This file is indexed.

/usr/share/singular/LIB/graphics.lib is in singular-data 4.0.3+ds-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
//////////////////////////////////////////////////////////////////////////////
version="version graphics.lib 4.0.0.0 Jun_2013 "; // $Id: 36a4d2e5c43fecf40662744669851fd85cbbd2b1 $
category="Visualization";
info="
LIBRARY: graphics.lib    Procedures to use Graphics with Mathematica
AUTHOR:   Christian Gorzel, gorzelc@math.uni-muenster.de

PROCEDURES:
 staircase(fname,I);  Mathematica text for displaying staircase of I
 mathinit();          string for loading Mathematica's ImplicitPlot
 mplot(fname,I[# s]); Mathematica text for various plots
";

///////////////////////////////////////////////////////////////////////////////

proc staircase(string fname,ideal I)
"USAGE:   staircase(s,I); s a string, I ideal in two variables
RETURN:  string with Mathematica input for displaying staircase diagrams of an
         ideal I, i.e. exponent vectors of the initial ideal of I
NOTE:    ideal I should be given by a standard basis. Let s=\"\" and copy and
         paste the result into a Mathematica notebook.
EXAMPLE: example staircase; shows an example
"
{
  intvec v;
  int maxx, maxy;
  list l;
  string s;
  string el;

 if(nvars(basering)!=2)
 { "-- Error: need two variables ";
   return();
 }
 if (not(attrib(I,"isSB")))
 { " -- Warning: Ideal should be a standardbasis "; newline; }

 for(int i=1; i<=ncols(I); i++)
 {
  if (i>1) { el = el + ",";}
  v = leadexp(I[i]);
  if (v[1] > maxx) { maxx = v[1];}
  if (v[2] > maxy) { maxy = v[2];}
  el = el + "{" + string(v) + "}";
 }
 el = "{" + el + "}";
 maxx = maxx + 3;
 maxy = maxy + 3;

 s = newline +
     "Show[Graphics[{" + newline +
     "{GrayLevel[0.5],Map[Rectangle[#,{" +
          string(maxx) + "," + string(maxy) + "}] &, " + el + "]}," + newline +
     "{PointSize[0.03], Map[Point," + el + "]}," + newline +
       "Table[Circle[{i,j},0.1],{i,0," +
           string(maxx) + "},{j,0," + string(maxy) + "}]}," + newline +
     "  Axes->True,AspectRatio->Automatic]]";
 s = s + endstr(fname);
 return(s);
}
example
{ "EXAMPLE:"; echo =2;
  ring r0 = 0,(x,y),ls;
  ideal I = -1x2y6-1x4y2, 7x6y5+1/2x7y4+6x4y6;
  staircase("",std(I));

  ring r1 = 0,(x,y),dp;
  ideal I = fetch(r0,I);
  staircase("",std(I));

  ring r2 = 0,(x,y),wp(2,3);
  ideal I = fetch(r0,I);
  staircase("",std(I));

  // Paste the output into a Mathematica notebook
  // active evalutation of the cell with SHIFT RETURN
}
///////////////////////////////////////////////////////////////////////////////

proc mathinit()
"USAGE:   mathinit();
RETURN:  initializing string for loading Mathematica's ImplicitPlot
EXAMPLE: example mathinit; shows an example
"
{
  // write("init.m","<< Graphics`ImplicitPlot`");
  return("<< Graphics`ImplicitPlot`");
}
example
{ "EXAMPLE:"; echo =2;
  mathinit();

  // Paste the output into a Mathematica notebook
  // active evalutation of the cell with SHIFT RETURN
}
///////////////////////////////////////////////////////////////////////////////

static proc checkshort()
{
  ring @r;
}
static proc determvars(ideal I)
// determine the variables which are in the ideal I
{
  intvec v;
  int i,j,k;

  k=1;
  for(j=1;j<=size(I);j++)
  { for(i=1;i<=nvars(basering);i++)
    { if(I[j]!=subst(I[j],var(i),0)) {v[k] = i; k++;}
    }
  }
  ring @r=0,x,ls;
  poly f;
  for(i=1;i<=size(v);i++)     // sort VARS
  { f = f + x^v[i]; }
  v=0;
  for (i=1;i<=size(f);i++)
  {v[i]=leadexp(f[i])[1];}
 return(v);
}
///////////////////////////////////////////////////////////////////////////////

