[i][2]) / (subst(r[3],var(1),P[i][1]) - subst(r[4],var(1),P[i][1])*P[i][2]);
          b[i]=b[i]+ c*(var(1)-P[i][1])^(k-1);
      }
   }
   // return polynomial a and b. Polynomial b is solution of the congruencies
   // b[i] mod m[i] .
   return(list(a,chinrestp(b,m)));
}
example
{ "EXAMPLE:"; echo = 2;
   ring R=7,x,dp;
   // hyperelliptic curve y^2 + h*y = f
   poly h=x;
   poly f=x5+5x4+6x2+x+3;
   //Divisor P
   list P=list(-1,-3,1),list(1,1,1);
   ratrep(P,h,f);
}


//============== Order of a zero in a polynomial ==============================

proc ordnung(poly x0 , poly g)
"USAGE:   ordnung(x0,g);
RETURN:  int i
NOTE:    i is maximal, s.t. (x-x0)^i divides g
EXAMPLE: example ordnung; shows an example
"
{
   poly gg=g;
   int i;
   while ( divrem(gg,var(1)-x0) ==0 )
   {
      i=i+1;
      gg=gg/(var(1)-x0);
   }
   return(i);
}
example
{ "EXAMPLE:"; echo = 2;
   ring R=0,x,dp;
   poly g=(x-5)^7*(x-3)^2;
   number x0=5;
   ordnung(x0,g);
}


//================== divisor of a polynomial function =========================

proc divisor(poly a, poly b, poly h, poly f, list #)
"USAGE:   divisor(a,b,h,f); optional: divisor(a,b,h,f,s); s=0,1
RETURN:  list P
NOTE:    P[1][3]*(P[1][1], P[1][2]) +...+ P[size(P)][3]*
         *(P[size(P)][1], P[size(P)][2]) - (*)infty=div(a(x)-b(x)y)
         if there is an optional parameter s!=0, then divisor additonally
         returns a parameter, which says, whether irreducible polynomials
         occurred during computations or not. Otherwise only warnings are
         displayed on the monitor. For s=0 nothing happens.
         Curve C: y^2+h(x)y=f(x) is defined over basering.
EXAMPLE: example divisor; shows an example
"
{
   list p;
   int j;
   poly x0;
   list y;
   list fa=factorize(gcd(a,b));  // wanted: common roots of a and b
   poly Norm=norm(a,b,h,f);

   int s;
   int irred=0;
   if (size(#)>0)
   {
      s=#[1];
   }
   else
   {
      s=0;
   }

   for (int i=2; i<=size(fa[1]) ; i++)
   {
      // searching roots by finding polynomials of degree 1
      if ( deg(fa[1][i]) !=1 )
      {
         if (s==0)
         {
         "WARNIG: ", fa[1][i], "is irreducible over this field !";
         }
         else
         {
            irred=1;
         }
      }
      else
      {
         x0=var(1) - fa[1][i];
         // finding the y-coordinates; max. 2
         y= factorize(var(1)^2 + var(1)*subst(h,var(1),x0) - subst(f,var(1),x0));
         if ( deg(y[1][2]) == 1)
         // if root belongs to point on curve, then...
         {
            // compute order of a-b*y in the founded point
            j=j+1;
            p[j]=list(x0,var(1)-y[1][2],fa[2][i]);
            if ( y[2][2]== 1)          // ordinary point
            {
               j=j+1;
               p[j]=list(x0 , var(1)-y[1][3] , fa[2][i] );
               if (a/(var(1)-x0)^(fa[2][i]) - b/(var(1)-x0)^(fa[2][i]) * p[j][2] ==0 )
               {
                  p[j][3]= p[j][3] + ordnung(x0,norm(a/(var(1)-x0)^(fa[2][i]) , b/(var(1)-x0)^(fa[2][i]),h,f));
               }
               if (a/(var(1)-x0)^(fa[2][i]) - b/(var(1)-x0)^(fa[2][i]) * p[j-1][2] ==0 )
               {
               p[j-1][3]=p[j-1][3] + ordnung(x0,norm(a/(var(1)-x0)^(fa[2][i]) , b/(var(1)-x0)^(fa[2][i]),h,f));
               }
            }
            else        // special point
            {
               p[j][3]=p[j][3] *2  ;
               if (a/(var(1)-x0)^(fa[2][i]) - b/(var(1)-x0)^(fa[2][i]) * p[j][2] ==0 )
               {
                  p[j][3]=p[j][3] + ordnung(x0,norm(a/(var(1)-x0)^(fa[2][i]) , b/(var(1)-x0)^(fa[2][i]),h,f));
               }
            }

