/usr/share/singular/LIB/grobcov.lib is in singular-data 4.0.3+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 | //
version="version grobcov.lib 4.0.2.0 Jul_2015 "; // $Id: 53a8fb2ee05d14670a58e7cad32bc15f054511d9 $
// version L; July_2015;
category="General purpose";
info="
LIBRARY: grobcov.lib Groebner Cover for parametric ideals.
Comprehensive Groebner Systems, Groebner Cover, Canonical Forms,
Parametric Polynomial Systems, Dynamic Geometry, Loci, Envelop,
Constructible sets.
See
A. Montes A, M. Wibmer,
\"Groebner Bases for Polynomial Systems with parameters\",
Journal of Symbolic Computation 45 (2010) 1391-1425.
(http://www-ma2.upc.edu/~montes/).
AUTHORS: Antonio Montes , Hans Schoenemann.
OVERVIEW:
In 2010, the library was designed to contain Montes-Wibmer's
algorithms for compute the canonical Groebner Cover of a
parametric ideal as described in the paper:
Montes A., Wibmer M.,
\"Groebner Bases for Polynomial Systems with parameters\".
Journal of Symbolic Computation 45 (2010) 1391-1425.
The central routine is grobcov. Given a parametric
ideal, grobcov outputs its Canonical Groebner Cover, consisting
of a set of pairs of (basis, segment). The basis (after
normalization) is the reduced Groebner basis for each point
of the segment. The segments are disjoint, locally closed
and correspond to constant lpp (leading power product)
of the basis, and are represented in canonical prime
representation. The segments are disjoint and cover the
whole parameter space. The output is canonical, it only
depends on the given parametric ideal and the monomial order.
This is much more than a simple Comprehensive Groebner System.
The algorithm grobcov allows options to solve partially the
problem when the whole automatic algorithm does not finish
in reasonable time.
grobcov uses a first algorithm cgsdr that outputs a disjoint
reduced Comprehensive Groebner System with constant lpp.
For this purpose, in this library, the implemented algorithm is
Kapur-Sun-Wang algorithm, because it is the most efficient
algorithm known for this purpose.
D. Kapur, Y. Sun, and D.K. Wang.
\"A New Algorithm for Computing Comprehensive Groebner Systems\".
Proceedings of ISSAC'2010, ACM Press, (2010), 29-36.
The library has evolved to include new applications of the
Groebner Cover, and new theoretical developments have been done.
The actual version also includes a routine (ConsLevels)
for computing the canonical form of a constructible set, given as a
union of locally closed sets. It is used in the new version for the
computation of loci and envelops. It determines the canonical locally closed
level sets of a constructuble. They will be described in a forthcoming paper:
J.M. Brunat, A. Montes,
\"Computing the canonical representation of constructible sets\".
Submited to Mathematics in Computer Science. July 2015.
A new set of routines (locus, locusdg, locusto) has been included to
compute loci of points. The routines are used in the Dynamic
Geometry software Geogebra. They are described in:
Abanades, Botana, Montes, Recio:
\''An Algebraic Taxonomy for Locus Computation in Dynamic Geometry\''.
Computer-Aided Design 56 (2014) 22-33.
Recently also routines for computing the envelop of a family
of curves (enverlop, envelopdg), to be used in Dynamic Geometry,
has been included and will be described in a forthcoming paper:
Abanades, Botana, Montes, Recio:
\''Envelops in Dynamic Geometry using the Groebner cover\''.
This version was finished on 31/07/2015
NOTATIONS: All given and determined polynomials and ideals are in the
@* basering Q[a][x]; (a=parameters, x=variables)
@* After defining the ring, the main routines
@* grobcov, cgsdr,
@* generate the global rings
@* @R (Q[a][x]),
@* @P (Q[a]),
@* @RP (Q[x,a])
@* that are used inside and killed before the output.
PROCEDURES:
grobcov(F); Is the basic routine giving the canonical
Groebner Cover of the parametric ideal F.
This routine accepts many options, that
allow to obtain results even when the canonical
computation does not finish in reasonable time.
cgsdr(F); Is the procedure for obtaining a first disjoint,
reduced Comprehensive Groebner System that
is used in grobcov, that can also be used
independently if only the CGS is required.
It is a more efficient routine than buildtree
(the own routine of 2010 that is no more used).
Now, KSW algorithm is used.
pdivi(f,F); Performs a pseudodivision of a parametric polynomial
by a parametric ideal.
pnormalf(f,E,N); Reduces a parametric polynomial f over V(E) \ V(N)
( E is the null ideal and N the non-null ideal )
over the parameters.
Crep(N,M); Computes the canonical C-representation of V(N) \ V(M).
Prep(N,M); Computes the canonical P-representation of V(N) \ V(M).
PtoCrep(L) Starting from the canonical Prep of a locally closed set
computes its Crep.
extend(GC); When the grobcov of an ideal has been computed
with the default option ('ext',0) and the explicit
option ('rep',2) (which is not the default), then
one can call extend (GC) (and options) to obtain the
full representation of the bases. With the default
option ('ext',0) only the generic representation of
the bases are computed, and one can obtain the full
representation using extend.
ConsLevels(L); Given a list L of locally closed sets, it returns the canonical levels
of the constructible set of the union of them, as well as the levels
of the complement. It is described in the paper
J.M. Brunat, A. Montes,
\"Computing the canonical representation of constructible sets\".
Submited to Mathematics in Computer Science. July 2015.
locus(G); Special routine for determining the geometrical locus of points
verifying given conditions. Given a parametric ideal J with
parameters (x,y) and variables (x_1,..,xn), representing the
system determining the locus of points (x,y) who verify certain
properties, one can apply locus to the output of grobcov(J),
locus determines the different classes of locus components.
described in the paper:
\"An Algebraic Taxonomy for Locus Computation in Dynamic Geometry\",
M. Abanades, F. Botana, A. Montes, T. Recio,
Computer-Aided Design 56 (2014) 22-33.
The components can be 'Normal', 'Special', 'Accumulation', 'Degenerate'.
The output are the components is given in P-canonical form
It also detects automatically a possible point that is to be
avoided by the mover, whose coordinates must be the last two
coordinates in the definition of the ring. If such a point is detected,
then it eliminates the segments of the grobcov depending on the
point that is to be avoided.
locusdg(G); Is a special routine that determines the 'Relevant' components
of the locus in dynamic geometry. It is to be called to the output of locus
and selects from it the useful components.
envelop(F,C); Special routine for determining the envelop of a family of curves
F in Q[x,y][x_1,..xn] depending on a ideal of constraints C in Q[x_1,..,xn].
It detemines the different components as well as its type:
'Normal', 'Special', 'Accumulation', 'Degenerate'. And
it also classifies the Special components, determining the
zero dimensional antiimage of the component and verifying if
the component is a special curve of the family or not.
It calls internally first grobcov and then locus with special options
to obtain the complete result.
The taxonomy that it provides, as well as the algorithms involved
will be described in a forthcoming paper:
Abanades, Botana, Montes, Recio:
\''Envelops in Dynamic Geometry using the Gr\"obner cover\''.
envelopdg(ev); Is a special routine to determine the 'Relevant' components
of the envelop of a family of curves to be used in Dynamic Geometry.
It must be called to the output of envelop(F,C).
locusto(L); Transforms the output of locus, locusdg, envelop and envelopdg
into a string that can be reed from different computational systems.
SEE ALSO: compregb_lib
";
LIB "primdec.lib";
LIB "qhmoduli.lib";
// ************ Begin of the grobcov library *********************
// Library grobcov.lib
// (Groebner Cover):
// Release 0: (public)
// Initial data: 21-1-2008
// Uses buildtree for cgsdr
// Final data: 3-7-2008
// Release 2: (private)
// Initial data: 6-9-2009
// Last version using buildtree for cgsdr
// Final data: 25-10-2011
// Release B: (private)
// Initial data: 1-7-2012
// Uses both buildtree and KSW for cgsdr
// Final data: 4-9-2012
// Release G: (public)
// Initial data: 4-9-2012
// Uses KSW algorithm for cgsdr
// Final data: 21-11-2013
// Release L: (public)
// New routine ConsLevels: 10-7-2015
// Updated locus: 10-7-2015 (uses Conslevels)
// New routines for computing the envelop of a family of curves: 22-1-2015
// Final data: 22-7-2015
//*************Auxiliary routines**************
// elimintfromideal: elimine the constant numbers from an ideal
// (designed for W, nonnull conditions)
// Input: ideal J
// Output:ideal K with the elements of J that are non constants, in the
// ring K[x1,..,xm]
static proc elimintfromideal(ideal J)
{
int i;
int j=0;
ideal K;
if (size(J)==0){return(ideal(0));}
for (i=1;i<=ncols(J);i++){if (size(variables(J[i])) !=0){j++; K[j]=J[i];}}
return(K);
}
// delfromideal: deletes the i-th polynomial from the ideal F
// Works in any kind of ideal
static proc delfromideal(ideal F, int i)
{
int j;
ideal G;
if (size(F)<i){ERROR("delfromideal was called with incorrect arguments");}
if (size(F)<=1){return(ideal(0));}
if (i==0){return(F)};
for (j=1;j<=ncols(F);j++)
{
if (j!=i){G[ncols(G)+1]=F[j];}
}
return(G);
}
// delidfromid: deletes the polynomials in J that are in I
// Input: ideals I, J
// Output: the ideal J without the polynomials in I
// Works in any kind of ideal
static proc delidfromid(ideal I, ideal J)
{
int i; list r;
ideal JJ=J;
for (i=1;i<=size(I);i++)
{
r=memberpos(I[i],JJ);
if (r[1])
{
JJ=delfromideal(JJ,r[2]);
}
}
return(JJ);
}
// eliminates the ith element from a list or an intvec
static proc elimfromlist(l, int i)
{
if(typeof(l)=="list"){list L;}
if (typeof(l)=="intvec"){intvec L;}
if (typeof(l)=="ideal"){ideal L;}
int j;
if((size(l)==0) or (size(l)==1 and i!=1)){return(l);}
if (size(l)==1 and i==1){return(L);}
// L=l[1];
if(i>1)
{
for(j=1;j<=i-1;j++)
{
L[size(L)+1]=l[j];
}
}
for(j=i+1;j<=size(l);j++)
{
L[size(L)+1]=l[j];
}
return(L);
}
// eliminates repeated elements form an ideal or matrix or module or intmat or bigintmat
static proc elimrepeated(F)
{
int i;
int nt;
if (typeof(F)=="ideal"){nt=ncols(F);}
else{nt=size(F);}
def FF=F;
FF=F[1];
for (i=2;i<=nt;i++)
{
if (not(memberpos(F[i],FF)[1]))
{
FF[size(FF)+1]=F[i];
}
}
return(FF);
}
// equalideals
// Input: ideals F and G;
// Output: 1 if they are identical (the same polynomials in the same order)
// 0 else
static proc equalideals(ideal F, ideal G)
{
int i=1; int t=1;
if (size(F)!=size(G)){return(0);}
while ((i<=size(F)) and (t))
{
if (F[i]!=G[i]){t=0;}
i++;
}
return(t);
}
// returns 1 if the two lists of ideals are equal and 0 if not
static proc equallistideals(list L, list M)
{
int t; int i;
if (size(L)!=size(M)){return(0);}
else
{
t=1;
if (size(L)>0)
{
i=1;
while ((t) and (i<=size(L)))
{
if (equalideals(L[i],M[i])==0){t=0;}
i++;
}
}
return(t);
}
}
// idcontains
// Input: ideal p, ideal q
// Output: 1 if p contains q, 0 otherwise
// If the routine is to be called from the top, a previous call to
// setglobalrings() is needed.
static proc idcontains(ideal p, ideal q)
{
int t; int i;
t=1; i=1;
def P=p; def Q=q;
attrib(P,"isSB",1);
poly r;
while ((t) and (i<=size(Q)))
{
r=reduce(Q[i],P);
if (r!=0){t=0;}
i++;
}
return(t);
}
// selectminideals
// given a list of ideals returns the list of integers corresponding
// to the minimal ideals in the list
// Input: L (list of ideals)
// Output: the list of integers corresponding to the minimal ideals in L
// Works in Q[u_1,..,u_m]
static proc selectminideals(list L)
{
list P; int i; int j; int t;
if(size(L)==0){return(L)};
if(size(L)==1){P[1]=1; return(P);}
for (i=1;i<=size(L);i++)
{
t=1;
j=1;
while ((t) and (j<=size(L)))
{
if (i!=j)
{
if(idcontains(L[i],L[j])==1)
{
t=0;
}
}
j++;
}
if (t){P[size(P)+1]=i;}
}
return(P);
}
// Auxiliary routine
// elimconstfac: eliminate the factors in the polynom f that are in Q[a]
// Input:
// poly f:
// list L: of components of the segment
// Output:
// poly f2 where the factors of f in Q[a] that are non-null on any component
// have been dropped from f
static proc elimconstfac(poly f)
{
int cond; int i; int j; int t;
if (f==0){return(f);}
def RR=basering;
setring(@R);
def ff=imap(RR,f);
def l=factorize(ff,0);
poly f1=1;
for(i=2;i<=size(l[1]);i++)
{
f1=f1*(l[1][i])^(l[2][i]);
}
setring(RR);
def f2=imap(@R,f1);
return(f2);
};
static proc memberpos(f,J)
//"USAGE: memberpos(f,J);
// (f,J) expected (polynomial,ideal)
// or (int,list(int))
// or (int,intvec)
// or (intvec,list(intvec))
// or (list(int),list(list(int)))
// or (ideal,list(ideal))
// or (list(intvec), list(list(intvec))).
// Works in any kind of ideals
//RETURN: The list (t,pos) t int; pos int;
// t is 1 if f belongs to J and 0 if not.
// pos gives the position in J (or 0 if f does not belong).
//EXAMPLE: memberpos; shows an example"
{
int pos=0;
int i=1;
int j;
int t=0;
int nt;
if (typeof(J)=="ideal"){nt=ncols(J);}
else{nt=size(J);}
if ((typeof(f)=="poly") or (typeof(f)=="int"))
{ // (poly,ideal) or
// (poly,list(poly))
// (int,list(int)) or
// (int,intvec)
i=1;
while(i<=nt)
{
if (f==J[i]){return(list(1,i));}
i++;
}
return(list(0,0));
}
else
{
if ((typeof(f)=="intvec") or ((typeof(f)=="list") and (typeof(f[1])=="int")))
{ // (intvec,list(intvec)) or
// (list(int),list(list(int)))
i=1;
t=0;
pos=0;
while((i<=nt) and (t==0))
{
t=1;
j=1;
if (size(f)!=size(J[i])){t=0;}
else
{
while ((j<=size(f)) and t)
{
if (f[j]!=J[i][j]){t=0;}
j++;
}
}
if (t){pos=i;}
i++;
}
if (t){return(list(1,pos));}
else{return(list(0,0));}
}
else
{
if (typeof(f)=="ideal")
{ // (ideal,list(ideal))
i=1;
t=0;
pos=0;
while((i<=nt) and (t==0))
{
t=1;
j=1;
if (ncols(f)!=ncols(J[i])){t=0;}
else
{
while ((j<=ncols(f)) and t)
{
if (f[j]!=J[i][j]){t=0;}
j++;
}
}
if (t){pos=i;}
i++;
}
if (t){return(list(1,pos));}
else{return(list(0,0));}
}
else
{
if ((typeof(f)=="list") and (typeof(f[1])=="intvec"))
{ // (list(intvec),list(list(intvec)))
i=1;
t=0;
pos=0;
while((i<=nt) and (t==0))
{
t=1;
j=1;
if (size(f)!=size(J[i])){t=0;}
else
{
while ((j<=size(f)) and t)
{
if (f[j]!=J[i][j]){t=0;}
j++;
}
}
if (t){pos=i;}
i++;
}
if (t){return(list(1,pos));}
else{return(list(0,0));}
}
}
}
}
}
//example
//{ "EXAMPLE:"; echo = 2;
// list L=(7,4,5,1,1,4,9);
// memberpos(1,L);
//}
// Auxiliary routine
// pos
// Input: intvec p of zeros and ones
// Output: intvec W of the positions where p has ones.
static proc pos(intvec p)
{
int i;
intvec W; int j=1;
for (i=1; i<=size(p); i++)
{
if (p[i]==1){W[j]=i; j++;}
}
return(W);
}
// Input:
// A,B: lists of ideals
// Output:
// 1 if both lists of ideals are equal, or 0 if not
static proc equallistsofideals(list A, list B)
{
int i;
int tes=0;
if (size(A)!=size(B)){return(tes);}
tes=1; i=1;
while(tes==1 and i<=size(A))
{
if (equalideals(A[i],B[i])==0){tes=0; return(tes);}
i++;
}
return(tes);
}
// Input:
// A,B: lists of P-rep, i.e. of the form [p_i,[p_{i1},..,p_{ij_i}]]
// Output:
// 1 if both lists of P-reps are equal, or 0 if not
static proc equallistsA(list A, list B)
{
int tes=0;
if(equalideals(A[1],B[1])==0){return(tes);}
tes=equallistsofideals(A[2],B[2]);
return(tes);
}
// Input:
// A,B: lists lists of of P-rep, i.e. of the form [[p_1,[p_{11},..,p_{1j_1}]] .. [p_i,[p_{i1},..,p_{ij_i}]]
// Output:
// 1 if both lists of lists of P-rep are equal, or 0 if not
static proc equallistsAall(list A,list B)
{
int i; int tes;
if(size(A)!=size(B)){return(tes);}
tes=1; i=1;
while(tes and i<=size(A))
{
tes=equallistsA(A[i],B[i]);
i++;
}
return(tes);
}
// idint: ideal intersection
// in the ring @P.
// it works in an extended ring
// input: two ideals in the ring @P
// output the intersection of both (is not a GB)
static proc idint(ideal I, ideal J)
{
def RR=basering;
ring T=0,t,lp;
def K=T+RR;
setring(K);
def Ia=imap(RR,I);
def Ja=imap(RR,J);
ideal IJ;
int i;
for(i=1;i<=size(Ia);i++){IJ[i]=t*Ia[i];}
for(i=1;i<=size(Ja);i++){IJ[size(Ia)+i]=(1-t)*Ja[i];}
ideal eIJ=eliminate(IJ,t);
setring(RR);
return(imap(K,eIJ));
}
//purpose ideal intersection called in @R and computed in @P
static proc idintR(ideal N, ideal M)
{
def RR=basering;
setring(@P);
def Np=imap(RR,N);
def Mp=imap(RR,M);
def Jp=idint(Np,Mp);
setring(RR);
return(imap(@P,Jp));
}
// Auxiliary routine
// comb: the list of combinations of elements (1,..n) of order p
static proc comb(int n, int p)
{
list L; list L0;
intvec c; intvec d;
int i; int j; int last;
if ((n<0) or (n<p))
{
return(L);
}
if (p==1)
{
for (i=1;i<=n;i++)
{
c=i;
L[size(L)+1]=c;
}
return(L);
}
else
{
L0=comb(n,p-1);
for (i=1;i<=size(L0);i++)
{
c=L0[i]; d=c;
last=c[size(c)];
for (j=last+1;j<=n;j++)
{
d[size(c)+1]=j;
L[size(L)+1]=d;
}
}
return(L);
}
}
// Auxiliary routine
// combrep
// Input: V=(n_1,..,n_i)
// Output: L=(v_1,..,v_p) where p=prod_j=1^i (n_j)
// is the list of all intvec v_j=(v_j1,..,v_ji) where 1<=v_jk<=n_i
static proc combrep(intvec V)
{
list L; list LL;
int i; int j; int k; intvec W;
if (size(V)==1)
{
for (i=1;i<=V[1];i++)
{
L[i]=intvec(i);
}
return(L);
}
for (i=1;i<size(V);i++)
{
W[i]=V[i];
}
LL=combrep(W);
for (i=1;i<=size(LL);i++)
{
W=LL[i];
for (j=1;j<=V[size(V)];j++)
{
W[size(V)]=j;
L[size(L)+1]=W;
}
}
return(L);
}
static proc subset(J,K)
//"USAGE: subset(J,K);
// (J,K) expected (ideal,ideal)
// or (list, list)
//RETURN: 1 if all the elements of J are in K, 0 if not.
