This file is indexed.

/usr/share/singular/LIB/dmodvar.lib is in singular-data 4.0.3+ds-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
///////////////////////////////////////////////////////////////////////
version="version dmodvar.lib 4.0.0.0 Jun_2013 "; // $Id: 5f4182bc9a1f305c14810c5e6997252b8713607b $
category="Noncommutative";
info="
LIBRARY: dmodvar.lib     Algebraic D-modules for varieties

AUTHORS: Daniel Andres,        daniel.andres@math.rwth-aachen.de
@*       Viktor Levandovskyy,  levandov@math.rwth-aachen.de
@*       Jorge Martin-Morales, jorge@unizar.es

Support: DFG Graduiertenkolleg 1632 'Experimentelle und konstruktive Algebra'

OVERVIEW: Let K be a field of characteristic 0. Given a polynomial ring R = K[x_1,...,x_n]
and polynomials f_1,...,f_r in R, define F = f_1*...*f_r and F^s = f_1^s_1*...*f_r^s_r
for symbolic discrete (that is shiftable) variables s_1,..., s_r.
The module R[1/F]*F^s has the structure of a D<S>-module, where D<S> = D(R)
tensored with S over K, where
@* - D(R) is the n-th Weyl algebra K<x_1,...,x_n,d_1,...,d_n | d_j x_j = x_j d_j + 1>
@* - S is the universal enveloping algebra of gl_r, generated by s_i = s_{ii}.
@* One is interested in the following data:
@* - the left ideal Ann F^s in D<S>, usually denoted by LD in the output
@* - global Bernstein polynomial in one variable s = s_1+...+s_r, denoted by bs,
@* - its minimal integer root s0, the list of all roots of bs, which are known to be
     negative rational numbers, with their multiplicities, which is denoted by BS
@* - an r-tuple of operators in D<S>, denoted by PS, such that the functional equality
     sum(k=1 to k=r) P_k*f_k*F^s = bs*F^s holds in R[1/F]*F^s.

REFERENCES:
   (BMS06) Budur, Mustata, Saito: Bernstein-Sato polynomials of arbitrary varieties (2006).
@* (ALM09) Andres, Levandovskyy, Martin-Morales: Principal Intersection and Bernstein-Sato
Polynomial of an Affine Variety (2009).


PROCEDURES:
bfctVarIn(F[,L]);       computes the roots of the Bernstein-Sato polynomial b(s) of the variety V(F) using initial ideal approach
bfctVarAnn(F[,L]);      computes the roots of the Bernstein-Sato polynomial b(s) of the variety V(F) using Sannfs approach
SannfsVar(F[,O,e]);     computes the annihilator of F^s in the ring D<S>
makeMalgrange(F[,ORD]); creates the Malgrange ideal, associated with F = F[1],..,F[P]

SEE ALSO: bfun_lib, dmod_lib, dmodapp_lib, gmssing_lib

KEYWORDS: D-module; D-module structure; Bernstein-Sato polynomial for variety; global Bernstein-Sato polynomial for variety;
Weyl algebra; parametric annihilator for variety; Budur-Mustata-Saito approach; initial ideal approach
";

/*
// Static procs:
// coDim(I);           compute the codimension of the leading ideal of I
// dmodvarAssumeViolation()
// ORDstr2list (ORD, NN)
// smallGenCoDim(I,k)
*/

/*
  CHANGELOG
  11.10.10 by DA:
  - reformated help strings
  - simplified code
  - add and use of safeVarName
  - renamed makeIF to makeMalgrange
*/


LIB "bfun.lib";    // for pIntersect
LIB "dmodapp.lib"; // for isCommutative etc.


///////////////////////////////////////////////////////////////////////////////

// testing for consistency of the library:
proc testdmodvarlib ()
{
  example makeMalgrange;
  example bfctVarIn;
  example bfctVarAnn;
  example SannfsVar;
}
//   example coDim;

///////////////////////////////////////////////////////////////////////////////

static proc dmodvarAssumeViolation()
{
  // char K = 0, no qring
  if (  (size(ideal(basering)) >0) || (char(basering) >0) )
  {
    ERROR("Basering is inappropriate: characteristic>0 or qring present");
  }
  return();
}

static proc safeVarName (string s, string cv)
// assumes 's' to be a valid variable name
// returns valid var name string @@..@s
{
  string S;
  if (cv == "v")  { S = "," + "," + varstr(basering)  + ","; }
  if (cv == "c")  { S = "," + "," + charstr(basering) + ","; }
  if (cv == "cv") { S = "," + charstr(basering) + "," + varstr(basering) + ","; }
  s = "," + s + ",";
  while (find(S,s) <> 0)
  {
    s[1] = "@";
    s = "," + s;
  }
  s = s[2..size(s)-1];
  return(s)
    }