         }
         // Norm of a-b*y is reduced by common root of a and b
         // (is worked off)
         Norm = Norm/((var(1)-x0)^(ordnung(x0,Norm)));
      }
   }

   // some points are still missing; points for which a and b have no common
   // roots, but norm(a-b*Y)=0 .
   fa=factorize(Norm);
   for ( i=2 ; i<=size(fa[1]) ; i++)
   {
      if ( deg(fa[1][i]) !=1)
      {
         if (s==0)
         {
         "WARNING: ", fa[1][i], "is irreducible over this field !";
         }
         else
         {
            irred=1;
         }
      }
      else
      {
         x0=var(1) - fa[1][i];
         y= factorize(var(1)^2 + var(1)*subst(h,var(1),x0) - subst(f,var(1),x0));
         if ( deg(y[1][2]) == 1)
         // if root belongs to point on curve, then...
         {
            if (subst(a,var(1),x0)- subst(b,var(1),x0)* (var(1)-y[1][2]) ==0)
            {
               p[size(p)+1]=list(x0,var(1)-y[1][2], ordnung(x0,Norm,h,f));
            }
            if ( y[2][2]== 1)     // ordinary point
            {
               if (subst(a,var(1),x0)- subst(b,var(1),x0)* (var(1)-y[1][3]) ==0)
               {
               p[size(p)+1]=list(x0 , var(1)-y[1][3] , ordnung(x0,Norm,h,f));
               }
            }
         }
      }
   }
   if (s==0)
   {
      return(p);
   }
   return(p,irred);
}
example
{ "EXAMPLE:"; echo = 2;
   ring R=7,x,dp;
   // hyperelliptic curve y^2 + h*y = f
   poly h=x;
   poly f=x5+5x4+6x2+x+3;
   poly a=(x-1)^2*(x-6);
   poly b=0;
   divisor(a,b,h,f,1);
}


//===================== gcd of two divisors ===================================

proc gcddivisor(list p, list q)
"USAGE:   gcddivisor(p,q);
RETURN:  list P
NOTE:    gcd of two divisors
EXAMPLE: example gcddivisor; shows an example
"
{
   list e;
   int i,j;
   for (i=1 ; i<= size(p) ; i++)
   {
      for (j=1 ; j<= size(q) ; j++)
      {
         if ( p[i][1] == q[j][1] and p[i][2] == q[j][2])
         {
            if ( p[i][3] <= q[j][3] )
            {
               e[size(e)+1]= list (p[i][1] , p[i][2] , p[i][3]);
            }
            else
            {
               e[size(e)+1]= list (q[j][1] , q[j][2] , q[j][3]);
            }
         }
      }
   }
   return(e);
}
example
{ "EXAMPLE:"; echo = 2;
   ring R=7,x,dp;
   // hyperelliptic curve y^2 + h*y = f
   poly h=x;
   poly f=x5+5x4+6x2+x+3;
   // two divisors
   list p=list(-1,-3,1),list(1,1,2);
   list q=list(1,1,1),list(2,2,1);
   gcddivisor(p,q);
}


//========== semireduced divisor from rational representation=================

proc semidiv(list D,poly h, poly f)
"USAGE:   semidiv(D,h,f);
RETURN:  list P
NOTE:    important: Divisor D has to be semireduced!
         Computes semireduced divisor P[1][3]*(P[1][1], P[1][2]) +...+ P[size(P)][3]*
         *(P[size(P)][1], P[size(P)][2]) - (*)infty=div(D[1],D[2])@*
         Curve C:y^2+h(x)y=f(x) is defined over basering.
EXAMPLE: example semidiv; shows an example
"
{
   if ( deg(D[2]) >= deg(D[1]) or divrem(D[2]^2+D[2]*h-f,D[1]) != 0 )
   {
      ERROR("Pair of polynomials doesn't belong to semireduced divisor!");
   }
   list D1,D2;
   int s1,s2;
   D1,s1=divisor(D[1],0,h,f,1);
   D2,s2=divisor(D[2],1,h,f,1);