//EXAMPLE: subset; shows an example;"
{
int i=1;
int nt;
if (typeof(J)=="ideal"){nt=ncols(J);}
else{nt=size(J);}
if (size(J)==0){return(1);}
while(i<=nt)
{
if (memberpos(J[i],K)[1]){i++;}
else {return(0);}
}
return(1);
}
//example
//{ "EXAMPLE:"; echo = 2;
// list J=list(7,3,2);
// list K=list(1,2,3,5,7,8);
// subset(J,K);
//}
static proc setglobalrings()
// "USAGE: setglobalrings();
// No arguments
// RETURN: After its call the rings Grobcov::@R=Q[a][x], Grobcov::@P=Q[a],
// Grobcov::@RP=Q[x,a] are defined as global variables.
// (a=parameters, x=variables)
// NOTE: It is called internally by many basic routines of the
// library grobcov, cgsdr, extend, pdivi, pnormalf, locus, locusdg,
// envelop, envelopdg, and killed before the output.
// The user does not need to call it, except when it is interested
// in using some internal routine of the library that
// uses these rings.
// The basering R, must be of the form Q[a][x], (a=parameters,
// x=variables), and should be defined previously.
// KEYWORDS: ring, rings
// EXAMPLE: setglobalrings; shows an example"
{
if (defined(@P))
{
kill @P; kill @R; kill @RP;
}
def RR=basering;
def @R=basering; // must be of the form Q[a][x], (a=parameters, x=variables)
def Rx=ringlist(RR);
def @P=ring(Rx[1]);
list Lx;
Lx[1]=0;
Lx[2]=Rx[2]+Rx[1][2];
Lx[3]=Rx[1][3];
Lx[4]=Rx[1][4];
Rx[1]=0;
def D=ring(Rx);
def @RP=D+@P;
export(@R); // global ring Q[a][x]
export(@P); // global ring Q[a]
export(@RP); // global ring K[x,a] with product order
setring(RR);
};
// example
// {
// "EXAMPLE:"; echo = 2;
// ring R=(0,a,b),(x,y,z),dp;
// setglobalrings();
// " ";"R=";R;
// " ";"Grobcov::@R=";Grobcov::@R;
// " ";"Grobcov::@P=";Grobcov::@P;
// " ";"Grobcov::@RP=";Grobcov::@RP;
// " "; "ringlist(Grobcov::@R)="; ringlist(Grobcov::@R);
// " "; "ringlist(Grobcov::@P)="; ringlist(Grobcov::@P);
// " "; "ringlist(Grobcov::@RP)="; ringlist(Grobcov::@RP);
// }
// cld : clears denominators of an ideal and normalizes to content 1
// can be used in @R or @P or @RP
// input:
// ideal J (J can be also poly), but the output is an ideal;
// output:
// ideal Jc (the new form of ideal J without denominators and
// normalized to content 1)
static proc cld(ideal J)
{
if (size(J)==0){return(ideal(0));}
int te=0;
def RR=basering;
if(not(defined(@RP)))
{
te=1;
setglobalrings();
}
setring(@RP);
def Ja=imap(RR,J);
ideal Jb;
if (size(Ja)==0){setring(RR); return(ideal(0));}
int i;
def j=0;
for (i=1;i<=ncols(Ja);i++){if (size(Ja[i])!=0){j++; Jb[j]=cleardenom(Ja[i]);}}
setring(RR);
def Jc=imap(@RP,Jb);
if(te){kill @R; kill @RP; kill @P;}
return(Jc);
};
// simpqcoeffs : simplifies a quotient of two polynomials
// input: two coeficients (or terms), that are considered as a quotient
// output: the two coeficients reduced without common factors
static proc simpqcoeffs(poly n,poly m)
{
def nc=content(n);
def mc=content(m);
def gc=gcd(nc,mc);
ideal s=n/gc,m/gc;
return (s);
}
// pdivi : pseudodivision of a parametric polynomial f by a parametric ideal F in Q[a][x].
// input:
// poly f
// ideal F
// output:
// list (poly r, ideal q, poly mu)
proc pdivi(poly f,ideal F)
"USAGE: pdivi(f,F);
poly f: the polynomialin Q[a][x] to be divided
ideal F: the divisor ideal in Q[a][x].
RETURN: A list (poly r, ideal q, poly m). r is the remainder of the
pseudodivision, q is the set of quotients, and m is the
coefficient factor by which f is to be multiplied.
NOTE: pseudodivision of a poly f by an ideal F in Q[a][x]. Returns a
list (r,q,m) such that m*f=r+sum(q.G), and no lpp of a divisor
divides a pp of r.
KEYWORDS: division, reduce
EXAMPLE: pdivi; shows an example"
{
F=simplify(F,2);
int i;
int j;
poly v=1;
for(i=1;i<=nvars(basering);i++){v=v*var(i);}
poly r=0;
poly mu=1;
def p=f;
ideal q;
for (i=1; i<=ncols(F); i++){q[i]=0;};
ideal lpf;
ideal lcf;
for (i=1;i<=ncols(F);i++){lpf[i]=leadmonom(F[i]);}
for (i=1;i<=ncols(F);i++){lcf[i]=leadcoef(F[i]);}
poly lpp;
poly lcp;
poly qlm;
poly nu;
poly rho;
int divoc=0;
ideal qlc;
while (p!=0)
{
i=1;
divoc=0;
lpp=leadmonom(p);
lcp=leadcoef(p);
while (divoc==0 and i<=size(F))
{
qlm=lpp/lpf[i];
if (qlm!=0)
{
qlc=simpqcoeffs(lcp,lcf[i]);
nu=qlc[2];
mu=mu*nu;
rho=qlc[1]*qlm;
p=nu*p-rho*F[i];
r=nu*r;
for (j=1;j<=size(F);j++){q[j]=nu*q[j];}
q[i]=q[i]+rho;
divoc=1;
}
else {i++;}
}
if (divoc==0)
{
r=r+lcp*lpp;
p=p-lcp*lpp;
}
}
list res=r,q,mu;
return(res);
}
example
{
"EXAMPLE:"; echo = 2;
ring R=(0,a,b,c),(x,y),dp;
poly f=(ab-ac)*xy+(ab)*x+(5c);
// Divisor=";
f;
ideal F=ax+b,cy+a;
// Dividends=";
F;
def r=pdivi(f,F);
// (Remainder, quotients, factor)=";
r;
// Verifying the division:
r[3]*f-(r[2][1]*F[1]+r[2][2]*F[2]+r[1]);
}
// pspol : S-poly of two polynomials in @R
// @R
// input:
// poly f (given in the ring @R)
// poly g (given in the ring @R)
// output:
// list (S, red): S is the S-poly(f,g) and red is a Boolean variable
// if red then S reduces by Buchberger 1st criterion
// (not used)
static proc pspol(poly f,poly g)
{
def lcf=leadcoef(f);
def lcg=leadcoef(g);
def lpf=leadmonom(f);
def lpg=leadmonom(g);
def v=gcd(lpf,lpg);
def s=simpqcoeffs(lcf,lcg);
def vf=lpf/v;
def vg=lpg/v;
poly S=s[2]*vg*f-s[1]*vf*g;
return(S);
}
// facvar: Returns all the free-square factors of the elements
// of ideal J (non repeated). Integer factors are ignored,
// even 0 is ignored. It can be called from ideal @R, but
// the given ideal J must only contain poynomials in the
// parameters.
// Operates in the ring @P, but can be called from ring @R,
// and the ideal @P must be defined calling first setglobalrings();
// input: ideal J
// output: ideal Jc: Returns all the free-square factors of the elements
// of ideal J (non repeated). Integer factors are ignored,
// even 0 is ignored. It can be called from ideal @R.
static proc facvar(ideal J)
//"USAGE: facvar(J);
// J: an ideal in the parameters
//RETURN: all the free-square factors of the elements
// of ideal J (non repeated). Integer factors are ignored,
// even 0 is ignored. It can be called from ideal @R, but
// the given ideal J must only contain poynomials in the
// parameters.
//NOTE: Operates in the ring @P, and the ideal J must contain only
// polynomials in the parameters, but can be called from ring @R.
//KEYWORDS: factor
//EXAMPLE: facvar; shows an example"
{
int i;
def RR=basering;
setring(@P);
def Ja=imap(RR,J);
if(size(Ja)==0){setring(RR); return(ideal(0));}
Ja=elimintfromideal(Ja); // also in ideal @P
ideal Jb;
if (size(Ja)==0){Jb=ideal(0);}
else
{
for (i=1;i<=ncols(Ja);i++){if(size(Ja[i])!=0){Jb=Jb,factorize(Ja[i],1);}}
Jb=simplify(Jb,2+4+8);
Jb=cld(Jb);
Jb=elimintfromideal(Jb); // also in ideal @P
}
setring(RR);
def Jc=imap(@P,Jb);
return(Jc);
}
//example
//{ "EXAMPLE:"; echo = 2;
// ring R=(0,a,b,c),(x,y,z),dp;
// setglobalrings();
// ideal J=a2-b2,a2-2ab+b2,abc-bc;
// facvar(J);
//}
// Ered: eliminates the factors in the polynom f that are non-null.
// In ring @R
// input:
// poly f:
// ideal E of null-conditions
// ideal N of non-null conditions
// (E,N) represents V(E) \ V(N),
// Ered eliminates the non-null factors of f in V(E) \ V(N)
// output:
// poly f2 where the non-null conditions have been dropped from f
static proc Ered(poly f,ideal E, ideal N)
{
def RR=basering;
setring(@R);
poly ff=imap(RR,f);
ideal EE=imap(RR,E);
ideal NN=imap(RR,N);
if((ff==0) or (equalideals(NN,ideal(1)))){setring(RR); return(f);}
def v=variables(ff);
int i;
poly X=1;
for(i=1;i<=size(v);i++){X=X*v[i];}
matrix M=coef(ff,X);
setring(@P);
def RPE=imap(@R,EE);
def RPN=imap(@R,NN);
matrix Mp=imap(@R,M);
poly g=Mp[2,1];
if (size(Mp)!=2)
{
for(i=2;i<=size(Mp) div 2;i++)
{
g=gcd(g,Mp[2,i]);
}
}
if (g==1){setring(RR); return(f);}
else
{
def wg=factorize(g,2);
if (wg[1][1]==1){setring(RR); return(f);}
else
{
poly simp=1;
int te;
for(i=1;i<=size(wg[1]);i++)
{
te=inconsistent(RPE+wg[1][i],RPN);
if(te)
{
simp=simp*(wg[1][i])^(wg[2][i]);
}
}
}
if (simp==1){setring(RR); return(f);}
else
{
setring(RR);
def simp0=imap(@P,simp);
def f2=f/simp0;
return(f2);
}
}
}
// pnormalf: reduces a polynomial f wrt a V(E) \ V(N)
// dividing by E and eliminating factors in N.
// called in the ring @R,
// operates in the ring @RP.
// input:
// poly f
// ideal E (depends only on the parameters)
// ideal N (depends only on the parameters)
// (E,N) represents V(E) \ V(N)
// optional:
// output: poly f2 reduced wrt to V(E) \ V(N)
proc pnormalf(poly f, ideal E, ideal N)
"USAGE: pnormalf(f,E,N);
f: the polynomial in Q[a][x] (a=parameters, x=variables) to be
reduced modulo V(E) \ V(N) of a segment in Q[a].
E: the null conditions ideal in Q[a]
N: the non-null conditions in Q[a]
RETURN: a reduced polynomial g of f, whose coefficients are reduced
modulo E and having no factor in N.
NOTE: Should be called from ring Q[a][x].
Ideals E and N must be given by polynomials in Q[a].
KEYWORDS: division, pdivi, reduce
EXAMPLE: pnormalf; shows an example"
{
def RR=basering;
int te=0;
if (defined(@P)){te=1;}
else{setglobalrings();}
setring(@RP);
def fa=imap(RR,f);
def Ea=imap(RR,E);
def Na=imap(RR,N);
option(redSB);
Ea=std(Ea);
def r=cld(reduce(fa,Ea));
poly f1=r[1];
f1=Ered(r[1],Ea,Na);
setring(RR);
def f2=imap(@RP,f1);
if(te==0){kill @R; kill @RP; kill @P;}
return(f2)
};
example
{
"EXAMPLE:"; echo = 2;
ring R=(0,a,b,c),(x,y),dp;
short=0;
poly f=(b^2-1)*x^3*y+(c^2-1)*x*y^2+(c^2*b-b)*x+(a-bc)*y;
ideal E=(c-1);
ideal N=a-b;
pnormalf(f,E,N);
}
// lesspol: compare two polynomials by its leading power products
// input: two polynomials f,g in the ring @R
// output: 0 if f<g, 1 if f>=g
static proc lesspol(poly f, poly g)
{
if (leadmonom(f)<leadmonom(g)){return(1);}
else
{
if (leadmonom(g)<leadmonom(f)){return(0);}
else
{
if (leadcoef(f)<leadcoef(g)){return(1);}
else {return(0);}
}
}
};
// sortideal: sorts the polynomials in an ideal by lm in ascending order
static proc sortideal(ideal Fi)
{
def RR=basering;
setring(@RP);
def F=imap(RR,Fi);
def H=F;
ideal G;
int i;
int j;
poly p;
while (size(H)!=0)
{
j=1;
p=H[1];
for (i=1;i<=ncols(H);i++)
{
if(lesspol(H[i],p)){j=i;p=H[j];}
}
G[ncols(G)+1]=p;
H=delfromideal(H,j);
H=simplify(H,2);
}
setring(RR);
def GG=imap(@RP,G);
GG=simplify(GG,2);
return(GG);
}
// mingb: given a basis (gb reducing) it
// order the polynomials in ascending order and
// eliminates the polynomials whose lpp are divisible by some
// smaller one
static proc mingb(ideal F)
{
int t; int i; int j;
def H=sortideal(F);
ideal G;
if (ncols(H)<=1){return(H);}
G=H[1];
for (i=2; i<=ncols(H); i++)
{
t=1;
j=1;
while (t and (j<i))
{
if((leadmonom(H[i])/leadmonom(H[j]))!=0) {t=0;}
j++;
}
if (t) {G[size(G)+1]=H[i];}
}
return(G);
}
// redgbn: given a minimal basis (gb reducing) it
// reduces each polynomial wrt to V(E) \ V(N)
static proc redgbn(ideal F, ideal E, ideal N)
{
int te=0;
if (defined(@P)==1){te=1;}
ideal G=F;
ideal H;
int i;
if (size(G)==0){return(ideal(0));}
for (i=1;i<=size(G);i++)
{
H=delfromideal(G,i);
G[i]=pnormalf(pdivi(G[i],H)[1],E,N);
G[i]=primepartZ(G[i]);
}
if(te==1){setglobalrings();}
return(G);
}
//**************Begin homogenizing************************
// ishomog:
// Purpose: test if a polynomial is homogeneous in the variables or not
// input: poly f
// output 1 if f is homogeneous, 0 if not
static proc ishomog(f)
{
int i; poly r; int d; int dr;
if (f==0){return(1);}
d=deg(f); dr=d; r=f;
while ((d==dr) and (r!=0))
{
r=r-lead(r);
dr=deg(r);
}
if (r==0){return(1);}
else{return(0);}
}
// postredgb: given a minimal basis (gb reducing) it
// reduces each polynomial wrt to the others
static proc postredgb(ideal F)
{
int te=0;
if(defined(@P)==1){te=1;}
ideal G;
ideal H;
int i;
if (size(F)==0){return(ideal(0));}
for (i=1;i<=size(F);i++)
{
H=delfromideal(F,i);
G[i]=pdivi(F[i],H)[1];
}
if(te==1){setglobalrings();}
return(G);
}
//purpose reduced Groebner basis called in @R and computed in @P
static proc gbR(ideal N)
{
def RR=basering;
setring(@P);
def Np=imap(RR,N);
option(redSB);
Np=std(Np);
setring(RR);
return(imap(@P,Np));
}
//**************End homogenizing************************
//**************Begin of Groebner Cover*****************
// incquotient
// incremental quotient
// Input: ideal N: a Groebner basis of an ideal
// poly f:
// Output: Na = N:<f>
static proc incquotient(ideal N, poly f)
{
poly g; int i;
ideal Nb; ideal Na=N;
if (size(Na)==1)
{
g=gcd(Na[1],f);
if (g!=1)
{
Na[1]=Na[1]/g;
}
attrib(Na,"IsSB",1);
return(Na);
}
def P=basering;
poly @t;
ring H=0,@t,lp;
def HP=H+P;
setring(HP);
def fh=imap(P,f);
def Nh=imap(P,N);
ideal Nht;
for (i=1;i<=size(Nh);i++)
{
Nht[i]=Nh[i]*@t;
}
attrib(Nht,"isSB",1);
def fht=(1-@t)*fh;
option(redSB);
Nht=std(Nht,fht);
ideal Nc; ideal v;
for (i=1;i<=size(Nht);i++)
{
v=variables(Nht[i]);
if(memberpos(@t,v)[1]==0)
{
Nc[size(Nc)+1]=Nht[i]/fh;
}
}
setring(P);
ideal HH;
def Nd=imap(HP,Nc); Nb=Nd;
option(redSB);
Nb=std(Nd);
return(Nb);
}
// Auxiliary routine to define an order for ideals
// Returns 1 if the ideal a is shoud precede ideal b by sorting them in idbefid order
// 2 if the the contrary happen
// 0 if the order is not relevant
static proc idbefid(ideal a, ideal b)
{
poly fa; poly fb; poly la; poly lb;
int te=1; int i; int j;
int na=size(a);
int nb=size(b);
int nm;
if (na<=nb){nm=na;} else{nm=nb;}
for (i=1;i<=nm; i++)
{
fa=a[i]; fb=b[i];
while((fa!=0) or (fb!=0))
{
la=lead(fa);
lb=lead(fb);
fa=fa-la;
fb=fb-lb;
la=leadmonom(la);
lb=leadmonom(lb);
if(leadmonom(la+lb)!=la){return(1);}
else{if(leadmonom(la+lb)!=lb){return(2);}}
}
}
if(na<nb){return(1);}
else
{
if(na>nb){return(2);}
else{return(0);}
}
}
// sort a list of ideals using idbefid
static proc sortlistideals(list L)
{
int i; int j; int n;
ideal a; ideal b;
list LL=L;
list NL;
int k; int te;
i=1;
while(size(LL)>0)
{
k=1;
for(j=2;j<=size(LL);j++)
{
te=idbefid(LL[k],LL[j]);
if (te==2){k=j;}
}
NL[size(NL)+1]=LL[k];
n=size(LL);
if (n>1){LL=elimfromlist(LL,k);} else{LL=list();}
}
return(NL);
}
// Crep
// Computes the C-representation of V(N) \ V(M).
// input:
// ideal N (null ideal) (not necessarily radical nor maximal)
// ideal M (hole ideal) (not necessarily containing N)
// output:
// the list (a,b) of the canonical ideals
// the Crep of V(N) \ V(M)
// Assumed to be called in the ring @R
// Works on the ring @P
proc Crep(ideal N, ideal M)
"USAGE: Crep(N,M);
Input: ideal N (null ideal) (not necessarily radical nor maximal)
ideal M (hole ideal) (not necessarily containing N)
RETURN: The canonical C-representation of the locally closed set.