// da: in smallGenCoDim(), rewritten using mstd business
static proc coDim (ideal I)
  "USAGE:  coDim (I);  I an ideal
RETURN:  int
PURPOSE: computes the codimension of the ideal generated by the leading monomials
   of the given generators of the ideal. This is also the codimension of
   the ideal if it is represented by a standard basis.
NOTE:    The codimension of an ideal I means the number of variables minus the
   Krull dimension of the basering modulo I.
EXAMPLE: example coDim; shows examples
"
{
  int n = nvars(basering);
  int d = dim(I); // to insert: check whether I is in GB
  return(n-d);
}
example
{
  "EXAMPLE:"; echo = 2;
  ring R = 0,(x,y,z),Dp;
  ideal I = x^2+y^3, z;
  coDim(std(I));
}

static proc ORDstr2list (string ORD, int NN)
{
  /* convert an ordering defined in NN variables in the  */
  /* string form into the same ordering in the list form */
  string st;
  st = "ring @Z = 0,z(1.." + string(NN) + "),";
  st = st + ORD + ";";
  execute(st); kill st;
  list L = ringlist(@Z)[3];
  kill @Z;
  return(L);
}

proc SannfsVar (ideal F, list #)
  "USAGE:  SannfsVar(F [,ORD,eng]);  F an ideal, ORD an optional string, eng an optional int
RETURN:  ring (Weyl algebra tensored with U(gl_P)), containing an ideal LD
PURPOSE: compute the D<S>-module structure of D<S>*f^s where f = F[1]*...*F[P]
   and D<S> is the Weyl algebra D tensored with K<S>=U(gl_P), according to the
   generalized algorithm by Briancon and Maisonobe for affine varieties
ASSUME:  The basering is commutative and over a field of characteristic 0.
NOTE:    Activate the output ring D<S> with the @code{setring} command.
   In the ring D<S>, the ideal LD is the needed D<S>-module structure.
@* The value of ORD must be an elimination ordering in D<Dt,S> for Dt
   written in the string form, otherwise the result may have no meaning.
   By default ORD = '(a(1..(P)..1),a(1..(P+P^2)..1),dp)'.
@* If eng<>0, @code{std} is used for Groebner basis computations,
   otherwise, and by default @code{slimgb} is used.
DISPLAY: If printlevel=1, progress debug messages will be printed,
@* if printlevel>=2, all the debug messages will be printed.
EXAMPLE: example SannfsVar; shows examples
"
{
  dmodvarAssumeViolation();
  if (!isCommutative())
  {
    ERROR("Basering must be commutative");
  }
  def save = basering;
  int N = nvars(basering);
  int P = ncols(F);  //ncols better than size, since F[i] could be zero
  // P is needed for default ORD
  int i,j,k,l;
  // st = "(a(1..(P)..1),a(1..(P+P^2)..1),dp)";
  string st = "(a(" + string(1:P);
  st = st + "),a(" + string(1:(P+P^2));
  st = st + "),dp)";
  // default values
  string ORD = st;
  int eng = 0;
  if ( size(#)>0 )
  {
    if ( typeof(#[1]) == "string" )
    {
      ORD = string(#[1]);
      // second arg
      if (size(#)>1)
      {
        // exists 2nd arg
        if ( typeof(#[2]) == "int" )
        {
          // the case: given ORD, given engine
          eng = int(#[2]);
        }
      }
    }
    else
    {
      if ( typeof(#[1]) == "int" )
      {
        // the case: default ORD, engine given
        eng = int(#[1]);
        // ORD = "(a(1..(P)..1),a(1..(P+P^2)..1),dp)";  //is already set
      }
      else
      {
        // incorr. 1st arg
        ORD = string(st);
      }
    }
  }
  // size(#)=0, i.e. there is no elimination ordering and no engine given
  // eng = 0; ORD = "(a(1..(P)..1),a(1..(P^2)..1),dp)";  //are already set
  int ppl = printlevel-voice+2;
  // returns a list with a ring and an ideal LD in it
  // save, N, P and the indices are already defined
  int Nnew = 2*N+P+P^2;
  list RL = ringlist(basering);
  list L;
  L[1] = RL[1];  //char
  L[4] = RL[4];  //char, minpoly
  // check whether vars have admissible names
  list Name  = RL[2];
  list RName;
  // (i,j) <--> (i-1)*p+j
  for (i=1; i<=P; i++)
  {
    RName[i] = safeVarName("Dt("+string(i)+")","cv");
    for (j=1; j<=P; j++)
    {
      RName[P+(i-1)*P+j] = safeVarName("s("+string(i)+")("+string(j)+")","cv");