   // Only if irreducible polynomials occurred in D1 !and! D2 a warning
   // is necessary.
   if (s1==1 and s2==1)
   {
      "Attention:
     Perhaps some points were not found over this field!";
   }
   return(gcddivisor(D1,D2));
}
example
{ "EXAMPLE:"; echo = 2;
   ring R=7,x,dp;
   // hyperelliptic curve y^2 + h*y = f
   poly h=x;
   poly f=x5+5x4+6x2+x+3;
   // Divisor
   list D=x2-1,2x-1;
   semidiv(D,h,f);
}


//=============== Cantor's algorithm - composition ============================

proc cantoradd(list D, list Q, poly h, poly f)
"USAGE:   cantoradd(D,Q,h,f);
RETURN:  list P
NOTE:    Cantor's Algorithm - composition
         important: D and Q have to be semireduced!
         Computes semireduced divisor div(P[1],P[2])= div(D[1],D[2]) + div(Q[1],Q[2])
         The divisors are defined over the basering.
         Curve C: y^2+h(x)y=f(x) is defined over the basering.
EXAMPLE: example cantoradd; shows an example
"
{
   poly a;
   poly b;
   list e=extgcd(D[1],Q[1]);
   if ( e[1]==1 )
   {
      a=D[1]*Q[1];
      b=divrem( e[2]*D[1]*Q[2] + e[3]*Q[1]*D[2] ,a);
      return(list(a,b));
   }
   list c=extgcd(e[1],D[2]+Q[2]+h);
   poly s1=e[2]*c[2];
   poly s2=c[2]*e[3];
   poly s3=c[3];
   a=D[1]*Q[1]/c[1]^2;
   b=divrem((s1*D[1]*Q[2] + s2*Q[1]*D[2] + s3*(D[2]*Q[2] + f))/c[1],a);
   return(list(a,b));
}
example
{ "EXAMPLE:"; echo = 2;
   ring R=7,x,dp;
   // hyperelliptic curve y^2 + h*y = f
   poly h=x;
   poly f=x5+5x4+6x2+x+3;
   // two divisors in rational representation
   list D=x2-1,2x-1;
   list Q=x2-3x+2,-3x+1;
   cantoradd(D,Q,h,f);
}


//==================== Cantor's algorithm - reduction =========================

proc cantorred(list D,poly h,poly f)
"USAGE:   cantorred(D,h,f);
RETURN:  list N
NOTE:    Cantor's algorithm - reduction.
         important: Divisor D has to be semireduced!
         Computes reduced divisor div(N[1],N[2])= div(D[1],D[2]).@*
         The divisors are defined over the basering.
         Curve C: y^2+h(x)y=f(x) is defined over the basering.
EXAMPLE: example cantorred; shows an example
"
{
   list N=D;
   while ( 2*deg(N[1]) > deg(f)-1 )
   {
      N[1]=(f - N[2]*h - N[2]^2)/N[1];
      N[2]=divrem(-h-N[2],N[1]);
   }
   N[1]=N[1]/leadcoef(N[1]);
   return(N);
}
example
{ "EXAMPLE:"; echo = 2;
   ring R=7,x,dp;
   // hyperelliptic curve y^2 + h*y = f
   poly h=x;
   poly f=x5+5x4+6x2+x+3;
   // semireduced divisor
   list D=2x4+3x3-3x-2, -x3-2x2+3x+1;
   cantorred(D,h,f);
}


//================= doubling a semireduced divisor ============================

proc double(list D, poly h, poly f)
"USAGE:   double(D,h,f);
RETURN:  list Q=2*D
NOTE:    important: Divisor D has to be semireduced!
         Special case of Cantor's algorithm.
         Computes reduced divisor div(Q[1],Q[2])= 2*div(D[1],D[2]).@*
         The divisors are defined over the basering.
         Curve C:y^2+h(x)y=f(x) is defined over the basering.
EXAMPLE: example double; shows an example
"
{
   list c=extgcd(D[1], 2*D[2] + h);
   poly a=D[1]*D[1]/c[1]^2;
   poly b=divrem((c[2]*D[1]*D[2] + c[3]*(D[2]*D[2] + f))/c[1],a);
   return(cantorred(list(a,b),h,f));
}
example
{ "EXAMPLE:"; echo = 2;
   ring R=7,x,dp;
   // hyperelliptic curve y^2 + h*y = f
   poly h=x;
   poly f=x5+5x4+6x2+x+3;
   // reduced divisor
   list D=x2-1,2x-1;
   double(D,h,f);
}