[ P,Q ], a pair of radical ideals with P included in Q,
representing the set V(P) \ V(Q) = V(N) \ V(M)
NOTE: Operates in a ring R=Q[a] (a=parameters)
KEYWORDS: locally closed set, canoncial form
EXAMPLE: Crep; shows an example"
{
list l;
ideal Np=std(N);
if (equalideals(Np,ideal(1)))
{
l=ideal(1),ideal(1);
return(l);
}
int i;
list L;
ideal Q=Np+M;
ideal P=ideal(1);
L=minGTZ(Np);
for(i=1;i<=size(L);i++)
{
if(idcontains(L[i],Q)==0)
{
P=intersect(P,L[i]);
}
}
P=std(P);
Q=std(radical(Q+P));
list T=P,Q;
return(T);
}
example
{
"EXAMPLE:"; echo = 2;
if(defined(Grobcov::@P)){kill Grobcov::@R; kill Grobcov::@P; kill Grobcov::@RP;}
ring R=0,(x,y,z),lp;
short=0;
ideal E=x*(x^2+y^2+z^2-25);
ideal N=x*(x-3),y-4;
def Cr=Crep(E,N);
Cr;
def L=Prep(E,N);
L;
def Cr1=PtoCrep(L);
Cr1;
}
// Prep
// Computes the P-representation of V(N) \ V(M).
// input:
// ideal N (null ideal) (not necessarily radical nor maximal)
// ideal M (hole ideal) (not necessarily containing N)
// output:
// the ((p_1,(p_11,p_1k_1)),..,(p_r,(p_r1,p_rk_r)));
// the Prep of V(N) \ V(M)
// Assumed to be called in the ring @R
// Works on the ring @P
proc Prep(ideal N, ideal M)
"USAGE: Prep(N,M);
Input: ideal N (null ideal) (not necessarily radical nor maximal)
ideal M (hole ideal) (not necessarily containing N)
RETURN: The canonical P-representation of the locally closed set V(N) \ V(M)
Output: [ Comp_1, .. , Comp_s ] where
Comp_i=[p_i,[p_i1,..,p_is_i]]
NOTE: Operates in a ring R=Q[a] (a=parameters)
KEYWORDS: Locally closed set, Canoncial form
EXAMPLE: Prep; shows an example"
{
int te;
if (N[1]==1)
{
return(list(list(ideal(1),list(ideal(1)))));
}
int i; int j; list L0;
list Ni=minGTZ(N);
list prep;
for(j=1;j<=size(Ni);j++)
{
option(redSB);
Ni[j]=std(Ni[j]);
}
list Mij;
for (i=1;i<=size(Ni);i++)
{
Mij=minGTZ(Ni[i]+M);
for(j=1;j<=size(Mij);j++)
{
option(redSB);
Mij[j]=std(Mij[j]);
}
if ((size(Mij)==1) and (equalideals(Ni[i],Mij[1])==1)){;}
else
{
prep[size(prep)+1]=list(Ni[i],Mij);
}
}
//"T_abans="; prep;
if (size(prep)==0){prep=list(list(ideal(1),list(ideal(1))));}
//"T_Prep="; prep;
//def Lout=CompleteA(prep,prep);
//"T_Lout="; Lout;
return(prep);
}
example
{
"EXAMPLE:"; echo = 2;
if(defined(Grobcov::@P)){kill Grobcov::@R; kill Grobcov::@P; kill Grobcov::@RP;}
short=0;
ring R=0,(x,y,z),lp;
ideal E=x*(x^2+y^2+z^2-25);
ideal N=x*(x-3),y-4;
Prep(E,N);
}
// PtoCrep
// Computes the C-representation from the P-representation.
// input:
// list ((p_1,(p_11,p_1k_1)),..,(p_r,(p_r1,p_rk_r)));
// the P-representation of V(N) \ V(M)
// output:
// list (ideal ida, ideal idb)
// the C-representaion of V(N) \ V(M) = V(ida) \ V(idb)
// Assumed to be called in the ring @R
// Works on the ring @P
proc PtoCrep(list L)
"USAGE: PtoCrep(L)
Input L: list [ Comp_1, .. , Comp_s ] where
Comp_i=[p_i,[p_i1,..,p_is_i] ], is
the P-representation of a locally closed set V(N) \ V(M)
RETURN: The canonical C-representation of the locally closed set
[ P,Q ], a pair of radical ideals with P included in Q,
representing the set V(P) \ V(Q)
NOTE: Operates in a ring R=Q[a] (a=parameters)
KEYWORDS: locally closed set, canoncial form
EXAMPLE: PtoCrep; shows an example"
{
int te;
def RR=basering;
if(defined(@P)){te=1; setring(@P); list Lp=imap(RR,L);}
else { te=0; def Lp=L;}
def La=PtoCrep0(Lp);
if(te==1) {setring(RR); def LL=imap(@P,La);}
if(te==0){def LL=La;}
return(LL);
}
example
{
"EXAMPLE:"; echo = 2;
if(defined(Grobcov::@P)){kill Grobcov::@R; kill Grobcov::@P; kill Grobcov::@RP;}
short=0;
ring R=0,(x,y,z),lp;
// (P,Q) represents a locally closed set
ideal P=x^3+x*y^2+x*z^2-25*x;
ideal Q=y-4,x*z,x^2-3*x;
// Now compute the P-representation=
def L=Prep(P,Q);
L;
// Now compute the C-representation=
def J=PtoCrep(L);
J;
// Now come back recomputing the P-represetation of the C-representation=
Prep(J[1],J[2]);
}
// PtoCrep0
// Computes the C-representation from the P-representation.
// input:
// list ((p_1,(p_11,p_1k_1)),..,(p_r,(p_r1,p_rk_r)));
// the P-representation of V(N) \ V(M)
// output:
// list (ideal ida, ideal idb)
// the C-representation of V(N) \ V(M) = V(ida) \ V(idb)
// Works in a ring Q[u_1,..,u_m] and is called on it.
static proc PtoCrep0(list L)
{
int te=0;
def Lp=L;
int i; int j;
ideal ida=ideal(1); ideal idb=ideal(1); list Lb; ideal N;
for (i=1;i<=size(Lp);i++)
{
option(returnSB);
N=Lp[i][1];
ida=intersect(ida,N);
Lb=Lp[i][2];
for(j=1;j<=size(Lb);j++)
{
idb=intersect(idb,Lb[j]);
}
}
//idb=radical(idb);
def La=list(ida,idb);
return(La);
}
// input: F a parametric ideal in Q[a][x]
// output: a rComprehensive Groebner System disjoint and reduced.
// It uses Kapur-Sun-Wang algorithm, and with the options
// can compute the homogenization before (('can',0) or ( 'can',1))
// and dehomogenize the result.
proc cgsdr(ideal F, list #)
"USAGE: cgsdr(F);
F: ideal in Q[a][x] (a=parameters, x=variables) to be discussed.
To compute a disjoint, reduced Comprehensive Groebner System (CGS).
cgsdr is the starting point of the fundamental routine grobcov.
Inside grobcov it is used with options 'can' set to 0,1 and
not with options ('can',2).
It is to be used if only a disjoint reduced CGS is required.
Options: To modify the default options, pairs of arguments
-option name, value- of valid options must be added to the call.
Options:
\"can\",0-1-2: The default value is \"can\",2. In this case no
homogenization is done. With option (\"can\",0) the given
basis is homogenized, and with option (\"can\",1) the
whole given ideal is homogenized before computing the
cgs and dehomogenized after.
with option (\"can\",0) the homogenized basis is used
with option (\"can\",1) the homogenized ideal is used
with option (\"can\",2) the given basis is used
\"null\",ideal E: The default is (\"null\",ideal(0)).
\"nonnull\",ideal N: The default (\"nonnull\",ideal(1)).
When options \"null\" and/or \"nonnull\" are given, then
the parameter space is restricted to V(E) \ V(N).
\"comment\",0-1: The default is (\"comment\",0). Setting (\"comment\",1)
will provide information about the development of the
computation.
\"out\",0-1: 1 (default) the output segments are given as
as difference of varieties.
0: the output segments are given in P-representation
and the segments grouped by lpp
With options (\"can\",0) and (\"can\",1) the option (\"out\",1)
is set to (\"out\",0) because it is not compatible.
One can give none or whatever of these options.
With the default options (\"can\",2,\"out\",1), only the
Kapur-Sun-Wang algorithm is computed. This is very efficient
but is only the starting point for the computation of grobcov.
When grobcov is computed, the call to cgsdr inside uses
specific options that are more expensive ("can",0-1,"out",0).
RETURN: Returns a list T describing a reduced and disjoint
Comprehensive Groebner System (CGS),
With option (\"out\",0)
the segments are grouped by
leading power products (lpp) of the reduced Groebner
basis and given in P-representation.
The returned list is of the form:
(
(lpp, (num,basis,segment),...,(num,basis,segment),lpp),
..,,
(lpp, (num,basis,segment),...,(num,basis,segment),lpp)
)
The bases are the reduced Groebner bases (after normalization)
for each point of the corresponding segment.
The third element of each lpp segment is the lpp of the
used ideal in the CGS as a string:
with option (\"can\",0) the homogenized basis is used
with option (\"can\",1) the homogenized ideal is used
with option (\"can\",2) the given basis is used
With option (\"out\",1) (default)
only KSW is applied and segments are given as
difference of varieties and are not grouped
The returned list is of the form:
(
(E,N,B),..(E,N,B)
)
E is the null variety
N is the nonnull variety
segment = V(E) \ V(N)
B is the reduced Groebner basis
NOTE: The basering R, must be of the form Q[a][x], (a=parameters,
x=variables), and should be defined previously, and the ideal
defined on R.
KEYWORDS: CGS, disjoint, reduced, Comprehensive Groebner System
EXAMPLE: cgsdr; shows an example"
{
int te;
def RR=basering;
if(defined(@P)){te=1;}
else{te=0; setglobalrings();}
// INITIALIZING OPTIONS
int i; int j;
def E=ideal(0);
def N=ideal(1);
int comment=0;
int can=2;
int out=1;
poly f;
ideal B;
int start=timer;
list L=#;
for(i=1;i<=size(L) div 2;i++)
{
if(L[2*i-1]=="null"){E=L[2*i];}
else
{
if(L[2*i-1]=="nonnull"){N=L[2*i];}
else
{
if(L[2*i-1]=="comment"){comment=L[2*i];}
else
{
if(L[2*i-1]=="can"){can=L[2*i];}
else
{
if(L[2*i-1]=="out"){out=L[2*i];}
}
}
}
}
}
//if(can==2){out=1;}
B=F;
if ((printlevel) and (comment==0)){comment=printlevel;}
if((can<2) and (out>0)){"Option out,1 is not compatible with can,0,1"; out=0;}
// DEFINING OPTIONS
list LL;
LL[1]="can"; LL[2]=can;
LL[3]="comment"; LL[4]=comment;
LL[5]="out"; LL[6]=out;
LL[7]="null"; LL[8]=E;
LL[9]="nonnull"; LL[10]=N;
if(comment>=1)
{
string("Begin cgsdr with options: ",LL);
}
int ish;
for (i=1;i<=size(B);i++){ish=ishomog(B[i]); if(ish==0){break;};}
if (ish)
{
if(comment>0){string("The given system is homogneous");}
def GS=KSW(B,LL);
//can=0;
}
else
{
// ACTING DEPENDING ON OPTIONS
if(can==2)
{
// WITHOUT HOMOHGENIZING
if(comment>0){string("Option of cgsdr: do not homogenize");}
def GS=KSW(B,LL);
setglobalrings();
}
else
{
if(can==1)
{
// COMPUTING THE HOMOGOENIZED IDEAL
if(comment>=1){string("Homogenizing the whole ideal: option can=1");}
list RRL=ringlist(RR);
RRL[3][1][1]="dp";
def Pa=ring(RRL[1]);
list Lx;
Lx[1]=0;
Lx[2]=RRL[2]+RRL[1][2];
Lx[3]=RRL[1][3];
Lx[4]=RRL[1][4];
RRL[1]=0;
def D=ring(RRL);
def RP=D+Pa;
setring(RP);
def B1=imap(RR,B);
option(redSB);
B1=std(B1);
setring(RR);
def B2=imap(RP,B1);
}
else
{ // (can=0)
if(comment>0){string("Homogenizing the basis: option can=0");}
def B2=B;
}
// COMPUTING HOMOGENIZED CGS
poly @t;
ring H=0,@t,dp;
def RH=RR+H;
setring(RH);
setglobalrings();
def BH=imap(RR,B2);
def LH=imap(RR,LL);
for (i=1;i<=size(BH);i++)
{
BH[i]=homog(BH[i],@t);
}
if (comment>=2){string("Homogenized system = "); BH;}
def GSH=KSW(BH,LH);
setglobalrings();
// DEHOMOGENIZING THE RESULT
if(out==0)
{
for (i=1;i<=size(GSH);i++)
{
GSH[i][1]=subst(GSH[i][1],@t,1);
for(j=1;j<=size(GSH[i][2]);j++)
{
GSH[i][2][j][2]=subst(GSH[i][2][j][2],@t,1);
}
}
}
else
{
for (i=1;i<=size(GSH);i++)
{
GSH[i][3]=subst(GSH[i][3],@t,1);
GSH[i][7]=subst(GSH[i][7],@t,1);
}
}
setring(RR);
def GS=imap(RH,GSH);
}
setglobalrings();
if(out==0)
{
for (i=1;i<=size(GS);i++)
{
GS[i][1]=postredgb(mingb(GS[i][1]));
for(j=1;j<=size(GS[i][2]);j++)
{
GS[i][2][j][2]=postredgb(mingb(GS[i][2][j][2]));
}
}
}
else
{
for (i=1;i<=size(GS);i++)
{
if(GS[i][2]==1)
{
GS[i][3]=postredgb(mingb(GS[i][3]));
if (typeof(GS[i][7])=="ideal")
{ GS[i][7]=postredgb(mingb(GS[i][7]));}
}
}
}
}
if(te==0){kill @P; kill @R; kill @RP;}
return(GS);
}
example
{
"EXAMPLE:"; echo = 2;
// Casas conjecture for degree 4:
ring R=(0,a0,a1,a2,a3,a4),(x1,x2,x3),dp;
short=0;
ideal F=x1^4+(4*a3)*x1^3+(6*a2)*x1^2+(4*a1)*x1+(a0),
x1^3+(3*a3)*x1^2+(3*a2)*x1+(a1),
x2^4+(4*a3)*x2^3+(6*a2)*x2^2+(4*a1)*x2+(a0),
x2^2+(2*a3)*x2+(a2),
x3^4+(4*a3)*x3^3+(6*a2)*x3^2+(4*a1)*x3+(a0),
x3+(a3);
cgsdr(F);
}
// input: internal routine called by cgsdr at the end to group the
// lpp segments and improve the output
// output: grouped segments by lpp obtained in cgsdr
static proc grsegments(list T)
{
int i;
list L;
list lpp;
list lp;
list ls;
int n=size(T);
lpp[1]=T[n][1];
L[1]=list(lpp[1],list(list(T[n][2],T[n][3],T[n][4])));
if (n>1)
{
for (i=1;i<=size(T)-1;i++)
{
lp=memberpos(T[n-i][1],lpp);
if(lp[1]==1)
{
ls=L[lp[2]][2];
ls[size(ls)+1]=list(T[n-i][2],T[n-i][3],T[n-i][4]);
L[lp[2]][2]=ls;
}
else
{
lpp[size(lpp)+1]=T[n-i][1];
L[size(L)+1]=list(T[n-i][1],list(list(T[n-i][2],T[n-i][3],T[n-i][4])));
}
}
}
return(L);
}
// LCUnion
// Given a list of the P-representations of locally closed segments
// for which we know that the union is also locally closed
// it returns the P-representation of its union
// input: L list of segments in P-representation
// ((p_j^i,(p_j1^i,...,p_jk_j^i | j=1..t_i)) | i=1..s )
// where i represents a segment
// output: P-representation of the union
// ((P_j,(P_j1,...,P_jk_j | j=1..t)))
static proc LCUnion(list LL)
{
def RR=basering;
setring(@P);
def L=imap(RR,LL);
int i; int j; int k; list H; list C; list T;
list L0; list P0; list P; list Q0; list Q;
for (i=1;i<=size(L);i++)
{
for (j=1;j<=size(L[i]);j++)
{
P0[size(P0)+1]=L[i][j][1];
L0[size(L0)+1]=intvec(i,j);
}
}
Q0=selectminideals(P0);
for (i=1;i<=size(Q0);i++)
{
Q[i]=L0[Q0[i]];
P[i]=L[Q[i][1]][Q[i][2]];
}
// P is the list of the maximal components of the union
// with the corresponding initial holes.
// Q is the list of intvec positions in L of the first element of the P's
// Its elements give (num of segment, num of max component (=min ideal))
for (k=1;k<=size(Q);k++)
{
H=P[k][2]; // holes of P[k][1]
for (i=1;i<=size(L);i++)
{
if (i!=Q[k][1])
{
for (j=1;j<=size(L[i]);j++)
{
C[size(C)+1]=L[i][j];
}
}
}
T[size(T)+1]=list(Q[k],P[k][1],addpart(H,C));
}
setring(RR);
def TT=imap(@P,T);
return(TT);
}
// Auxiliary routine
// called by LCUnion to modify the holes of a primepart of the union
// by the addition of the segments that do not correspond to that part
// Works on @P ring.
// Input:
// H=(p_i1,..,p_is) the holes of a component to be transformed by the addition of
// the segments C that do not correspond to that component
// C=((q_1,(q_11,..,q_1l_1),pos1),..,(q_k,(q_k1,..,q_kl_k),posk))
// posi=(i,j) position of the component
// the list of segments to be added to the holes
static proc addpart(list H, list C)
{
list Q; int i; int j; int k; int l; int t; int t1;
Q=H; intvec notQ; list QQ; list addq;
// @Q2=list of (i,j) positions of the components that have been aded to some hole of the maximal ideals
// plus those of the components added to the holes.
ideal q;
i=1;
while (i<=size(Q))
{
if (memberpos(i,notQ)[1]==0)
{
q=Q[i];
t=1; j=1;
while ((t) and (j<=size(C)))
{
if (equalideals(q,C[j][1]))
{
// \\ @Q2[size(@Q2)+1]=C[j][3];
t=0;
for (k=1;k<=size(C[j][2]);k++)
{
t1=1;
l=1;
while((t1) and (l<=size(Q)))
{
if ((l!=i) and (memberpos(l,notQ)[1]==0))
{
if (idcontains(C[j][2][k],Q[l]))
{
t1=0;
}
}
l++;
}
if (t1)
{
addq[size(addq)+1]=C[j][2][k];
// \\ @Q2[size(@Q2)+1]=C[j][3];
}
}
if((size(notQ)==1) and (notQ[1]==0)){notQ[1]=i;}
else {notQ[size(notQ)+1]=i;}
}
j++;
}
if (size(addq)>0)
{
for (k=1;k<=size(addq);k++)
{
Q[size(Q)+1]=addq[k];
}
kill addq;
list addq;
}
}
i++;
}
for (i=1;i<=size(Q);i++)
{
if(memberpos(i,notQ)[1]==0)
{
QQ[size(QQ)+1]=Q[i];
}
}
if (size(QQ)==0){QQ[1]=ideal(1);}
return(addpartfine(QQ,C));
}
// Auxiliary routine called by addpart to finish the modification of the holes of a primepart
// of the union by the addition of the segments that do not correspond to
// that part.