static proc endstr(string filename)
{ int i;
  string suffix,cmd,name;

 if(size(filename))
 {
  for (i=size(filename);i;i--)
  { if (filename[i] == ".") {break;}
  }

 if (i>0)
 { suffix = filename[i,size(filename)-i+1];
   name = ">" + filename[1,i-1]+ ".m";
 }
 else { print("--Error: Suffix of filename incorrect"); return("");}
// if (suffix ==".m") { cmd = "Display[\" " + filename + "\",% ]";}
 if (suffix ==".mps") { cmd = "Display[\" " + filename + "\",%] ";}
 if (suffix ==".ps") { cmd = "Display[\" ! psfix > " + filename + "\", %]";}
 if (suffix ==".eps")
                { cmd = "Display[\" ! psfix -epsf > " + filename + "\", %]";}

 }
 return(newline + cmd);
}

///////////////////////////////////////////////////////////////////////////////
proc mplot(string fname,ideal I,list #)
"USAGE:   mplot(fname, I [,I1,I2,..,s] ); fname=string; I,I1,I2,..=ideals,
         s=string representing the plot region.@*
         Use the ideals I1,I2,.. in order to produce multiple plots (they need
         to have the same number of entries as I!).
RETURN:  string, text with Mathematica commands to display a plot
NOTE:    The plotregion is defaulted to -1,1 around zero.
         For implicit given curves enter first the string returned by
         procedure mathinit into Mathematica in order to load ImplicitPlot.
         The following conventions for I are used:
  @format
  - ideal with 2 entries in one variable means a parametrised plane curve,
  - ideal with 3 entries in one variable means a parametrised space curve,
  - ideal with 3 entries in two variables means a parametrised surface,
  - ideal with 2 entries in two variables means an implicit curve
    given as I[1]==I[2],
  - ideal with 1 entry (or one polynomial) in two variables means
    an implicit curve given as  f == 0,
  @end format
EXAMPLE: example mplot; shows an example
"
{
  int i,j,k,mapping;
  int planecurve,spacecurve,implcrv,surface;
  intvec VARS,v;
  string xpart,ypart,zpart = "-1,1","-1,1","All";
  string pstring,actstring,xname,yname,str,closing;
  string basr = nameof(basering);
  ideal J;

  if (ncols(I)>3)
  { "-- Error: can only draw upto dimension 3";
    return("");
  }
  ring @r = 0,(s,t),lp;
  ideal @J,@I;

  setring(`basr`);
  // def d = basering;
  // d;
  // listvar(d);

  str = newline;

  VARS = determvars(I);
   // "VARS: ";VARS;

  if (size(VARS)>2 or VARS==0)
  { "-- Error: Need some variables, but can only draw in 2 or 3 dimensions";
    return("");
  }
  if (size(matrix(I))==1 and size(VARS)==2)
  { i =size(I[1]);
   //I[2]=I[1][(i/ 2 + 1)..i]; I[2];
   // I[1]=I[1][1..(i/ 2)]; I[1];
   I[2]=0;
  }
  if (size(matrix(I))==2)
  { if (size(VARS)==1) {planecurve=1; str = str + "ParametricPlot[";}
    if (size(VARS)==2) {implcrv=1; str = str + "ImplicitPlot[";}
  }
  if (size(matrix(I))==3)
  { if (size(VARS)==1) {spacecurve=1;}
    if (size(VARS)==2) {surface=1;}
    str =  str + "ParametricPlot3D[";
  }

  short = 0;

  pstring = string(I);