//================ multiples of a semireduced divisor =========================

proc cantormult(int m, list D, poly h, poly f)
"USAGE:   cantormult(m,D,h,f);
RETURN:  list res=m*D
NOTE:    important: Divisor D has to be semireduced!
         Uses repeated doublings for a faster computation
         of the reduced divisor m*D.
         Attention: Factor m=int, this means bounded.
         For m<0 the inverse of m*D is returned.
         The divisors are defined over the basering.
         Curve C: y^2+h(x)y=f(x) is defined over the basering.
EXAMPLE: example cantormult; shows an example
"
{
   list res=1,0;
   list bas=D;
   int exp=m;
   if (exp==0) { return(list(1,0)); }
   if (exp==1) { return(D); }
   if (exp==-1) { return(list(D[1],-D[2]-h)) ; }
   if ( exp < 0)
   {
      exp=-exp;
   }
   while ( exp > 0 )
   {
     if ( (exp mod 2) !=0 )
     {
       res = cantorred(cantoradd(res,bas,h,f),h,f);
       exp=exp-1;
     }
     bas=double(bas,h,f);
     exp=exp div 2;
   }
   if ( m < 0 )
   {
      res[2]=-res[2]-h;
   }
   return(res);
}
example
{ "EXAMPLE:"; echo = 2;
   ring R=7,x,dp;
   // hyperelliptic curve y^2 + h*y = f
   poly h=x;
   poly f=x5+5x4+6x2+x+3;
   // reduced divisor
   list D=x2-1,2x-1;
   cantormult(34,D,h,f);
}


/*
//=============================================================================
//   In the following you find a large example, which demostrates the use of
//   the most important procedures.
//=============================================================================
//---- field with 2^5=32 elements ----
ring r=(2,a),x,dp;
minpoly=a5+a2+1;

//---- hyperelliptic curve y^2 + hy = f ----
poly h=x2+x;
poly f=x5+x3+1;

//---- two divisors ----
list l1=list(a30,0,1),list(0,1,1);
list l2=list(a30,a16,1),list(1,1,1);

//---- their rational representation ----
list D1=ratrep(l1,h,f); D1;
//[1]:
//   x2+(a4+a)*x
//[2]:
//   (a)*x+1

list D2=ratrep(l2,h,f); D2;
//[1]:
//   x2+(a4+a+1)*x+(a4+a)
//[2]:
//   (a3+a2+a+1)*x+(a3+a2+a)

//---- back to the point-based-representation ----
semidiv(D1,h,f);
//[1]:
//   [1]:
//      (a4+a)
//   [2]:
//      0
//   [3]:
//      1
//[2]:
//   [1]:
//      0
//   [2]:
//      1
//   [3]:
//      1

semidiv(D2,h,f);
//[1]:
//   [1]:
//      (a4+a)
//   [2]:
//      (a4+a3+a+1)
//   [3]:
//      1
//[2]:
//   [1]:
//      1
//   [2]:
//      1
//   [3]:
//      1

//---- adding D1 and D2 ----
list D12=cantorred(cantoradd(D1,D2,h,f),h,f);  D12;
//[1]:
//   x2+x
//[2]:
//   1

//---- D1+D2 in point-based-representation ----
semidiv(D12,h,f);
//[1]:
//   [1]:
//      1
//   [2]:
//      1
//   [3]:
//      1
//[2]:
//   [1]:
//      0
//   [2]:
//      1
//   [3]:
//      1

//---- D1 + D1   (2 possible ways, same result) ----
cantorred(cantoradd(D1,D1,h,f),h,f);
double(D1,h,f);
//[1]:
//   x2+(a3+1)
//[2]:
//   (a4+a3+a+1)*x+(a4+a3+a2+a+1)

//---- order of D1 in the jacobian over the basering ----
int i=1;
list E=D1;
while (E[1] != 1 or E[2] != 0 )
{
   E= cantorred(cantoradd(E,D1,h,f),h,f);
   i=i+1;
}
i;   // 482

//---- proof with multiplikation validates the result ----
cantormult(i,D1,h,f);
//[1]:
//   1
//[2]:
//   0

//---- computing the inverse of D1 ----
list d1= cantormult(-1,D1,h,f);  d1;
//[1]:
//   x2+(a4+a)*x
//[2]:
//   x2+(a+1)*x+1

//---- proof validates the result ----
cantoradd(d1,D1,h,f);
//[1]:
//   1
//[2]:
//   0


*/