// Works on @P ring.
static proc addpartfine(list H, list C0)
{
//"T_H="; H;
int i; int j; int k; int te; intvec notQ; int l; list sel; int used;
intvec jtesC;
if ((size(H)==1) and (equalideals(H[1],ideal(1)))){return(H);}
if (size(C0)==0){return(H);}
list newQ; list nQ; list Q; list nQ1; list Q0;
def Q1=H;
//Q1=sortlistideals(Q1,idbefid);
def C=C0;
while(equallistideals(Q0,Q1)==0)
{
Q0=Q1;
i=0;
Q=Q1;
kill notQ; intvec notQ;
while(i<size(Q))
{
i++;
for(j=1;j<=size(C);j++)
{
te=idcontains(Q[i],C[j][1]);
if(te)
{
for(k=1;k<=size(C[j][2]);k++)
{
if(idcontains(Q[i],C[j][2][k]))
{
te=0; break;
}
}
if (te)
{
used++;
if ((size(notQ)==1) and (notQ[1]==0)){notQ[1]=i;}
else{notQ[size(notQ)+1]=i;}
kill newQ; list newQ;
for(k=1;k<=size(C[j][2]);k++)
{
nQ=minGTZ(Q[i]+C[j][2][k]);
for(l=1;l<=size(nQ);l++)
{
option(redSB);
nQ[l]=std(nQ[l]);
newQ[size(newQ)+1]=nQ[l];
}
}
sel=selectminideals(newQ);
kill nQ1; list nQ1;
for(l=1;l<=size(sel);l++)
{
nQ1[l]=newQ[sel[l]];
}
newQ=nQ1;
for(l=1;l<=size(newQ);l++)
{
Q[size(Q)+1]=newQ[l];
}
break;
}
}
}
}
kill Q1; list Q1;
for(i=1;i<=size(Q);i++)
{
if(memberpos(i,notQ)[1]==0)
{
Q1[size(Q1)+1]=Q[i];
}
}
//"T_Q1_0="; Q1;
sel=selectminideals(Q1);
kill nQ1; list nQ1;
for(l=1;l<=size(sel);l++)
{
nQ1[l]=Q1[sel[l]];
}
Q1=nQ1;
}
if(size(Q1)==0){Q1=ideal(1),ideal(1);}
//"T_Q1_1="; Q1;
//if(used>0){string("addpartfine was ", used, " times used");}
return(Q1);
}
// Auxiliary routine for grobcov: ideal F is assumed to be homogeneous
// gcover
// input: ideal F: a generating set of a homogeneous ideal in Q[a][x]
// list #: optional
// output: the list
// S=((lpp, generic basis, Prep, Crep),..,(lpp, generic basis, Prep, Crep))
// where a Prep is ( (p1,(p11,..,p1k_1)),..,(pj,(pj1,..,p1k_j)) )
// a Crep is ( ida, idb )
static proc gcover(ideal F,list #)
{
int i; int j; int k; ideal lpp; list GPi2; list pairspP; ideal B; int ti;
int i1; int tes; int j1; int selind; int i2; int m;
list prep; list crep; list LCU; poly p; poly lcp; ideal FF;
list lpi;
string lpph;
list L=#;
int canop=1;
int extop=1;
int repop=0;
ideal E=ideal(0);;
ideal N=ideal(1);;
int comment;
for(i=1;i<=size(L) div 2;i++)
{
if(L[2*i-1]=="can"){canop=L[2*i];}
else
{
if(L[2*i-1]=="ext"){extop=L[2*i];}
else
{
if(L[2*i-1]=="rep"){repop=L[2*i];}
else
{
if(L[2*i-1]=="null"){E=L[2*i];}
else
{
if(L[2*i-1]=="nonnull"){N=L[2*i];}
else
{
if (L[2*i-1]=="comment"){comment=L[2*i];}
}
}
}
}
}
}
list GS; list GP;
def RR=basering;
GS=cgsdr(F,L); // "null",NW[1],"nonnull",NW[2],"cgs",CGS,"comment",comment);
setglobalrings();
int start=timer;
GP=GS;
ideal lppr;
list LL;
list S;
poly sp;
ideal BB;
for (i=1;i<=size(GP);i++)
{
kill LL;
list LL;
lpp=GP[i][1];
GPi2=GP[i][2];
lpph=GP[i][3];
kill pairspP; list pairspP;
for(j=1;j<=size(GPi2);j++)
{
pairspP[size(pairspP)+1]=GPi2[j][3];
}
LCU=LCUnion(pairspP);
kill prep; list prep;
kill crep; list crep;
for(k=1;k<=size(LCU);k++)
{
prep[k]=list(LCU[k][2],LCU[k][3]);
B=GPi2[LCU[k][1][1]][2]; // ATENTION last 1 has been changed to [2]
LCU[k][1]=B;
}
//"Deciding if combine is needed";
kill BB;
ideal BB;
tes=1; m=1;
while((tes) and (m<=size(LCU[1][1])))
{
j=1;
while((tes) and (j<=size(LCU)))
{
k=1;
while((tes) and (k<=size(LCU)))
{
if(j!=k)
{
sp=pnormalf(pspol(LCU[j][1][m],LCU[k][1][m]),LCU[k][2],N);
if(sp!=0){tes=0;}
}
k++;
} //setglobalrings();
if(tes)
{
BB[m]=LCU[j][1][m];
}
j++;
}
if(tes==0){break;}
m++;
}
crep=PtoCrep(prep);
if(tes==0)
{
// combine is needed
kill B; ideal B;
for (j=1;j<=size(LCU);j++)
{
LL[j]=LCU[j][2];
}
if (size(LCU)>1)
{
FF=precombint(LL);
}
for (k=1;k<=size(lpp);k++)
{
kill L; list L;
for (j=1;j<=size(LCU);j++)
{
L[j]=list(LCU[j][2],LCU[j][1][k]);
}
if (size(LCU)>1)
{
B[k]=combine(L,FF);
}
else{B[k]=L[1][2];}
}
}
else{B=BB;}
for(j=1;j<=size(B);j++)
{
B[j]=pnormalf(B[j],crep[1],crep[2]);
}
S[i]=list(lpp,B,prep,crep,lpph);
if(comment>=1)
{
lpi[size(lpi)+1]=string("[",i,"]");
lpi[size(lpi)+1]=S[i][1];
}
}
if(comment>=1)
{
string("Time in LCUnion + combine = ",timer-start);
if(comment>=2){string("lpp=",lpi)};
}
if(defined(@P)==1){kill @P; kill @RP; kill @R;}
return(S);
}
// grobcov
// input:
// ideal F: a parametric ideal in Q[a][x], (a=parameters, x=variables).
// list #: (options) list("null",N,"nonnull",W,"can",0-1,ext",0-1, "rep",0-1-2)
// where
// N is the null conditions ideal (if desired)
// W is the ideal of non-null conditions (if desired)
// The value of \"can\"i s 1 by default and can be set to 0 if we do not
// need to obtain the canonical GC, but only a GC.
// The value of \"ext\" is 0 by default and so the generic representation
// of the bases is given. It can be set to 1, and then the full
// representation of the bases is given.
// The value of \"rep\" is 0 by default, and then the segments
// are given in canonical P-representation. It can be set to 1
// and then they are given in canonical C-representation.
// If it is set to 2, then both representations are given.
// output:
// list S: ((lpp,basis,(idp_1,(idp_11,..,idp_1s_1))), ..
// (lpp,basis,(idp_r,(idp_r1,..,idp_rs_r))) ) where
// each element of S corresponds to a lpp-segment
// given by the lpp, the basis, and the P-representation of the segment
proc grobcov(ideal F,list #)
"USAGE: grobcov(F); This is the fundamental routine of the
library. It computes the Groebner cover of a parametric ideal. See
Montes A., Wibmer M.,
\"Groebner Bases for Polynomial Systems with parameters\".
JSC 45 (2010) 1391-1425.)
The Groebner Cover of a parametric ideal consist of a set of
pairs(S_i,B_i), where the S_i are disjoint locally closed
segments of the parameter space, and the B_i are the reduced
Groebner bases of the ideal on every point of S_i.
The ideal F must be defined on a parametric ring Q[a][x].
(a=parameters, x=variables)
Options: To modify the default options, pair of arguments
-option name, value- of valid options must be added to the call.
Options:
\"null\",ideal E: The default is (\"null\",ideal(0)).
\"nonnull\",ideal N: The default is (\"nonnull\",ideal(1)).
When options \"null\" and/or \"nonnull\" are given, then
the parameter space is restricted to V(E) \ V(N).
\"can\",0-1: The default is (\"can\",1). With the default option
the homogenized ideal is computed before obtaining the
Groebner Cover, so that the result is the canonical
Groebner Cover. Setting (\"can\",0) only homogenizes the
basis so the result is not exactly canonical, but the
computation is shorter.
\"ext\",0-1: The default is (\"ext\",0). With the default
(\"ext\",0), only the generic representation of the bases is
computed (single polynomials, but not specializing to non-zero
for every point of the segment. With option (\"ext\",1) the
full representation of the bases is computed (possible
sheaves) and sometimes a simpler result is obtained,
but the computation is more time consuming.
\"rep\",0-1-2: The default is (\"rep\",0) and then the segments
are given in canonical P-representation. Option (\"rep\",1)
represents the segments in canonical C-representation,
and option (\"rep\",2) gives both representations.
\"comment\",0-3: The default is (\"comment\",0). Setting
\"comment\" higher will provide information about the
development of the computation.
One can give none or whatever of these options.
RETURN: The list
(
(lpp_1,basis_1,segment_1,lpph_1),
...
(lpp_s,basis_s,segment_s,lpph_s)
)
The lpp are constant over a segment and correspond to the
set of lpp of the reduced Groebner basis for each point
of the segment.
The lpph corresponds to the lpp of the homogenized ideal
and is different for each segment. It is given as a string,
and shown only for information. With the default option
\"can\",1, the segments have different lpph.
Basis: to each element of lpp corresponds an I-regular function
given in full representation (by option (\"ext\",1)) or in
generic representation (default option (\"ext\",0)). The
I-regular function is the corresponding element of the reduced
Groebner basis for each point of the segment with the given lpp.
For each point in the segment, the polynomial or the set of
polynomials representing it, if they do not specialize to 0,
then after normalization, specializes to the corresponding
element of the reduced Groebner basis. In the full representation
at least one of the polynomials representing the I-regular
function specializes to non-zero.
With the default option (\"rep\",0) the representation of the
segment is the P-representation.
With option (\"rep\",1) the representation of the segment is
the C-representation.
With option (\"rep\",2) both representations of the segment are
given.
The P-representation of a segment is of the form
((p_1,(p_11,..,p_1k1)),..,(p_r,(p_r1,..,p_rkr))
representing the segment Union_i ( V(p_i) \ ( Union_j V(p_ij) ) ),
where the p's are prime ideals.
The C-representation of a segment is of the form
(E,N) representing V(E) \ V(N), and the ideals E and N are
radical and N contains E.
NOTE: The basering R, must be of the form Q[a][x], (a=parameters,
x=variables), and should be defined previously. The ideal must
be defined on R.
KEYWORDS: Groebner cover, parametric ideal, canonical, discussion of
parametric ideal.
EXAMPLE: grobcov; shows an example"
{
list S; int i; int ish=1; list GBR; list BR; int j; int k;
ideal idp; ideal idq; int s; ideal ext; list SS;
ideal E; ideal N; int canop; int extop; int repop;
int comment=0; int m;
def RR=basering;
setglobalrings();
list L0=#;
int out=0;
L0[size(L0)+1]="res"; L0[size(L0)+1]=ideal(1);
// default options
int start=timer;
E=ideal(0);
N=ideal(1);
canop=1; // canop=0 for homogenizing the basis but not the ideal (not canonical)
// canop=1 for working with the homogenized ideal
repop=0; // repop=0 for representing the segments in Prep
// repop=1 for representing the segments in Crep
// repop=2 for representing the segments in Prep and Crep
extop=0; // extop=0 if only generic representation of the bases are to be computed
// extop=1 if the full representation of the bases are to be computed
for(i=1;i<=size(L0) div 2;i++)
{
if(L0[2*i-1]=="can"){canop=L0[2*i];}
else
{
if(L0[2*i-1]=="ext"){extop=L0[2*i];}
else
{
if(L0[2*i-1]=="rep"){repop=L0[2*i];}
else
{
if(L0[2*i-1]=="null"){E=L0[2*i];}
else
{
if(L0[2*i-1]=="nonnull"){N=L0[2*i];}
else
{
if (L0[2*i-1]=="comment"){comment=L0[2*i];}
}
}
}
}
}
}
if(not((canop==0) or (canop==1)))
{
string("Option can = ",canop," is not supported. It is changed to can = 1");
canop=1;
}
for(i=1;i<=size(L0) div 2;i++)
{
if(L0[2*i-1]=="can"){L0[2*i]=canop;}
}
if ((printlevel) and (comment==0)){comment=printlevel;}
list LL;
LL[1]="can"; LL[2]=canop;
LL[3]="comment"; LL[4]=comment;
LL[5]="out"; LL[6]=0;
LL[7]="null"; LL[8]=E;
LL[9]="nonnull"; LL[10]=N;
LL[11]="ext"; LL[12]=extop;
LL[13]="rep"; LL[14]=repop;
if (comment>=1)
{
string("Begin grobcov with options: ",LL);
}
kill S;
def S=gcover(F,LL);
// NOW extend
if(extop)
{
S=extend(S,LL);
}
else
{
// NOW representation of the segments by option repop
list Si; list nS;
if(repop==0)
{
for(i=1;i<=size(S);i++)
{
Si=list(S[i][1],S[i][2],S[i][3],S[i][5]);
nS[size(nS)+1]=Si;
}
kill S;
def S=nS;
}
else
{
if(repop==1)
{
for(i=1;i<=size(S);i++)
{
Si=list(S[i][1],S[i][2],S[i][4],S[i][5]);
nS[size(nS)+1]=Si;
}
kill S;
def S=nS;
}
else
{
for(i=1;i<=size(S);i++)
{
Si=list(S[i][1],S[i][2],S[i][3],S[i][4],S[i][5]);
nS[size(nS)+1]=Si;
}
kill S;
def S=nS;
}
}
}
if (comment>=1)
{
string("Time in grobcov = ", timer-start);
string("Number of segments of grobcov = ", size(S));
}
if(defined(@P)==1){kill @R; kill @P; kill @RP;}
return(S);
}
example
{
"EXAMPLE:"; echo = 2;
// Casas conjecture for degree 4:
ring R=(0,a0,a1,a2,a3,a4),(x1,x2,x3),dp;
short=0;
ideal F=x1^4+(4*a3)*x1^3+(6*a2)*x1^2+(4*a1)*x1+(a0),
x1^3+(3*a3)*x1^2+(3*a2)*x1+(a1),
x2^4+(4*a3)*x2^3+(6*a2)*x2^2+(4*a1)*x2+(a0),
x2^2+(2*a3)*x2+(a2),
x3^4+(4*a3)*x3^3+(6*a2)*x3^2+(4*a1)*x3+(a0),
x3+(a3);
grobcov(F);
}
// Input. GC the grobcov of an ideal in generic representation of the
// bases computed with option option ("rep",2).
// Output The grobcov in full representation.
// Option ("comment",1) shows the time.
// Can be called from the top
proc extend(list GC, list #);
"USAGE: extend(GC); The default option of grobcov provides
the bases in generic representation (the I-regular functions
of the bases ara given by a single polynomial. It can specialize
to zero for some points of the segments, but in general, it
is sufficient for many pouposes. Nevertheless the I-regular
functions allow a full representation given bey a set of
polynomials specializing to the value of the function (after normalization)
or to zero, but at least one of the polynomials specializes to non-zero.
The full representation can be obtained by computing the
grobcov with option \"ext\",1. The default option is \"ext\",0.
With option \"ext\",1 the computation can be much more
time consuming, even if the result can be simpler.
Alternatively, one can compute the full representation of the
bases after computing grobcov with the defaoult option \"ext\",0
and the option \"rep\",2, that outputs both the Prep and the Crep
of the segments and then call \"extend\" to the output.
RETURN: When calling extend(grobcov(S,\"rep\",2)) the result is of the form
(
(lpp_1,basis_1,segment_1,lpph_1),
...
(lpp_s,basis_s,segment_s,lpph_s)
)
where each function of the basis can be given by an ideal
of representants.
NOTE: The basering R, must be of the form Q[a][x], (a=parameters,
x=variables), and should be defined previously. The ideal must
be defined on R.
KEYWORDS: Groebner cover, parametric ideal, canonical, discussion of
parametric ideal, full representation.
EXAMPLE: extend; shows an example"
{
list L=#;
list S=GC;
ideal idp;
ideal idq;
int i; int j; int m; int s;
m=0; i=1;
while((i<=size(S)) and (m==0))
{
if(typeof(S[i][2])=="list"){m=1;}
i++;
}
if(m==1){"Warning! grobcov has already extended bases"; return(S);}
if(size(GC[1])!=5){"Warning! extend make sense only when grobcov has been called with options 'rep',2,'ext',0"; " "; return();}
int repop=0;
int start3=timer;
int comment;
for(i=1;i<=size(L) div 2;i++)
{
if(L[2*i-1]=="comment"){comment=L[2*i];}
else
{
if(L[2*i-1]=="rep"){repop=L[2*i];}
}
}
poly leadc;
poly ext;
int te=0;
list SS;
def R=basering;
if (defined(@R)){te=1;}
else{setglobalrings();}
// Now extend
for (i=1;i<=size(S);i++)
{
m=size(S[i][2]);
for (j=1;j<=m;j++)
{
idp=S[i][4][1];
idq=S[i][4][2];
if (size(idp)>0)
{
leadc=leadcoef(S[i][2][j]);
kill ext;
def ext=extend0(S[i][2][j],idp,idq);
if (typeof(ext)=="poly")
{
S[i][2][j]=pnormalf(ext,idp,idq);
}
else
{
if(size(ext)==1)
{
S[i][2][j]=ext[1];
}
else
{
kill SS; list SS;
for(s=1;s<=size(ext);s++)
{
ext[s]=pnormalf(ext[s],idp,idq);
}
for(s=1;s<=size(S[i][2]);s++)
{
if(s!=j){SS[s]=S[i][2][s];}
else{SS[s]=ext;}
}
S[i][2]=SS;
}
}
}
}
}
// NOW representation of the segments by option repop
list Si; list nS;
if (repop==0)
{
for(i=1;i<=size(S);i++)
{
Si=list(S[i][1],S[i][2],S[i][3],S[i][5]);
nS[size(nS)+1]=Si;
}
S=nS;
}
else
{
if (repop==1)
{
for(i=1;i<=size(S);i++)
{
Si=list(S[i][1],S[i][2],S[i][4],S[i][5]);
nS[size(nS)+1]=Si;
}
S=nS;
}
else
{
for(i=1;i<=size(S);i++)
{
Si=list(S[i][1],S[i][2],S[i][3],S[i][4],S[i][5]);
nS[size(nS)+1]=Si;
}
}
}
if(comment>=1){string("Time in extend = ",timer-start3);}
if(te==0){kill @R; kill @RP; kill @P;}
return(S);
}
example
{
"EXAMPLE:"; echo = 2;
ring R=(0,a0,b0,c0,a1,b1,c1),(x), dp;
short=0;
ideal S=a0*x^2+b0*x+c0,
a1*x^2+b1*x+c1;
def GCS=grobcov(S,"rep",2);
GCS;
def FGC=extend(GCS,"rep",0);
// Full representation=
FGC;
}
// Auxiliary routine
// nonzerodivisor
// input:
// poly g in Q[a],
// list P=(p_1,..p_r) representing a minimal prime decomposition
// output
// poly f such that f notin p_i for all i and
// g-f in p_i for all i such that g notin p_i
static proc nonzerodivisor(poly gr, list Pr)
{
def RR=basering;
setring(@P);
def g=imap(RR,gr);
def P=imap(RR,Pr);
int i; int k; list J; ideal F;
def f=g;
ideal Pi;
for (i=1;i<=size(P);i++)
{
option(redSB);
Pi=std(P[i]);
//attrib(Pi,"isSB",1);
if (reduce(g,Pi,1)==0){J[size(J)+1]=i;}
}
for (i=1;i<=size(J);i++)
{
F=ideal(1);
for (k=1;k<=size(P);k++)
{
if (k!=J[i])
{
F=idint(F,P[k]);
}
}
f=f+F[1];
}
setring(RR);
def fr=imap(@P,f);
return(fr);
}
// Auxiliary routine
// deltai
// input:
// int i:
// list LPr: (p1,..,pr) of prime components of an ideal in Q[a]
// output:
// list (fr,fnr) of two polynomials that are equal on V(pi)
// and fr=0 on V(P) \ V(pi), and fnr is nonzero on V(pj) for all j.
static proc deltai(int i, list LPr)
{
def RR=basering;
setring(@P);
def LP=imap(RR,LPr);
int j; poly p;
def F=ideal(1);
poly f;
poly fn;
ideal LPi;
for (j=1;j<=size(LP);j++)
{
if (j!=i)
{
F=idint(F,LP[j]);
}
}
p=0; j=1;
while ((p==0) and (j<=size(F)))
{
LPi=LP[i];
attrib(LPi,"isSB",1);
p=reduce(F[j],LPi);
j++;
}
f=F[j-1];
fn=nonzerodivisor(f,LP);
setring(RR);
def fr=imap(@P,f);
def fnr=imap(@P,fn);
return(list(fr,fnr));
}
// Auxiliary routine
// combine
// input: a list of pairs ((p1,P1),..,(pr,Pr)) where
// ideal pi is a prime component
// poly Pi is the polynomial in Q[a][x] on V(pi)\ V(Mi)
// (p1,..,pr) are the prime decomposition of the lpp-segment
// list crep =(ideal ida,ideal idb): the Crep of the segment.