 // switch to another ring if necessary

  checkshort();
//  "short: "; short;

  if (short!=1)      // construct a map
  {
    mapping = 1;
    setring @r;
    @J = 0;
    for(i=1;i<=size(VARS);i++)
    { @J[VARS[i]]=var(i);}
    map phi = (`basr`,@J);
    @I = phi(I);
    short =0;
    pstring = string(@I);
    setring `basr`;
  }

  i = find(pstring,newline);
  while(i)
  {pstring[i]=" ";
   i = find(pstring,newline,i);
  }
  if (implcrv)
  { i = find(pstring,",");
    pstring = pstring[1,i-1] + "==" + pstring[i+1,size(pstring)-i];
  }
  else
  { pstring = "{" + pstring + "}";}
//  "mapping "; mapping;
  if (mapping)
  { xname = "s";
    if (size(VARS)==2) {yname="t";}
  }
  else
  { xname = varstr(VARS[1]);
    if (size(VARS)==2) {yname=varstr(VARS[2]);}
  }

  j =1;

  for(k=1;k<=size(#);k++)
  { if (typeof(#[k])=="ideal" or typeof(#[k])=="poly")
    { //#[k] = ideal(#[k]);
      v = determvars(#[k]);
      J = #[k];
      short =0;
      if (size(matrix(J))==1 and size(VARS)==2 and implcrv)
      { i =size(J[1]);
      //  J[2]=J[1][(i/ 2 + 1)..i];
      //  J[1]=J[1][1..(i/ 2)];
        J[2] =0;
      }
      if ((v!= VARS) or (size(J)!=size(I)))
      { print("--Error: ---- ");
        return();
      }
      else
      { if (mapping)
        { setring @r;
          short =0;
          actstring = string(phi(J));
          setring(`basr`);
        }
        else {actstring = string(J);}
        i = find(actstring,newline);
        while(i)
        { actstring[i]=" ";
         i = find(actstring,newline,i);
        }
        if (implcrv)
        {i = find(actstring,",");
         actstring = actstring[1,i-1]+ "==" + actstring[i+1,size(actstring)-i];
         pstring = pstring + "," + actstring;
        }
        else
        { pstring = pstring + ",{" + actstring +"}";
        }

      }
    }
    if (typeof(#[k])=="string")
    {  if (j==3) {zpart = #[k];j++;}
       if (j==2) {ypart = #[k];j++;}
       if (j==1) {xpart = #[k];j++;}
   }
  }

 if (spacecurve or planecurve or implcrv)
 { str = str + "{" + pstring + "},{" + xname + "," + xpart + "}";}
 if (implcrv and (j==3)) {str = str + ",{" + yname + "," + ypart + "}";}
 if (surface)
 { str = str + "{" + pstring + "},{" + xname + "," + xpart + "},{"
                                     + yname + "," + ypart + "}";}

  if (planecurve) {closing = "," + newline +" AspectRatio->Automatic";}
  if (implcrv) {closing = "," + newline +
   " AxesLabel->{\"" + varstr(VARS[1]) + "\",\"" + varstr(VARS[2]) + "\"}";}
  if (spacecurve) { closing = "," + newline + " ViewPoint->{1.3,-2.4,2}";}
  if (surface)
  {closing = "," +newline +
              " Boxed->True, Axes->True, ViewPoint->{1.3,-2.4,2}";}

  str = str + closing + "];" + endstr(fname);

  return(str);
}
example
{ "EXAMPLE:"; echo =2;
   // ---------  plane curves ------------
   ring rr0 = 0,x,dp; export rr0;

   ideal I = x3 + x, x2;
   ideal J = x2, -x+x3;
   mplot("",I,J,"-2,2");

 // Paste the output into a Mathematica notebook
 // active evalutation of the cell with SHIFT RETURN

 pause("Hit RETURN to continue");
   // --------- space curves --------------
   I = x3,-1/10x3+x2,x2;
   mplot("",I);

 // Paste the output into a Mathematica notebook
 // active evalutation of the cell with SHIFT RETURN

 pause("Hit RETURN to continue");
   // ----------- surfaces -------------------
   ring rr1 = 0,(x,y),dp; export rr1;
   ideal J = xy,y,x2;
   mplot("",J,"-2,1","1,2");

 // Paste the output into a Mathematica notebook
 // active evalutation of the cell with SHIFT RETURN
 kill rr0,rr1;
}
///////////////////////////////////////////////////////////////////////////////