// list Pci of the intersecctions of all pj except the ith one
// output:
// poly P on an open and dense set of V(p_1 int ... p_r)
static proc combine(list L, ideal F)
{
// ATTENTION REVISE AND USE Pci and F
int i; poly f;
f=0;
for(i=1;i<=size(L);i++)
{
f=f+F[i]*L[i][2];
}
// f=elimconstfac(f);
f=primepartZ(f);
return(f);
}
//Auxiliary routine
// nullin
// input:
// poly f: a polynomial in Q[a]
// ideal P: an ideal in Q[a]
// called from ring @R
// output:
// t: with value 1 if f reduces modulo P, 0 if not.
static proc nullin(poly f,ideal P)
{
int t;
def RR=basering;
setring(@P);
def f0=imap(RR,f);
def P0=imap(RR,P);
attrib(P0,"isSB",1);
if (reduce(f0,P0,1)==0){t=1;}
else{t=0;}
setring(RR);
return(t);
}
// Auxiliary routine
// monoms
// Input: A polynomial f
// Output: The list of leading terms
static proc monoms(poly f)
{
list L;
poly lm; poly lc; poly lp; poly Q; poly mQ;
def p=f;
int i=1;
while (p!=0)
{
lm=lead(p);
p=p-lm;
lc=leadcoef(lm);
lp=leadmonom(lm);
L[size(L)+1]=list(lc,lp);
i++;
}
return(L);
}
// Auxiliary routine called by extend
// extend0
// input:
// poly f: a generic polynomial in the basis
// ideal idp: such that ideal(S)=idp
// ideal idq: such that S=V(idp) \ V(idq)
//// NW the list of ((N1,W1),..,(Ns,Ws)) of red-rep of the grouped
//// segments in the lpp-segment NO MORE USED
// output:
static proc extend0(poly f, ideal idp, ideal idq)
{
matrix CC; poly Q; list NewMonoms;
int i; int j; poly fout; ideal idout;
list L=monoms(f);
int nummonoms=size(L)-1;
Q=L[1][1];
if (nummonoms==0){return(f);}
for (i=2;i<=size(L);i++)
{
CC=matrix(extendcoef(L[i][1],Q,idp,idq));
NewMonoms[i-1]=list(CC,L[i][2]);
}
if (nummonoms==1)
{
for(j=1;j<=ncols(NewMonoms[1][1]);j++)
{
fout=NewMonoms[1][1][2,j]*L[1][2]+NewMonoms[1][1][1,j]*NewMonoms[1][2];
//fout=pnormalf(fout,idp,W);
if(ncols(NewMonoms[1][1])>1){idout[j]=fout;}
}
if(ncols(NewMonoms[1][1])==1){return(fout);} else{return(idout);}
}
else
{
list cfi;
list coefs;
for (i=1;i<=nummonoms;i++)
{
kill cfi; list cfi;
for(j=1;j<=ncols(NewMonoms[i][1]);j++)
{
cfi[size(cfi)+1]=NewMonoms[i][1][2,j];
}
coefs[i]=cfi;
}
def indexpolys=findindexpolys(coefs);
for(i=1;i<=size(indexpolys);i++)
{
fout=L[1][2];
for(j=1;j<=nummonoms;j++)
{
fout=fout+(NewMonoms[j][1][1,indexpolys[i][j]])/(NewMonoms[j][1][2,indexpolys[i][j]])*NewMonoms[j][2];
}
fout=cleardenom(fout);
if(size(indexpolys)>1){idout[i]=fout;}
}
if (size(indexpolys)==1){return(fout);} else{return(idout);}
}
}
// Auxiliary routine
// findindexpolys
// input:
// list coefs=( (q11,..,q1r_1),..,(qs1,..,qsr_1) )
// of denominators of the monoms
// output:
// list ind=(v_1,..,v_t) of intvec
// each intvec v=(i_1,..,is) corresponds to a polynomial in the sheaf
// that will be built from it in extend procedure.
static proc findindexpolys(list coefs)
{
int i; int j; intvec numdens;
for(i=1;i<=size(coefs);i++)
{
numdens[i]=size(coefs[i]);
}
def RR=basering;
setring(@P);
def coefsp=imap(RR,coefs);
ideal cof; list combpolys; intvec v; int te; list mp;
for(i=1;i<=size(coefsp);i++)
{
cof=ideal(0);
for(j=1;j<=size(coefsp[i]);j++)
{
cof[j]=factorize(coefsp[i][j],3);
}
coefsp[i]=cof;
}
for(j=1;j<=size(coefsp[1]);j++)
{
v[1]=j;
te=1;
for (i=2;i<=size(coefsp);i++)
{
mp=memberpos(coefsp[1][j],coefsp[i]);
if(mp[1])
{
v[i]=mp[2];
}
else{v[i]=0;}
}
combpolys[j]=v;
}
combpolys=reform(combpolys,numdens);
setring(RR);
return(combpolys);
}
// Auxiliary routine
// extendcoef: given Q,P in Q[a] where P/Q specializes on an open and dense subset
// of the whole V(p1 int...int pr), it returns a basis of the module
// of all syzygies equivalent to P/Q,
static proc extendcoef(poly P, poly Q, ideal idp, ideal idq)
{
def RR=basering;
setring(@P);
def PL=ringlist(@P);
PL[3][1][1]="dp";
def P1=ring(PL);
setring(P1);
ideal idp0=imap(RR,idp);
option(redSB);
qring q=std(idp0);
poly P0=imap(RR,P);
poly Q0=imap(RR,Q);
ideal PQ=Q0,-P0;
module C=syz(PQ);
setring(@P);
def idp1=imap(RR,idp);
def idq1=imap(RR,idq);
def C1=matrix(imap(q,C));
def redC=selectregularfun(C1,idp1,idq1);
setring(RR);
def CC=imap(@P,redC);
return(CC);
}
// Auxiliary routine
// selectregularfun
// input:
// list L of the polynomials matrix CC
// (we assume that one of them is non-null on V(N) \ V(M))
// ideal N, ideal M: ideals representing the locally closed set V(N) \ V(M)
// assume to work in @P
static proc selectregularfun(matrix CC, ideal NN, ideal MM)
{
int numcombused;
def RR=basering;
setring(@P);
def C=imap(RR,CC);
def N=imap(RR,NN);
def M=imap(RR,MM);
if (ncols(C)==1){return(C);}
int i; int j; int k; list c; intvec ci; intvec c0; intvec c1;
list T; list T0; list T1; list LL; ideal N1;ideal M1; int te=0;
for(i=1;i<=ncols(C);i++)
{
if((C[1,i]!=0) and (C[2,i]!=0))
{
if(c0==intvec(0)){c0[1]=i;}
else{c0[size(c0)+1]=i;}
}
}
def C1=submat(C,1..2,c0);
for (i=1;i<=ncols(C1);i++)
{
c=comb(ncols(C1),i);
for(j=1;j<=size(c);j++)
{
ci=c[j];
numcombused++;
if(i==1){N1=N+C1[2,j]; M1=M;}
if(i>1)
{
kill c0; intvec c0 ; kill c1; intvec c1;
c1=ci[size(ci)];
for(k=1;k<size(ci);k++){c0[k]=ci[k];}
T0=searchinlist(c0,LL);
T1=searchinlist(c1,LL);
N1=T0[1]+T1[1];
M1=intersect(T0[2],T1[2]);
}
T=list(ci,PtoCrep(Prep(N1,M1)));
LL[size(LL)+1]=T;
if(equalideals(T[2][1],ideal(1))){te=1; break;}
}
if(te){break;}
}
ci=T[1];
def Cs=submat(C1,1..2,ci);
setring(RR);
return(imap(@P,Cs));
}
// Auxiliary routine
// searchinlist
// input:
// intvec c:
// list L=( (c1,T1),..(ck,Tk) )
// where the c's are assumed to be intvects
// output:
// object T with index c
static proc searchinlist(intvec c,list L)
{
int i; list T;
for(i=1;i<=size(L);i++)
{
if (L[i][1]==c)
{
T=L[i][2];
break;
}
}
return(T);
}
// Auxiliary routine
// selectminsheaves
// Input: L=((v_11,..,v_1k_1),..,(v_s1,..,v_sk_s))
// where:
// The s lists correspond to the s coefficients of the polynomial f
// (v_i1,..,v_ik_i) correspond to the k_i intvec v_ij of the
// spezializations of the jth rekpresentant (Q,P) of the ith coefficient
// v_ij is an intvec of size equal to the number of little segments
// forming the lpp-segment of 0,1, where 1 represents that it specializes
// to non-zedro an the whole little segment and 0 if not.
// Output: S=(w_1,..,w_j)
// where the w_l=(n_l1,..,n_ls) are intvec of length size(L), where
// n_lt fixes which element of (v_t1,..,v_tk_t) is to be
// choosen to form the tth (Q,P) for the lth element of the sheaf
// representing the I-regular function.
// The selection is done to obtian the minimal number of elements
// of the sheaf that specializes to non-null everywhere.
static proc selectminsheaves(list L)
{
list C=allsheaves(L);
return(smsheaves(C[1],C[2]));
}
// Auxiliary routine
// smsheaves
// Input:
// list C of all the combrep
// list L of the intvec that correesponds to each element of C
// Output:
// list LL of the subsets of C that cover all the subsegments
// (the union of the corresponding L(C) has all 1).
static proc smsheaves(list C, list L)
{
int i; int i0; intvec W;
int nor; int norn;
intvec p;
int sp=size(L[1]); int j0=1;
for (i=1;i<=sp;i++){p[i]=1;}
while (p!=0)
{
i0=0; nor=0;
for (i=1; i<=size(L); i++)
{
norn=numones(L[i],pos(p));
if (nor<norn){nor=norn; i0=i;}
}
W[j0]=i0;
j0++;
p=actualize(p,L[i0]);
}
list LL;
for (i=1;i<=size(W);i++)
{
LL[size(LL)+1]=C[W[i]];
}
return(LL);
}
// Auxiliary routine
// allsheaves
// Input: L=((v_11,..,v_1k_1),..,(v_s1,..,v_sk_s))
// where:
// The s lists correspond to the s coefficients of the polynomial f
// (v_i1,..,v_ik_i) correspond to the k_i intvec v_ij of the
// spezializations of the jth rekpresentant (Q,P) of the ith coefficient
// v_ij is an intvec of size equal to the number of little segments
// forming the lpp-segment of 0,1, where 1 represents that it specializes
// to non-zero on the whole little segment and 1 if not.
// Output:
// (list LL, list LLS) where
// LL is the list of all combrep
// LLS is the list of intvec of the corresponding elements of LL
static proc allsheaves(list L)
{
intvec V; list LL; intvec W; int r; intvec U;
int i; int j; int k;
int s=size(L[1][1]); // s = number of little segments of the lpp-segment
list LLS;
for (i=1;i<=size(L);i++)
{
V[i]=size(L[i]);
}
LL=combrep(V);
for (i=1;i<=size(LL);i++)
{
W=LL[i]; // size(W)= number of coefficients of the polynomial
kill U; intvec U;
for (j=1;j<=s;j++)
{
k=1; r=1; U[j]=1;
while((r==1) and (k<=size(W)))
{
if(L[k][W[k]][j]==0){r=0; U[j]=0;}
k++;
}
}
LLS[i]=U;
}
return(list(LL,LLS));
}
// Auxiliary routine
// numones
// Input:
// intvec v of (0,1) in each position
// intvec pos: the positions to test
// Output:
// int nor: the nuber of 1 of v in the positions given by pos.
static proc numones(intvec v, intvec pos)
{
int i; int n;
for (i=1;i<=size(pos);i++)
{
if (v[pos[i]]==1){n++;}
}
return(n);
}
// Auxiliary routine
// actualize: actualizes zeroes of p
// Input:
// intvec p: of zeroes and ones
// intvec c: of zeroes and ones (of the same length)
// Output;
// intvec pp: of zeroes and ones, where a 0 stays in pp[i] if either
// already p[i]==0 or c[i]==1.
static proc actualize(intvec p, intvec c)
{
int i; intvec pp=p;
for (i=1;i<=size(p);i++)
{
if ((pp[i]==1) and (c[i]==1)){pp[i]=0;}
}
return(pp);
}
// Auxiliary routine
static proc reducemodN(poly f,ideal E)
{
def RR=basering;
setring(@RPt);
def fa=imap(RR,f);
def Ea=imap(RR,E);
attrib(Ea,"isSB",1);
// option(redSB);
// Ea=std(Ea);
fa=reduce(fa,Ea);
setring(RR);
def f1=imap(@RPt,fa);
return(f1);
}
// Auxiliary routine
// intersp: computes the intersection of the ideals in S in @P
static proc intersp(list S)
{
def RR=basering;
setring(@P);
def SP=imap(RR,S);
option(returnSB);
def NP=intersect(SP[1..size(SP)]);
setring(RR);
return(imap(@P,NP));
}
// Auxiliary routine
// radicalmember
static proc radicalmember(poly f,ideal ida)
{
int te;
def RR=basering;
setring(@P);
def fp=imap(RR,f);
def idap=imap(RR,ida);
poly @t;
ring H=0,@t,dp;
def PH=@P+H;
setring(PH);
def fH=imap(@P,fp);
def idaH=imap(@P,idap);
idaH[size(idaH)+1]=1-@t*fH;
option(redSB);
def G=std(idaH);
if (G==1){te=1;} else {te=0;}
setring(RR);
return(te);
}
// // Auxiliary routine
// // NonNull: returns 1 if the poly f is nonnull on V(E) \ V(N), 0 otherwise.
// // Input:
// // f: polynomial
// // E: null ideal
// // N: nonnull ideal
// // Output:
// // 1 if f is nonnul in V(P) \ V(Q),
// // 0 if it has zeroes inside.
// // Works in @P
// proc NonNull(poly f, ideal E, ideal N)
// {
// int te=1; int i;
// def RR=basering;
// setring(@P);
// def fp=imap(RR,f);
// def Ep=imap(RR,E);
// def Np=imap(RR,N);
// ideal H;
// ideal Ef=Ep+fp;
// for (i=1;i<=size(Np);i++)
// {
// te=radicalmember(Np[i],Ef);
// if (te==0){break;}
// }
// setring(RR);
// return(te);
// }
// Auxiliary routine
// selectextendcoef
// input:
// matrix CC: CC=(p_a1 .. p_ar_a)
// (q_a1 .. q_ar_a)
// the matrix of elements of a coefficient in oo[a].
// (ideal ida, ideal idb): the canonical representation of the segment S.
// output:
// list caout
// the minimum set of elements of CC needed such that at least one
// of the q's is non-null on S, as well as the C-rep of of the
// points where the q's are null on S.
// The elements of caout are of the form (p,q,prep);
static proc selectextendcoef(matrix CC, ideal ida, ideal idb)
{
def RR=basering;
setring(@P);
def ca=imap(RR,CC);
def E0=imap(RR,ida);
ideal E;
def N=imap(RR,idb);
int r=ncols(ca);
int i; int te=1; list com; int j; int k; intvec c; list prep;
list cs; list caout;
i=1;
while ((i<=r) and (te))
{
com=comb(r,i);
j=1;
while((j<=size(com)) and (te))
{
E=E0;
c=com[j];
for (k=1;k<=i;k++)
{
E=E+ca[2,c[k]];
}
prep=Prep(E,N);
if (i==1)
{
cs[j]=list(ca[1,j],ca[2,j],prep);
}
if ((size(prep)==1) and (equalideals(prep[1][1],ideal(1))))
{
te=0;
for(k=1;k<=size(c);k++)
{
caout[k]=cs[c[k]];
}
}
j++;
}
i++;
}
if (te){"error: extendcoef does not extend to the whole S";}
setring(RR);
return(imap(@P,caout));
}
// Auxiliary routine
// plusP
// Input:
// ideal E1: in some basering (depends only on the parameters)
// ideal E2: in some basering (depends only on the parameters)
// Output:
// ideal Ep=E1+E2; computed in @P
static proc plusP(ideal E1,ideal E2)
{
def RR=basering;
setring(@P);
def E1p=imap(RR,E1);
def E2p=imap(RR,E2);
def Ep=E1p+E2p;
setring(RR);
return(imap(@P,Ep));
}
// Auxiliary routine
// reform
// input:
// list combpolys: (v1,..,vs)
// where vi are intvec.
// output outcomb: (w1,..,wt)
// whre wi are intvec.
// All the vi without zeroes are in outcomb, and those with zeroes are
// combined to form new intvec with the rest
static proc reform(list combpolys, intvec numdens)
{
list combp0; list combp1; int i; int j; int k; int l; list rest; intvec notfree;
list free; intvec free1; int te; intvec v; intvec w;
int nummonoms=size(combpolys[1]);
for(i=1;i<=size(combpolys);i++)
{
if(memberpos(0,combpolys[i])[1])
{
combp0[size(combp0)+1]=combpolys[i];
}
else {combp1[size(combp1)+1]=combpolys[i];}
}
for(i=1;i<=nummonoms;i++)
{
kill notfree; intvec notfree;
for(j=1;j<=size(combpolys);j++)
{
if(combpolys[j][i]<>0)
{
if(notfree[1]==0){notfree[1]=combpolys[j][i];}
else{notfree[size(notfree)+1]=combpolys[j][i];}
}
}
kill free1; intvec free1;
for(j=1;j<=numdens[i];j++)
{
if(memberpos(j,notfree)[1]==0)
{
if(free1[1]==0){free1[1]=j;}
else{free1[size(free1)+1]=j;}
}
free[i]=free1;
}
}
list amplcombp; list aux;
for(i=1;i<=size(combp0);i++)
{
v=combp0[i];
kill amplcombp; list amplcombp;
amplcombp[1]=intvec(v[1]);
for(j=2;j<=size(v);j++)
{
if(v[j]!=0)
{
for(k=1;k<=size(amplcombp);k++)
{
w=amplcombp[k];
w[size(w)+1]=v[j];
amplcombp[k]=w;
}
}
else
{
kill aux; list aux;
for(k=1;k<=size(amplcombp);k++)
{
for(l=1;l<=size(free[j]);l++)
{
w=amplcombp[k];
w[size(w)+1]=free[j][l];
aux[size(aux)+1]=w;
}
}
amplcombp=aux;
}
}
for(j=1;j<=size(amplcombp);j++)
{
combp1[size(combp1)+1]=amplcombp[j];
}
}
return(combp1);
}
// Auxiliary routine
// precombint
// input: L: list of ideals (works in @P)
// output: F0: ideal of polys. F0[i] is a poly in the intersection of
// all ideals in L except in the ith one, where it is not.
// L=(p1,..,ps); F0=(f1,..,fs);
// F0[i] \in intersect_{j#i} p_i
static proc precombint(list L)
{
int i; int j; int tes;
def RR=basering;
setring(@P);
list L0; list L1; list L2; list L3; ideal F;
L0=imap(RR,L);
L1[1]=L0[1]; L2[1]=L0[size(L0)];
for (i=2;i<=size(L0)-1;i++)
{
L1[i]=intersect(L1[i-1],L0[i]);
L2[i]=intersect(L2[i-1],L0[size(L0)-i+1]);
}
L3[1]=L2[size(L2)];
for (i=2;i<=size(L0)-1;i++)
{
L3[i]=intersect(L1[i-1],L2[size(L0)-i]);
}
L3[size(L0)]=L1[size(L1)];
for (i=1;i<=size(L3);i++)
{
option(redSB); L3[i]=std(L3[i]);
}
for (i=1;i<=size(L3);i++)
{
tes=1; j=0;
while((tes) and (j<size(L3[i])))
{
j++;
option(redSB);
L0[i]=std(L0[i]);
if(reduce(L3[i][j],L0[i])!=0){tes=0; F[i]=L3[i][j];}
}
if (tes){"ERROR a polynomial in all p_j except p_i was not found";}
}
setring(RR);
def F0=imap(@P,F);
return(F0);
}
// Auxiliary routine
// minAssGTZ eliminating denominators
static proc minGTZ(ideal N);
{
int i; int j;
def L=minAssGTZ(N);
for(i=1;i<=size(L);i++)
{
for(j=1;j<=size(L[i]);j++)
{
L[i][j]=cleardenom(L[i][j]);
}
}
return(L);
}
//********************* Begin KapurSunWang *************************
// Auxiliary routine
// inconsistent
// Input:
// ideal E: of null conditions
// ideal N: of non-null conditions representing V(E) \ V(N)
// Output:
// 1 if V(E) \ V(N) = empty
// 0 if not
static proc inconsistent(ideal E, ideal N)
{
int j;
int te=1;
def R=basering;
setring(@P);
def EP=imap(R,E);
def NP=imap(R,N);
poly @t;
ring H=0,@t,dp;
def RH=@P+H;
setring(RH);
def EH=imap(@P,EP);
def NH=imap(@P,NP);
ideal G;
j=1;
while((te==1) and j<=size(NH))
{
G=EH+(1-@t*NH[j]);
option(redSB);
G=std(G);
if (G[1]!=1){te=0;}
j++;
}
setring(R);
return(te);
}
// Auxiliary routine
// MDBasis: Minimal Dickson Basis
static proc MDBasis(ideal G)
{
int i; int j; int te=1;
G=sortideal(G);
ideal MD=G[1];
poly lm;
for (i=2;i<=size(G);i++)
{
te=1;
lm=leadmonom(G[i]);
j=1;
while ((te==1) and (j<=size(MD)))
{
if (lm/leadmonom(MD[j])!=0){te=0;}
j++;
}
if (te==1)
{
MD[size(MD)+1]=(G[i]);
}
}
return(MD);
}
// Auxiliary routine
// primepartZ
static proc primepartZ(poly f);
{
def cp=content(f);
def fp=f/cp;
return(fp);
}
// LCMLC
static proc LCMLC(ideal H)
{
int i;
def R=basering;
setring(@RP);
def HH=imap(R,H);
poly h=1;
for (i=1;i<=size(HH);i++)
{
h=lcm(h,HH[i]);
}
setring(R);
def hh=imap(@RP,h);
return(hh);
}
// KSW: Kapur-Sun-Wang algorithm for computing a CGS
// Input:
// F: parametric ideal to be discussed
// Options:
// \"out\",0 Transforms the description of the segments into
// canonical P-representation form.
// \"out\",1 Original KSW routine describing the segments as
// difference of varieties
// The ideal must be defined on C[parameters][variables]
// Output:
// With option \"out\",0 :
// ((lpp,
// (1,B,((p_1,(p_11,..,p_1k_1)),..,(p_s,(p_s1,..,p_sk_s)))),
// string(lpp)
// )
// ,..,
// (lpp,
// (k,B,((p_1,(p_11,..,p_1k_1)),..,(p_s,(p_s1,..,p_sk_s)))),
// string(lpp))
// )
// )
// With option \"out\",1 ((default, original KSW) (shorter to be computed,
// but without canonical description of the segments.
// ((B,E,N),..,(B,E,N))
static proc KSW(ideal F, list #)
{
setglobalrings();
int start=timer;
ideal E=ideal(0);
ideal N=ideal(1);
int comment=0;
int out=1;
int i;
def L=#;
if (size(L)>0)
{
for (i=1;i<=size(L) div 2;i++)
{
if (L[2*i-1]=="null"){E=L[2*i];}
else
{
if (L[2*i-1]=="nonnull"){N=L[2*i];}
else
{
if (L[2*i-1]=="comment"){comment=L[2*i];}
else
{
if (L[2*i-1]=="out"){out=L[2*i];}
}
}
}
}
}
if (comment>0){string("Begin KSW with null = ",E," nonnull = ",N);}
def CG=KSW0(F,E,N,comment);
if (comment>0)
{
string("Number of segments in KSW (total) = ",size(CG));
string("Time in KSW = ",timer-start);
}
if(out==0)
{
CG=KSWtocgsdr(CG);
CG=groupKSWsegments(CG);
if (comment>0)
{
string("Number of lpp segments = ",size(CG));
string("Time in KSW + group + Prep = ",timer-start);
}
}
if(defined(@P)){kill @P; kill @R; kill @RP;}
return(CG);
}
// Auxiliary routine
// sqf
// This is for releases of Singular before 3-5-1
// proc sqf(poly f)
// {
// def RR=basering;
// setring(@P);
// def ff=imap(RR,f);
// def G=sqrfree(ff);
// poly fff=1;
// int i;
// for (i=1;i<=size(G);i++)
// {
// fff=fff*G[i];
// }
// setring(RR);
// def ffff=imap(@P,fff);
// return(ffff);
// }
// Auxiliary routine
// sqf
static proc sqf(poly f)
{
def RR=basering;
setring(@P);
def ff=imap(RR,f);
poly fff=sqrfree(ff,3);
setring(RR);
def ffff=imap(@P,fff);
return(ffff);
}
// Auxiliary routine
// KSW0: Kapur-Sun-Wang algorithm for computing a CGS, called by KSW
// Input:
// F: parametric ideal to be discussed
// Options:
// The ideal must be defined on C[parameters][variables]
// Output:
static proc KSW0(ideal F, ideal E, ideal N, int comment)
{
def R=basering;
int i; int j; list emp;
list CGS;
ideal N0;
for (i=1;i<=size(N);i++)
{
N0[i]=sqf(N[i]);
}
ideal E0;
for (i=1;i<=size(E);i++)
{
E0[i]=sqf(leadcoef(E[i]));
}
setring(@P);
ideal E1=imap(R,E0);
E1=std(E1);
ideal N1=imap(R,N0);
N1=std(N1);
setring(R);
E0=imap(@P,E1);
N0=imap(@P,N1);
if (inconsistent(E0,N0)==1)
{
return(emp);
}
setring(@RP);
def FRP=imap(R,F);
def ERP=imap(R,E);
FRP=FRP+ERP;
option(redSB);
def GRP=std(FRP);
setring(R);
def G=imap(@RP,GRP);
if (memberpos(1,G)[1]==1)
{
if(comment>1){"Basis 1 is found"; E; N;}
list KK; KK[1]=list(E0,N0,ideal(1));
return(KK);
}
ideal Gr; ideal Gm; ideal GM;
for (i=1;i<=size(G);i++)
{
if (variables(G[i])[1]==0){Gr[size(Gr)+1]=G[i];}
else{Gm[size(Gm)+1]=G[i];}
}
ideal Gr0;
for (i=1;i<=size(Gr);i++)
{
Gr0[i]=sqf(Gr[i]);
}
Gr=elimrepeated(Gr0);
ideal GrN;
for (i=1;i<=size(Gr);i++)
{
for (j=1;j<=size(N0);j++)
{
GrN[size(GrN)+1]=sqf(Gr[i]*N0[j]);
}
}
if (inconsistent(E,GrN)){;}
else
{
if(comment>1){"Basis 1 is found in a branch with arguments"; E; GrN;}
CGS[size(CGS)+1]=list(E,GrN,ideal(1));
}
if (inconsistent(Gr,N0)){return(CGS);}
GM=Gm;
Gm=MDBasis(Gm);
ideal H;
for (i=1;i<=size(Gm);i++)
{
H[i]=sqf(leadcoef(Gm[i]));
}
H=facvar(H);
poly h=sqf(LCMLC(H));
if(comment>1){"H = "; H; "h = "; h;}
ideal Nh=N0;
if(size(N0)==0){Nh=h;}
else
{
for (i=1;i<=size(N0);i++)
{
Nh[i]=sqf(N0[i]*h);
}
}
if (inconsistent(Gr,Nh)){;}
else
{
CGS[size(CGS)+1]=list(Gr,Nh,Gm);
}
poly hc=1;
list KS;
ideal GrHi;
for (i=1;i<=size(H);i++)
{
kill GrHi;
ideal GrHi;
Nh=N0;
if (i>1){hc=sqf(hc*H[i-1]);}
for (j=1;j<=size(N0);j++){Nh[j]=sqf(N0[j]*hc);}
if (equalideals(Gr,ideal(0))==1){GrHi=H[i];}
else {GrHi=Gr,H[i];}
// else {for (j=1;j<=size(Gr);j++){GrHi[size(GrHi)+1]=Gr[j]*H[i];}}
if(comment>1){"Call to KSW with arguments "; GM; GrHi; Nh;}
KS=KSW0(GM,GrHi,Nh,comment);
for (j=1;j<=size(KS);j++)
{
CGS[size(CGS)+1]=KS[j];
}
if(comment>1){"CGS after KSW = "; CGS;}
}
return(CGS);
}
// Auxiliary routine
// KSWtocgsdr
static proc KSWtocgsdr(list L)
{
int i; list CG; ideal B; ideal lpp; int j; list NKrep;
for(i=1;i<=size(L);i++)
{
B=redgbn(L[i][3],L[i][1],L[i][2]);
lpp=ideal(0);
for(j=1;j<=size(B);j++)
{
lpp[j]=leadmonom(B[j]);
}
NKrep=KtoPrep(L[i][1],L[i][2]);
CG[i]=list(lpp,B,NKrep);
}
return(CG);
}
// Auxiliary routine
// KtoPrep
// Computes the P-representaion of a K-representation (N,W) of a set
// input:
// ideal E (null conditions)
// ideal N (non-null conditions ideal)
// output:
// the ((p_1,(p_11,..,p_1k_1)),..,(p_r,(p_r1,..,p_rk_r)));
// the Prep of V(N) \ V(W)
static proc KtoPrep(ideal N, ideal W)
{
int i; int j;
if (N[1]==1)
{
L0[1]=list(ideal(1),list(ideal(1)));
return(L0);
}
def RR=basering;
setring(@P);
ideal B; int te; poly f;
ideal Np=imap(RR,N);
ideal Wp=imap(RR,W);
list L;
list L0; list T0;
L0=minGTZ(Np);
for(j=1;j<=size(L0);j++)
{
option(redSB);
L0[j]=std(L0[j]);
}
for(i=1;i<=size(L0);i++)
{
if(inconsistent(L0[i],Wp)==0)
{
B=L0[i]+Wp;
T0=minGTZ(B);
option(redSB);
for(j=1;j<=size(T0);j++)
{
T0[j]=std(T0[j]);
}
L[size(L)+1]=list(L0[i],T0);
}
}
setring(RR);
def LL=imap(@P,L);
return(LL);
}
// Auxiliary routine
// groupKSWsegments
// input: the list of vertices of KSW
// output: the same terminal vertices grouped by lpp
static proc groupKSWsegments(list T)
{
int i; int j;
list L;
list lpp; list lppor;
list kk;
lpp[1]=T[1][1]; j=1;
lppor[1]=intvec(1);
for(i=2;i<=size(T);i++)
{
kk=memberpos(T[i][1],lpp);
if(kk[1]==0){j++; lpp[j]=T[i][1]; lppor[j]=intvec(i);}
else{lppor[kk[2]][size(lppor[kk[2]])+1]=i;}
}
list ll;
for (j=1;j<=size(lpp);j++)
{
kill ll; list ll;
for(i=1;i<=size(lppor[j]);i++)
{
ll[size(ll)+1]=list(i,T[lppor[j][i]][2],T[lppor[j][i]][3]);
}
L[j]=list(lpp[j],ll,string(lpp[j]));
}
return(L);
}
//********************* End KapurSunWang *************************
//********************* Begin ConsLevels ***************************
static proc zeroone(int n)
{
list L; list L2;
intvec e; intvec e2; intvec e3;
int j;
if(n==1)
{
e[1]=0;
L[1]=e;
e[1]=1;
L[2]=e;
return(L);
}
if(n>1)
{
L=zeroone(n-1);
for(j=1;j<=size(L);j++)
{
e2=L[j];
e3=e2;
e3[size(e3)+1]=0;
L2[size(L2)+1]=e3;
e3=e2;
e3[size(e3)+1]=1;
L2[size(L2)+1]=e3;
}
}
return(L2);
}
// Auxiliary routine
// subsets: the list of subsets of (1,..n)
static proc subsets(int n)
{
list L; list L1;
int i; int j;
L=zeroone(n);
intvec e; intvec e1;
for(i=1;i<=size(L);i++)
{
e=L[i];
kill e1; intvec e1;
for(j=1;j<=n;j++)
{
if(e[n+1-j]==1)
{
if(e1==intvec(0)){e1[1]=j;}
else{e1[size(e1)+1]=j};
}
}
L1[i]=e1;
}
return(L1);
}
// Input a list A of locally closed sets in C-rep
// Output a list B of a simplified list of A
static proc SimplifyUnion(list A)
{
int i; int j;
list L=A;
int n=size(L);
if(n<2){return(A);}
for(i=1;i<=size(L);i++)
{
for(j=1;j<=size(L);j++)
{
if(i != j)
{
if(equalideals(L[i][2],L[j][1])==1)
{
L[i][2]=L[j][2];
}
}
}
}
ideal T=ideal(1);
intvec v;
for(i=1;i<=size(L);i++)
{
if(equalideals(L[i][2],ideal(1)))
{
v[size(v)+1]=i;
T=intersect(T,L[i][1]);
}
}
if(size(v)>0)
{
for(i=1; i<=size(v);i++)
{
j=v[size(v)+1-i];
L=elimfromlist(L, j);
}
}
if(equalideals(T,ideal(1))==0){L[size(L)+1]=list(std(T),ideal(1))};
//string("T_n=",n," new n0",size(L));
return(L);
}
// Input: list(A)
// A is a list of locally closed sets in Crep. A=[[P1,Q1],[P2,Q2],..,[Pr,Qr]]
// whose union is a constructible set from
// Output list [Lev,C]:
// where Lev is the Crep of the canonical first level of A, and
// C is the complement of the first level Lev wrt to the closure of A. The elements are given in Crep,
static proc FirstLevel(list A)
{
int n=size(A);
list T=zeroone(n);
ideal P; ideal Q;
list Cb; ideal Cc=ideal(1);
int i; int j;
intvec t;
ideal Z=ideal(1);
list C;
for(i=1;i<=size(A);i++)
{
Z=intersect(Z,A[i][1]);
}
for(i=2; i<=size(T);i++)
{
t=T[i];
P=ideal(1); Q=ideal(0);
for(j=1;j<=n;j++)
{
if(t[n+1-j]==1)
{
Q=Q+A[j][2];
}
else
{
P=intersect(P,A[j][1]);
}
}
//"T_Q="; Q; "T_P="; P;
Cb=Crep(Q,P);
//"T_Cb="; Cb;
if(Cb[1][1]<>1)
{
C[size(C)+1]=Cb;
Cc=intersect(Cc,Cb[1]);
}
}
list Lev=list(Z,Cc); //Crep(Z,Cc);
if(size(C)>1){C=SimplifyUnion(C);}
return(list(Lev,C));
}
// Input: list(A)
// A is a list of locally closed sets in Crep. A=[[P1,Q1],[P2,Q2],..,[Pr,Qr]]
// whose union is a constructible set from which the algorithm computes its canonical form.
// Output:
// list [L,C] where
// where L is the list of canonical levels of A,
// and C is the list of canonical levels of the complement of A wrt to the closure of A.
// All locally closed sets are given in Crep.
// L=[[1,[p1,p2],[3,[p3,p4],..,[2r-1,[p_{2r-1},p_2r]]]] is the list of levels of A in Crep.
// C=[[2,p2,p3],[4,[p4,p5],..,[2s,[p_{2s},p_{2s+1}]]] is the list of levels of C,
// the complement of S wrt the closure of A, in Crep.
proc ConsLevels(list A)
"USAGE: ConsLevels(A);
A is a list of locally closed sets in Crep. A=[[P1,Q1],[P2,Q2],..,[Pr,Qr]]
whose union is a constructible set from which the algorithm computes its
canonical form.
RETURN: A list with two elements: [L,C]
where L is the list of canonical levels of A, and C is the list of canonical
levels of the
complement of A wrt to the closure of A.
All locally closed sets are given in Crep.
L=[[1,[p1,p2],[3,[p3,p4],..,[2r-1,[p_{2r-1},p_2r]]]]
C=[[2,p2,p3],[4,[p4,p5],..,[2s,[p_{2s},p_{2s+1}]]]
NOTE: The basering R, must be of the form Q[a]
KEYWORDS: locally closed set, constructible set
EXAMPLE: ConsLevels; shows an example"
{
list L; list C; int i;
list B; list T;
for(i=1; i<=size(A);i++)
{
T=Crep(A[i][1],A[i][2]);
B[size(B)+1]=T;
}
int level=0;
list K;
while(size(B)>0)
{
level++;
K=FirstLevel(B);
if(level mod 2==1){L[size(L)+1]=list(level,K[1]);}
else{C[size(C)+1]=list(level,K[1]);}
//"T_L="; L;
//"T_C="; C;
B=K[2];
//"T_size(B)="; size(B);
}
return(list(L,C));
}
example
{ "EXAMPLE:"; echo = 2;
// Example of ConsLevels with nice geometrical interpretetion and 2 levels
if (defined(R)){kill R;}
if (defined(@P)){kill @P; kill @R; kill @RP;}
ring R=0,(x,y,z),lp;
short=0;
ideal P1=x*(x^2+y^2+z^2-1);
ideal Q1=z,x^2+y^2-1;
ideal P2=y,x^2+z^2-1;
ideal Q2=z*(z+1),y,x*(x+1);
list Cr1=Crep(P1,Q1);
list Cr2=Crep(P2,Q2);
list L=list(Cr1,Cr2);
L;
// ConsLevels(L)=
ConsLevels(L);
//----------------------------------------------------------------------
// Begin Problem S93
// Automatic theorem proving
// Generalized Steiner-Lehmus Theorem
// A.Montes, T.Recio
// Bisector of A(-1,0) = Bisector of B(1,0) varying C(a,b)
if(defined(R1)){kill R1;}
ring R1=(0,a,b),(x1,y1,x2,y2,p,r),dp;
ideal S93=(a+1)^2+b^2-(p+1)^2,
(a-1)^2+b^2-(1-r)^2,
a*y1-b*x1-y1+b,
a*y2-b*x2+y2-b,
-2*y1+b*x1-(a+p)*y1+b,
2*y2+b*x2-(a+r)*y2-b,
(x1+1)^2+y1^2-(x2-1)^2-y2^2;
short=0;
def GC93=grobcov(S93,"nonnull",ideal(b),"rep",1);
//"grobcov(S93,'nonnull',ideal(b),"rep",1)="; GC93;
list L0;
for(int i=1;i<=size(GC93);i++)
{
L0[size(L0)+1]=GC93[i][3];
}
def GC93ab=grobcov(S93,"nonnull",ideal(a*b),"rep",1);
ring RR=0,(a,b),lp;
list L1;
L1=imap(R1,L0);
// L1=Total elements of the grobcov(S93,'nonnull',ideal(b),'rep',1) to be added=
L1;
// Adding all the elements of grobcov(S93,'nonnull',ideal(b),'rep',1)=
ConsLevels(L1);
}
//**************************** End ConsLevels ******************
//******************** Begin locus ******************************
// indepparameters
// Auxiliary routine to detect 'Special' components of the locus
// Input: ideal B
// Output:
// 1 if the solutions of the ideal do not depend on the parameters
// 0 if they depend
static proc indepparameters(ideal B)
{
def R=basering;
ideal v=variables(B);
setring @RP;
def BP=imap(R,B);
def vp=imap(R,v);
ideal varpar=variables(BP);
int te;
te=equalideals(vp,varpar);
setring(R);
if(te){return(1);}
else{return(0);}
}
// dimP0: Auxiliary routine
// if the dimension in @P of an ideal in the parameters has dimension 0 then it returns 0
// else it retuns 1
static proc dimP0(ideal N)
{
def R=basering;
setring(@P);
int te=1;
def NP=imap(R,N);
attrib(NP,"IsSB",1);
int d=dim(std(NP));
if(d==0){te=0;}
setring(R);
return(te);
}
// Takes a list of intvec and sorts it and eliminates repeated elements.
// Auxiliary routine
static proc sortpairs(L)
{
def L1=sort(L);
def L2=elimrepeated(L1[1]);
return(L2);
}
// Eliminates the pairs of L1 that are also in L2.
// Auxiliary routine
static proc minuselements(list L1,list L2)
{
int i;
list L3;
for (i=1;i<=size(L1);i++)
{
if(not(memberpos(L1[i],L2)[1])){L3[size(L3)+1]=L1[i];}
}
return(L3);
}
// NorSing
// Input:
// ideal B: the basis of a component of the grobcov
// ideal E: the top of the component (assumed to be of dimension > 0 (single equation)
// ideal N: the holes of the component
// Output:
// int d: the dimension of B on the variables reduced by the holes.
// if d>0 then the component is 'Normal'
// if d==0 then the component is 'Singular'
static proc NorSing(ideal B, ideal E, ideal N, list #)
{
int i; int j; int Fenv=0; int env; int dd;
list DD=#;
def RR=basering;
int moverdim=2;
int version=0;
int nv=nvars(RR);
if(nv<4){version=1;}
int d;
poly F;
for(i=1;i<=(size(DD) div 2);i++)
{
if(DD[2*i-1]=="movdim"){moverdim=DD[2*i];}
if(DD[2*i-1]=="version"){version=DD[2*i];}
if(DD[2*i-1]=="family"){F=DD[2*i];}
}
if(F!=0){Fenv=1;}
//"T_B="; B; "E="; E; "N="; N;
list L0;
if(dimP0(E)==0){L0=2,"Normal";} // 2 es fals pero ha de ser >0 encara que sigui 0
else
{
if(version==0)
{
//"T_B="; B; // Computing std(B+E,plex(x,y,x1,..xn)) one can detect if there is a first part
// independent of parameters giving the variables with dimension 0
dd=indepparameters(B);
if (dd==1){d=0; L0=d,string(B),determineF(B,F,E);}
else{d=1; L0=2,"Normal";}
}
else
{
def RH=ringlist(RR);
//"T_RH="; RH;
def H=RH;
H[1]=0;
H[2]=RH[1][2]+RH[2];
int n=size(H[2]);
intvec ll;
for(i=1;i<=n;i++)
{
ll[i]=1;
}
H[3][1][1]="lp";
H[3][1][2]=ll;
def RRH=ring(H);
setring(RRH);
ideal BH=imap(RR,B);
ideal EH=imap(RR,E);
ideal NH=imap(RR,N);
if(Fenv==1){poly FH=imap(RR,F);}
for(i=1;i<=size(EH);i++){BH[size(BH)+1]=EH[i];}
BH=std(BH); // MOLT COSTOS!!!
ideal G;
ideal r; poly q;
for(i=1;i<=size(BH);i++)
{
r=factorize(BH[i],1);
q=1;
for(j=1;j<=size(r);j++)
{
if((pdivi(r[j],NH)[1] != 0) or (equalideals(ideal(NH),ideal(1))))
{
q=q*r[j];
}
}
if(q!=1){G[size(G)+1]=q;}
}
setring RR;
def GG=imap(RRH,G);
ideal GGG;
if(defined(L0)){kill L0; list L0;}
for(i=1;i<=size(GG);i++)
{
if(indepparameters(GG[i])){GGG[size(GGG)+1]=GG[i];}
}
GGG=std(GGG);
ideal GLM;
for(i=1;i<=size(GGG);i++)
{
GLM[i]=leadmonom(GGG[i]);
}
attrib(GLM,"IsSB",1);
d=dim(std(GLM));
string antiim=string(GGG);
L0=d,antiim;
if(d==0)
{
//" ";string("Antiimage of Special component = ", GGG);
if(Fenv==1)
{
L0[3]=determineF(GGG,F,E);
}
}
else
{
L0[2]="Normal";
}
}
}
return(L0);
}
static proc determineF(ideal A,poly F,ideal E)
{
int env; int i;
def RR=basering;
def RH=ringlist(RR);
def H=RH;
H[1]=0;
H[2]=RH[1][2]+RH[2];
int n=size(H[2]);
intvec ll;
for(i=1;i<=n;i++)
{
ll[i]=1;
}
H[3][1][1]="lp";
H[3][1][2]=ll;
def RRH=ring(H);
//" ";string("Antiimage of Special component = ", GGG);
setring(RRH);
list LL;
def AA=imap(RR,A);
def FH=imap(RR,F);
def EH=imap(RR,E);
ideal M=std(AA+FH);
def rh=reduce(EH,M);
if(rh==0){env=1;} else{env=0;}
setring RR;
//L0[3]=env;
return(env);
}
// DimPar
// Auxilliary routine to NorSing determining the dimension of a parametric ideal
// Does not use @P and define it directly because is assumes that
// variables and parameters have been inverted
static proc DimPar(ideal E)
{
def RRH=basering;
def RHx=ringlist(RRH);
def Prin=ring(RHx[1]);
setring(Prin);
def E2=std(imap(RRH,E));
def d=dim(E2);
setring RRH;
return(d);
}
// locus0(G): Private routine used by locus (the public routine), that
// builds the diferent components.
// input: The output G of the grobcov (in generic representation, which is the default option)
// Options: The algorithm allows the following options ar pair of arguments:
// "movdim", d : by default movdim is 2 but it can be set to other values
// "version", v : There are two versions of the algorithm. ('version',1) is
// a full algorithm that always distinguishes correctly between 'Normal'
// and 'Special' components, whereas ('version',0) can decalre a component
// as 'Normal' being really 'Special', but is more effective. By default ('version',1)
// is used when the number of variables is less than 4 and 0 if not.
// The user can force to use one or other version, but it is not recommended.
// "system", ideal F: if the initial systrem is passed as an argument. This is actually not used.
// "comments", c: by default it is 0, but it can be set to 1.
// Usually locus problems have mover coordinates, variables and tracer coordinates.
// The mover coordinates are to be placed as the last variables, and by default,
// its number is 2. If one consider locus problems in higer dimensions, the number of
// mover coordinates (placed as the last variables) is to be given as an option.
// output:
// list, the canonical P-representation of the Normal and Non-Normal locus:
// The Normal locus has two kind of components: Normal and Special.
// The Non-normal locus has two kind of components: Accumulation and Degenerate.
// This routine is compemented by locus that calls it in order to eliminate problems
// with degenerate points of the mover.
// The output components are given as
// ((p1,(p11,..p1s_1),type_1,level_1),..,(pk,(pk1,..pks_k),type_k,level_k)
// The components are given in canonical P-representation of the subset.
// If all levels of a class of locus are 1, then the set is locally closed. Otherwise the level
// gives the depth of the component.
static proc locus0(list GG, list #)
{
int te=0;
int t1=1; int t2=1; int i;
def R=basering;
//if(defined(@P)==1){te=1; kill @P; kill @R; kill @RP; }
//setglobalrings();
// Options
list DD=#;
int moverdim=nvars(R);
int version=0;
int nv=nvars(R);
if(nv<4){version=1;}
int comment=0;
ideal Fm;
poly F;
for(i=1;i<=(size(DD) div 2);i++)
{
if(DD[2*i-1]=="movdim"){moverdim=DD[2*i];}
if(DD[2*i-1]=="version"){version=DD[2*i];}
if(DD[2*i-1]=="system"){Fm=DD[2*i];}
if(DD[2*i-1]=="comment"){comment=DD[2*i];}
if(DD[2*i-1]=="family"){F=DD[2*i];}
}
list HHH;
if (GG[1][1][1]==1 and GG[1][2][1]==1 and GG[1][3][1][1][1]==0 and GG[1][3][1][2][1]==1){return(HHH);}
list G1; list G2;
def G=GG;
list Q1; list Q2;
int d; int j; int k;
t1=1;
for(i=1;i<=size(G);i++)
{
attrib(G[i][1],"IsSB",1);
d=locusdim(G[i][2],moverdim);
if(d==0){G1[size(G1)+1]=G[i];}
else
{
if(d>0){G2[size(G2)+1]=G[i];}
}
}
if(size(G1)==0){t1=0;}
if(size(G2)==0){t2=0;}
setring(@RP);
if(t1)
{
list G1RP=imap(R,G1);
}
else {list G1RP;}
list P1RP;
ideal B;
for(i=1;i<=size(G1RP);i++)
{
kill B;
ideal B;
for(k=1;k<=size(G1RP[i][3]);k++)
{
attrib(G1RP[i][3][k][1],"IsSB",1);
G1RP[i][3][k][1]=std(G1RP[i][3][k][1]);
for(j=1;j<=size(G1RP[i][2]);j++)
{
B[j]=reduce(G1RP[i][2][j],G1RP[i][3][k][1]);
}
P1RP[size(P1RP)+1]=list(G1RP[i][3][k][1],G1RP[i][3][k][2],B);
}
}
setring(R);
ideal h;
if(t1)
{
def P1=imap(@RP,P1RP);
for(i=1;i<=size(P1);i++)
{
for(j=1;j<=size(P1[i][3]);j++)
{
h=factorize(P1[i][3][j],1);
P1[i][3][j]=h[1];
for(k=2;k<=size(h);k++)
{
P1[i][3][j]=P1[i][3][j]*h[k];
}
}
}
}
else{list P1;}
ideal BB; int dd; list NS;
for(i=1;i<=size(P1);i++)
{
NS=NorSing(P1[i][3],P1[i][1],P1[i][2][1],DD);
dd=NS[1];
if(dd==0){P1[i][3]=NS;} //"Special";
else{P1[i][3]="Normal";}
}
list P2;
for(i=1;i<=size(G2);i++)
{
for(k=1;k<=size(G2[i][3]);k++)
{
P2[size(P2)+1]=list(G2[i][3][k][1],G2[i][3][k][2]);
}
}
list l;
for(i=1;i<=size(P1);i++){Q1[i]=l; Q1[i][1]=P1[i];} P1=Q1;
for(i=1;i<=size(P2);i++){Q2[i]=l; Q2[i][1]=P2[i];} P2=Q2;
setring(@P);
ideal J;
if(t1==1)
{
def C1=imap(R,P1);
def L1=AddLocus(C1);
}
else{list C1; list L1; kill P1; list P1;}
if(t2==1)
{
def C2=imap(R,P2);
def L2=AddLocus(C2);
}
else{list L2; list C2; kill P2; list P2;}
for(i=1;i<=size(L2);i++)
{
J=std(L2[i][2]);
d=dim(J); // AQUI
if(d==0)
{
L2[i][4]=string("Accumulation",L2[i][4]);
}
else{L2[i][4]=string("Degenerate",L2[i][4]);}
}
list LN;
if(t1==1)
{
for(i=1;i<=size(L1);i++){LN[size(LN)+1]=L1[i];}
}
if(t2==1)
{
for(i=1;i<=size(L2);i++){LN[size(LN)+1]=L2[i];}
}
setring(R);
def L=imap(@P,LN);
for(i=1;i<=size(L);i++){if(size(L[i][2])==0){L[i][2]=ideal(1);}}
//if(te==0){kill @R; kill @RP; kill @P;}
list LL;
for(i=1;i<=size(L);i++)
{
if(typeof(L[i][4])=="list") {L[i][4][1]="Special";}
l[1]=L[i][2];
l[2]=L[i][3];
l[3]=L[i][4];
l[4]=L[i][5];
L[i]=l;
}
return(L);
}
// locus(G): Special routine for determining the locus of points
// of geometrical constructions.
// input: The output G of the grobcov (in generic representation, which is the default option for grobcov)
// output:
// list, the canonical P-representation of the Normal and Non-Normal locus:
// The Normal locus has two kind of components: Normal and Special.
// The Non-normal locus has two kind of components: Accumulation and Degenerate.
// Normal components: for each point in the component,
// the number of solutions in the variables is finite, and
// the solutions depend on the point in the component if the component is not 0-dimensional.
// Special components: for each point in the component,
// the number of solutions in the variables is finite,
// the component is not 0-dimensional, but the solutions do not depend on the
// values of the parameters in the component.
// Accumlation points: are 0-dimensional components for which it exist
// an infinite number of solutions.
// Degenerate components: are components of dimension greater than 0 for which
// for every point in the component there exist infinite solutions.
// The output components are given as
// ((p1,(p11,..p1s_1),type_1,level_1),..,(pk,(pk1,..pks_k),type_k,level_k)
// The components are given in canonical P-representation of the subset.
// If all levels of a class of locus are 1, then the set is locally closed. Otherwise the level
// gives the depth of the component of the constructible set.
proc locus(list GG, list #)
"USAGE: locus(G)
The input must be the grobcov of a parametrical ideal in Q[a][x],
(a=parameters, x=variables). In fact a must be the tracer coordinates
and x the mover coordinates and other auxiliary ones.
Special routine for determining the locus of points
of geometrical constructions. Given a parametric ideal J
representing the system determining the locus of points (a)
who verify certain properties, the call to locus on the output of grobcov( J )
determines the different classes of locus components, following
the taxonomy defined in
Abanades, Botana, Montes, Recio:
\"An Algebraic Taxonomy for Locus Computation in Dynamic Geometry\".
Computer-Aided Design 56 (2014) 22-33.
The components can be Normal, Special, Accumulation, Degenerate.
OPTIONS: The algorithm allows the following options as pair of arguments:
\"movdim\", d : by default movdim is 2 but it can be set to other values,
and represents the number of mever variables. they should be given as
the last variables of the ring.
\"version\", v : There are two versions of the algorithm. (\"version\",1) is
a full algorithm that always distinguishes correctly between 'Normal'
and 'Special' components, whereas \("version\",0) can decalre a component
as 'Normal' being really 'Special', but is more effective. By default (\"version\",1)
is used when the number of variables is less than 4 and 0 if not.
The user can force to use one or other version, but it is not recommended.
\"system\", ideal F: if the initial system is passed as an argument. This is actually not used.
\"comments\", c: by default it is 0, but it can be set to 1.
Usually locus problems have mover coordinates, variables and tracer coordinates.
The mover coordinates are to be placed as the last variables, and by default,
its number is 2. If one consider locus problems in higer dimensions, the number of
mover coordinates (placed as the last variables) is to be given as an option.
RETURN: The locus. The output is a list of the components ( C_1,.. C_n ) where
C_i = (p_i,(p_i1,..p_is_i), type_i,l evel_i ) and type_i can be
'Normal', 'Special', Accumulation', 'Degenerate'. The 'Special' components
return more information, namely the antiimage of the component, that
is 0-dimensional for these kind of components.
Normal components: for each point in the component,
the number of solutions in the variables is finite, and
the solutions depend on the point in the component.
Special components: for each point in the component,
the number of solutions in the variables is finite. The
antiimage of the component is 0-dimensional.
Accumlation points: are 0-dimensional components whose
antiimage is not zero-dimansional.
Degenerate components: are components of dimension greater than 0
whose antiimage is not-zero-diemansional.
The components are given in canonical P-representation.
The levels of a class of locus are 1,
because they represent locally closed. sets.
NOTE: It can only be called after computing the grobcov of the
parametrical ideal in generic representation ('ext',0),
which is the default.
The basering R, must be of the form Q[a_1,..,a_m][x_1,..,x_n].
KEYWORDS: geometrical locus, locus, loci.
EXAMPLE: locus; shows an example"
{
int tes=0; int i;
def R=basering;
if(defined(@P)==1){tes=1; kill @P; kill @R; kill @RP;}
setglobalrings();
// Options
list DD=#;
int moverdim=nvars(R);
int version=0;
int nv=nvars(R);
if(nv<4){version=1;}
int comment=0;
ideal Fm;
for(i=1;i<=(size(DD) div 2);i++)
{
if(DD[2*i-1]=="movdim"){moverdim=DD[2*i];}
if(DD[2*i-1]=="version"){version=DD[2*i];}
if(DD[2*i-1]=="system"){Fm=DD[2*i];}
if(DD[2*i-1]=="comment"){comment=DD[2*i];}
if(DD[2*i-1]=="family"){poly F=DD[2*i];}
}
int j; int k;
def B0=GG[1][2];
def H0=GG[1][3][1][1];
if (equalideals(B0,ideal(1)) or (equalideals(H0,ideal(0))==0))
{
return(locus0(GG,DD));
}
else
{
int n=nvars(R);
ideal vmov=var(n-1),var(n);
ideal N;
intvec xw; intvec yw;
for(i=1;i<=n-1;i++){xw[i]=0;}
xw[n]=1;
for(i=1;i<=n;i++){yw[i]=0;}
yw[n-1]=1;
poly px; poly py;
int te=1;
i=1;
while( te and i<=size(B0))
{
if((deg(B0[i],xw)==1) and (deg(B0[i])==1)){px=B0[i]; te=0;}
i++;
}
i=1; te=1;
while( te and i<=size(B0))
{
if((deg(B0[i],yw)==1) and (deg(B0[i])==1)){py=B0[i]; te=0;}
i++;
}
N=px,py;
te=indepparameters(N);
if(te)
{
string("locus detected that the mover must avoid point (",N,") in order to obtain the correct locus");
// eliminates segments of GG where N is contained in the basis
list nGP;
def GP=GG;
ideal BP;
for(j=1;j<=size(GP);j++)
{
te=1; k=1;
BP=GP[j][2];
while((te==1) and (k<=size(N)))
{
if(pdivi(N[k],BP)[1]!=0){te=0;}
k++;
}
if(te==0){nGP[size(nGP)+1]=GP[j];}
}
}
else{"Warning! Problem with more than one mover. Not able to solve it."; list L; return(L);}
}
def LL=locus0(nGP,DD);
kill @RP; kill @P; kill @R;
return(LL);
}
example
{
"EXAMPLE:"; echo = 2;
ring R=(0,a,b),(x,y),dp;
short=0;
// Concoid
ideal S96=x^2+y^2-4,(b-2)*x-a*y+2*a,(a-x)^2+(b-y)^2-1;
// System S96=
S96;
locus(grobcov(S96));
kill R;
// ********************************************
ring R=(0,a,b),(x4,x3,x2,x1),dp;
short=0;
ideal S=(x1-3)^2+(x2-1)^2-9,
(4-x2)*(x3-3)+(x1-3)*(x4-1),
(3-x1)*(x3-x1)+(4-x2)*(x4-x2),
(4-x4)*a+(x3-3)*b+3*x4-4*x3,
(a-x1)^2+(b-x2)^2-(x1-x3)^2-(x2-x4)^2;
// System S=
S;
locus(grobcov(S));
kill R;
//********************************************
ring R=(0,x,y),(x1,x2),dp;
short=0;
ideal S=-(x - 5)*(x1 - 1) - (x2 - 2)*(y - 2),
(x1 - 5)^2 + (x2 - 2)^2 - 4,
-2*(x - 5)*(x2 - 2) + 2*(x1 - 5)*(y - 2);
// System S=
S;
locus(grobcov(S));
}
// locusdg(G): Special routine for determining the locus of points
// of geometrical constructions. Given a parametric ideal J with
// parameters (a_1,..a_m) and variables (x_1,..,xn),
// representing the system determining
// the locus of points (a_1,..,a_m) who verify certain
// properties, computing the grobcov G of
// J and applying to it locus, determines the different
// classes of locus components. The components can be
// Normal, Special, Accumulation point, Degenerate.
// The output are the components given in P-canonical form
// of at most 4 constructible sets: Normal, Special, Accumulation,
// Degenerate.
// The description of the algorithm and definitions is
// given in a forthcoming paper by Abanades, Botana, Montes, Recio.
// Usually locus problems have mover coordinates, variables and tracer coordinates.
// The mover coordinates are to be placed as the last variables, and by default,
// its number is 2. If onw consider locus problems in higer dimensions, the number of
// mover coordinates (placed as the last variables) is to be given as an option.
//
// input: The output of locus(G);
// output:
// list, the canonical P-representation of the Normal and Non-Normal locus:
// The Normal locus has two kind of components: Normal and Special.
// The Non-normal locus has two kind of components: Accumulation and Degenerate.
// Normal components: for each point in the component,
// the number of solutions in the variables is finite, and
// the solutions depend on the point in the component if the component is not 0-dimensional.
// Special components: for each point in the component,
// the number of solutions in the variables is finite,
// the component is not 0-dimensional, but the solutions do not depend on the
// values of the parameters in the component.
// Accumlation points: are 0-dimensional components for which it exist
// an infinite number of solutions.
// Degenerate components: are components of dimension greater than 0 for which
// for every point in the component there exist infinite solutions.
// The output components are given as
// ((p1,(p11,..p1s_1),type_1,level_1),..,(pk,(pk1,..pks_k),type_k,level_k)
// The components are given in canonical P-representation of the subset.
// If all levels of a class of locus are 1, then the set is locally closed. Otherwise the level
// gives the depth of the component of the constructible set.
proc locusdg(list L)
"USAGE: locusdg(L) The call must be locusdg(locus(grobcov(S))).
RETURN: The output is the list of the 'Relevant' components of the locus
in Dynamic Geometry:(C1,..,C:m), where
C_i= ( p_i,(p_i1,..p_is_i), 'Relevant', level_i )
The 'Relevant' components are the 'Normal' and 'Accumulation' components
of the locus. (See help for locus).
NOTE: It can only be called after computing the locus.
Calling sequence: locusdg(locus(grobcov(S)));
KEYWORDS: geometrical locus, locus, loci, dynamic geometry
EXAMPLE: locusdg; shows an example"
{
list LL;
int i;
for(i=1;i<=size(L);i++)
{
if(typeof(L[i][3])=="string")
{
if((L[i][3]=="Normal") or (L[i][3]=="Accumulation")){L[i][3]="Relevant"; LL[size(LL)+1]=L[i];}
}
}
return(LL);
}
example
{
"EXAMPLE:"; echo = 2;
ring R=(0,a,b),(x,y),dp;
short=0;
// Concoid
ideal S96=x^2+y^2-4,(b-2)*x-a*y+2*a,(a-x)^2+(b-y)^2-1;
// System S96=
S96;
locus(grobcov(S96));
locusdg(locus(grobcov(S96)));
kill R;
//********************************************
ring R=(0,a,b),(x4,x3,x2,x1),dp;
ideal S=(x1-3)^2+(x2-1)^2-9,
(4-x2)*(x3-3)+(x1-3)*(x4-1),
(3-x1)*(x3-x1)+(4-x2)*(x4-x2),
(4-x4)*a+(x3-3)*b+3*x4-4*x3,
(a-x1)^2+(b-x2)^2-(x1-x3)^2-(x2-x4)^2;
short=0;
locus(grobcov(S));
locusdg(locus(grobcov(S)));
kill R;
//********************************************
ring R=(0,x,y),(x1,x2),dp;
short=0;
ideal S=-(x - 5)*(x1 - 1) - (x2 - 2)*(y - 2),
(x1 - 5)^2 + (x2 - 2)^2 - 4,
-2*(x - 5)*(x2 - 2) + 2*(x1 - 5)*(y - 2);
locus(grobcov(S));
locusdg(locus(grobcov(S)));
}
// locusto: Transforms the output of locus, locusdg, envelop and envelopdg
// into a string that can be reed from different computational systems.
// input:
// list L: The output of locus
// output:
// string s: The output of locus converted to a string readable by other programs
proc locusto(list L)
"USAGE: locusto(L);
The argument must be the output of locus or locusdg or
envelop or envelopdg.
It transforms the output into a string in standard form
readable in many languages (Geogebra).
RETURN: The locus in string standard form
NOTE: It can only be called after computing either
- locus(grobcov(F)) -> locusto( locus(grobcov(F)) )
- locusdg(locus(grobcov(F))) -> locusto( locusdg(locus(grobcov(F))) )
- envelop(F,C) -> locusto( envelop(F,C) )
-envelopdg(envelop(F,C)) -> locusto( envelopdg(envelop(F,C)) )
KEYWORDS: geometrical locus, locus, loci.
EXAMPLE: locusto; shows an example"
{
int i; int j; int k;
string s="["; string sf="]"; string st=s+sf;
if(size(L)==0){return(st);}
ideal p;
ideal q;
for(i=1;i<=size(L);i++)
{
s=string(s,"[[");
for (j=1;j<=size(L[i][1]);j++)
{
s=string(s,L[i][1][j],",");
}
s[size(s)]="]";
s=string(s,",[");
for(j=1;j<=size(L[i][2]);j++)
{
s=string(s,"[");
for(k=1;k<=size(L[i][2][j]);k++)
{
s=string(s,L[i][2][j][k],",");
}
s[size(s)]="]";
s=string(s,",");
}
s[size(s)]="]";
s=string(s,"]");
if(size(L[i])>=3)
{
s=string(s,",[");
if(typeof(L[i][3])=="string")
{
s=string(s,string(L[i][3]),"]]");
}
else
{
for(k=1;k<=size(L[i][3]);k++)
{
s=string(s,"[",L[i][3][k],"],");
}
s[size(s)]="]";
s=string(s,"]");
}
}
if(size(L[i])>=4)
{
s[size(s)]=",";
s=string(s,string(L[i][4]),"],");
}
s[size(s)]="]";
s=string(s,",");
}
s[size(s)]="]";
return(s);
}
example
{
"EXAMPLE:"; echo = 2;
ring R=(0,x,y),(x1,y1),dp;
short=0;
ideal S=x1^2+y1^2-4,(y-2)*x1-x*y1+2*x,(x-x1)^2+(y-y1)^2-1;
locusto(locus(grobcov(S)));
locusto(locusdg(locus(grobcov(S))));
kill R;
//********************************************
// 1. Take a fixed line l: x1-y1=0 and consider
// the family F of a lines parallel to l passing through the mover point M
// 2. Consider a circle x1^2+x2^2-25, and a mover point M(x1,x2) on it.
// 3. Compute the envelop of the family of lines.
ring R=(0,x,y),(x1,y1),lp;
poly F=(y-y1)-(x-x1);
ideal C=x1^2+y1^2-25;
short=0;
// Curves Family F=
F;
// Conditions C=
C;
locusto(envelop(F,C));
locusto(envelopdg(envelop(F,C)));
kill R;
//********************************************
// Steiner Deltoid
// 1. Consider the circle x1^2+y1^2-1=0, and a mover point M(x1,y1) on it.
// 2. Consider the triangle A(0,1), B(-1,0), C(1,0).
// 3. Consider lines passing through M perpendicular to two sides of ABC triangle.
// 4. Obtain the envelop of the lines above.
ring R=(0,x,y),(x1,y1,x2,y2),lp;
ideal C=(x1)^2+(y1)^2-1,
x2+y2-1,
x2-y2-x1+y1;
matrix M[3][3]=x,y,1,x2,y2,1,x1,0,1;
poly F=det(M);
short=0;
// Curves Family F=
F;
// Conditions C=
C;
locusto(envelop(F,C));
locusto(envelopdg(envelop(F,C)));
}
// Auxiliary routine
// locusdim
// input:
// B: ideal, a basis of a segment of the grobcov
// dgdim: int, the dimension of the mover (for locus)
// by default dgdim is equal to the number of variables
static proc locusdim(ideal B, list #)
{
def R=basering;
int dgdim;
int nv=nvars(R);
if (size(#)>0){dgdim=#[1];}
else {dgdim=nv;}
int d;
list v;
ideal vi;
int i;
for(i=1;i<=dgdim;i++)
{
v[size(v)+1]=varstr(nv-dgdim+i);
vi[size(v)+1]=var(nv-dgdim+i);
}
ideal B0;
for(i=1;i<=size(B);i++)
{
if(subset(variables(B[i]),vi))
{
B0[size(B0)+1]=B[i];
}
}
def RR=ringlist(R);
def RR0=RR;
RR0[2]=v;
def R0=ring(RR0);
setring(R0);
def B0r=imap(R,B0);
B0r=std(B0r);
d=dim(B0r);
setring R;
return(d);
}
static proc norspec(ideal F)
{
def RR=basering;
def Rx=ringlist(RR);
def Rx=ringlist(RR);
def @P=ring(Rx[1]);
list Lx;
Lx[1]=0;
Lx[2]=Rx[2]+Rx[1][2];
Lx[3]=Rx[1][3];
Lx[4]=Rx[1][4];
Rx[1]=0;
def D=ring(Rx);
def @RP=D+@P;
exportto(Top,@R); // global ring Q[a][x]
exportto(Top,@P); // global ring Q[a]
exportto(Top,@RP); // global ring K[x,a] with product order
setring(RR);
}
// envelop
// Input: n arguments
// poly F: the polynomial defining the family of curves in ring R=0,(x,y),(x1,..,xn),lp;
// ideal C=g1,..,g_{n-1}: the set of constraints
// Output: the components of the envolvent;
proc envelop(poly F, ideal C, list #)
"USAGE: envelop(F,C);
The first argument F must be the family of curves of which
on want to compute the envelop.
The second argument C must be the ideal of conditions
over the variables, and should contain as polynomials
as the number of variables -1.
RETURN: The components of the envelop with its taxonomy:
The taxonomy distinguishes 'Normal',
'Special', 'Accumulation', 'Degenerate' components.
In the case of 'Special' components, it also
outputs the antiimage of the component
and an integer (0-1). If the integer is 0
the component is not a curve of the family and is
not considered as 'Relevant' by the envelopdg routine
applied to it, but is considered as 'Relevant' if the integer is 1.
NOTE: grobcov is called internally.
The basering R, must be of the form Q[a][x] (a=parameters, x=variables).
KEYWORDS: geometrical locus, locus, loci, envelop
EXAMPLE: envelop; shows an example"
{
int tes=0; int i; int j;
def R=basering;
if(defined(@P)==1){tes=1; kill @P; kill @R; kill @RP;}
setglobalrings();
// Options
list DD=#;
int moverdim=nvars(R);
int version=0;
int nv=nvars(R);
if(nv<4){version=1;}
int comment=0;
ideal Fm;
for(i=1;i<=(size(DD) div 2);i++)
{
if(DD[2*i-1]=="movdim"){moverdim=DD[2*i];}
if(DD[2*i-1]=="version"){version=DD[2*i];}
if(DD[2*i-1]=="system"){Fm=DD[2*i];}
if(DD[2*i-1]=="comment"){comment=DD[2*i];}
}
int n=nvars(R);
list v;
for(i=1;i<=n;i++){v[size(v)+1]=var(i);}
def MF=jacob(F);
def TMF=transpose(MF);
def Mg=MF;
def TMg=TMF;
for(i=1;i<=n-1;i++)
{
Mg=jacob(C[i]);
TMg=transpose(Mg);
TMF=concat(TMF,TMg);
}
poly J=det(TMF);
ideal S=ideal(F)+C+ideal(J);
DD[size(DD)+1]="family";
DD[size(DD)+1]=F;
def G=grobcov(S,DD);
def L=locus(G, DD);
return(L);
}
example
{
"EXAMPLE:"; echo = 2;
// Steiner Deltoid
// 1. Consider the circle x1^2+y1^2-1=0, and a mover point M(x1,y1) on it.
// 2. Consider the triangle A(0,1), B(-1,0), C(1,0).
// 3. Consider lines passing through M perpendicular to two sides of ABC triangle.
// 4. Obtain the envelop of the lines above.
ring R=(0,x,y),(x1,y1,x2,y2),lp;
ideal C=(x1)^2+(y1)^2-1,
x2+y2-1,
x2-y2-x1+y1;
matrix M[3][3]=x,y,1,x2,y2,1,x1,0,1;
poly F=det(M);
short=0;
// Curves Family F=
F;
// Conditions C=
C;
def Env=envelop(F,C);
Env;
}
// envelopdg
// Input: list L: the output of envelop(poly F, ideal C, list #)
// Output: the relevant components of the envolvent in dynamic geometry;
proc envelopdg(list L)
"USAGE: envelopdg(L);
The input list L must be the output of the call to
the routine 'envolop' of the family of curves
RETURN: The relevant components of the envelop in Dynamic Geometry.
'Normal' and 'Accumulation' components are always considered
'Relevant'. 'Special' components of the envelop outputs
three objects in its characterization: 'Special', the antiimage ideal,
and the integer 0 or 1, that indicates that the given component is
formed (1) or is not formed (0) by curves of the family. Only if yes,
'envelopdg' considers the component as 'Relevant' .
NOTE: It must be called to the output of the 'envelop' routine.
The basering R, must be of the form Q[a,b,..][x,y,..].
KEYWORDS: geometrical locus, locus, loci, envelop.
EXAMPLE: envelop; shows an example"
{
list LL;
list Li;
int i;
for(i=1;i<=size(L);i++)
{
if(typeof(L[i][3])=="string")
{
if((L[i][3]=="Normal") or (L[i][3]=="Accumulation")){Li=L[i]; Li[3]="Relevant"; LL[size(LL)+1]=Li;}
}
else
{
if(typeof(L[i][3])=="list")
{
if(L[i][3][3]==1)
{
Li=L[i]; Li[3]="Relevant"; LL[size(LL)+1]=Li;
}
}
}
}
return(LL);
}
example
{
"EXAMPLE:"; echo = 2;
// 1. Take a fixed line l: x1-y1=0 and consider
// the family F of a lines parallel to l passing through the mover point M
// 2. Consider a circle x1^2+x2^2-25, and a mover point M(x1,x2) on it.
// 3. Compute the envelop of the family of lines.
ring R=(0,x,y),(x1,y1),lp;
short=0;
poly F=(y-y1)-(x-x1);
ideal C=x1^2+y1^2-25;
short=0;
// Curves Family F=
F;
// Conditions C=
C;
envelop(F,C);
envelopdg(envelop(F,C));
}
// AddLocus: auxilliary routine for locus0 that computes the components of the constructible:
// Input: the list of locally closed sets to be added, each with its type as third argument
// L=[ [LC[11],,,LC[1k_1], .., [LC[r1],,,LC[rk_r] ] where
// LC[1]=[p1,[p11,..,p1k],typ]
// Output: the list of components of the constructible union of the L, with the type of the corresponding top
// and the level of the constructible
// L4= [[v1,p1,[p11,..,p1l],typ_1,level]_1 ,.. [vs,ps,[ps1,..,psl],typ_s,level_s]
static proc AddLocus(list L)
{
// int te0=0;
// def RR=basering;
// if(defined(@P)){te0=1; def Rx=@R; kill @P; setring RR;}
list L1; int i; int j; list L2; list L3;
list l1; list l2;
intvec v;
for(i=1; i<=size(L); i++)
{
for(j=1;j<=size(L[i]);j++)
{
l1[1]=L[i][j][1];
l1[2]=L[i][j][2];
l2[1]=l1[1];
if(size(L[i][j])>2){l2[3]=L[i][j][3];}
v[1]=i; v[2]=j;
l2[2]=v;
L1[size(L1)+1]=l1;
L2[size(L2)+1]=l2;
}
}
L3=LocusConsLevels(L1);
list L4; int level;
ideal p1; ideal pp1; int t; int k; int k0; string typ; list l4;
for(i=1;i<=size(L3);i++)
{
level=L3[i][1];
for(j=1;j<=size(L3[i][2]);j++)
{
p1=L3[i][2][j][1];
t=1; k=1;
while((t==1) and (k<=size(L2)))
{
pp1=L2[k][1];
if(equalideals(p1,pp1)){t=0; k0=k;}
k++;
}
if(t==0)
{
v=L2[k0][2];
}
else{"ERROR p1 NOT FOUND";}
l4[1]=v; l4[2]=p1; l4[3]=L3[i][2][j][2]; l4[5]=level;
if(size(L2[k0])>2){l4[4]=L2[k0][3];}
L4[size(L4)+1]=l4;
}
}
return(L4);
}
// Input L: list of components in P-rep to be added
// [ [[p_1,[p_11,..,p_1,r1]],..[p_k,[p_k1,..,p_kr_k]] ]
// Output:
// list of lists of levels of the different locally closed sets of
// the canonical P-rep of the constructible.
// [ [level_1,[ [Comp_11,..Comp_1r_1] ] ], .. ,
// [level_s,[ [Comp_s1,..Comp_sr_1] ]
// ]
// where level_i=i, Comp_ij=[ p_i,[p_i1,..,p_it_i] ] is a prime component.
// LocusConsLevels: given a set of components of locally closed sets in P-representation, it builds the
// canonical P-representation of the corresponding constructible set of its union,
// including levels it they are.
static proc LocusConsLevels(list L)
{
list Lc; list Sc;
int i;
for(i=1;i<=size(L);i++)
{
Sc=PtoCrep(list(L[i]));
Lc[size(Lc)+1]=Sc;
}
list S=ConsLevels(Lc)[1];
list Sout;
list Lev;
for(i=1;i<=size(S);i++)
{
Lev=list(i,Prep(S[i][2][1],S[i][2][2]));
Sout[size(Sout)+1]=Lev;
}
return(Sout);
}
//********************* End locus ****************************
|