    }
  }
  // now, create the names for new vars
  list DName;
  for(i=1; i<=N; i++)
  {
    DName[i] = safeVarName("D"+Name[i],"cv");  //concat
  }
  list NName = RName + Name + DName;
  L[2] = NName;
  // Name, Dname will be used further
  kill NName;
  //block ord (a(1..(P)..1),a(1..(P+P^2)..1),dp);
  //export Nnew;
  L[3] = ORDstr2list(ORD,Nnew);
  // we are done with the list
  def @R@ = ring(L);
  setring @R@;
  matrix @D[Nnew][Nnew];
  // kronecker(i,j) equals (i==j)
  // (i,j) <--> (i-1)*p+j
  for (i=1; i<=P; i++)
  {
    for (j=1; j<=P; j++)
    {
      for (k=1; k<=P; k++)
      {
        //[sij,Dtk] = djk*Dti
        //         @D[k,P+(i-1)*P+j] = (j==k)*Dt(i);
        @D[k,P+(i-1)*P+j] = (j==k)*var(i);
        for (l=1; l<=P; l++)
        {
          if ( (i-k)*P < l-j )
          {
            //[sij,skl] = djk*sil - dil*skj
            //             @D[P+(i-1)*P+j,P+(k-1)*P+l] = -(j==k)*s(i)(l) + (i==l)*s(k)(j);
            @D[P+(i-1)*P+j,P+(k-1)*P+l] = -(j==k)*var(i*P+l) + (i==l)*var(k*P+j);
          }
        }
      }
    }
  }
  for (i=1; i<=N; i++)
  {
    //[Dx,x]=1
    @D[P+P^2+i,P+P^2+N+i] = 1;
  }
  def @R = nc_algebra(1,@D);
  setring @R;
  //@R@ will be used further
  dbprint(ppl,"// -1-1- the ring @R(_Dt,_s,_x,_Dx) is ready");
  dbprint(ppl-1, @R);
  // create the ideal I
  // (i,j) <--> (i-1)*p+j
  ideal  F = imap(save,F);
  ideal I;
  for (i=1; i<=P; i++)
  {
    for (j=1; j<=P; j++)
    {
      //       I[(i-1)*P+j] = Dt(i)*F[j] + s(i)(j);
      I[(i-1)*P+j] = var(i)*F[j] + var(i*P+j);
    }
  }
  poly p,q;
  for (i=1; i<=N; i++)
  {
    p=0;
    for (j=1; j<=P; j++)
    {
      //       q = Dt(j);
      q = var(j);
      q = q*diff(F[j],var(P+P^2+i));
      p = p + q;
    }
    I = I, p + var(P+P^2+N+i);
  }
  // -------- the ideal I is ready ----------
  dbprint(ppl,"// -1-2- starting the elimination of Dt(i) in @R");
  dbprint(ppl-1, I);
  ideal J = engine(I,eng);
  ideal K = nselect(J,1..P);
  kill I,J;
  dbprint(ppl,"// -1-3- all Dt(i) are eliminated");
  dbprint(ppl-1, K);  //K is without Dt(i)
  // ----------- the ring @R2(_s,_x,_Dx) ------------
  //come back to the ring save, recover L and remove all Dt(i)
  //L[1],L[4] do not change
  setring save;
  list Lord, tmp;
  // variables
  tmp = L[2];
  Lord = tmp[P+1..Nnew];
  L[2] = Lord;
  // ordering
  // st = "(a(1..(P^2)..1),dp)";
  st = "(a(" + string(1:P^2);
  st = st + "),dp)";
  tmp = ORDstr2list(st,Nnew-P);
  L[3] = tmp;
  def @R2@ = ring(L);
  kill L;
  // we are done with the list
  setring @R2@;
  matrix tmpM,LordM;
  // non-commutative relations
  intvec iv = P+1..Nnew;
  tmpM = imap(@R@,@D);
  kill @R@;
  LordM = submat(tmpM,iv,iv);
  matrix @D2 = LordM;
  def @R2 = nc_algebra(1,@D2);
  setring @R2;
  kill @R2@;
  dbprint(ppl,"// -2-1- the ring @R(_s,_x,_Dx) is ready");
  dbprint(ppl-1, @R2);
  ideal K = imap(@R,K);
  kill @R;
  dbprint(ppl,"// -2-2- starting cosmetic Groebner basis computation");
  dbprint(ppl-1, K);
  K = engine(K,eng);
  dbprint(ppl,"// -2-3- the cosmetic Groebner basis has been computed");
  dbprint(ppl-1,K);
  ideal LD = K;
  attrib(LD,"isSB",1);
  export LD;
  return(@R2);
}
example
{
  "EXAMPLE:"; echo = 2;
  ring R = 0,(x,y),Dp;
  ideal F = x^3, y^5;
  //ORD = "(a(1,1),a(1,1,1,1,1,1),dp)";
  //eng = 0;
  def A = SannfsVar(F);
  setring A;
  A;
  LD;
}

proc bfctVarAnn (ideal F, list #)
  "USAGE:  bfctVarAnn(F[,gid,eng]); F an ideal, gid,eng optional ints
RETURN:  list of an ideal and an intvec
PURPOSE: computes the roots of the Bernstein-Sato polynomial and their multiplicities
   for an affine algebraic variety defined by F = F[1],..,F[r].
ASSUME:  The basering is commutative and over a field in char 0.
NOTE:    In the output list, the ideal contains all the roots and
   the intvec their multiplicities.
@* If gid<>0, the ideal is used as given. Otherwise, and by default, a
   heuristically better suited generating set is used.
@* If eng<>0, @code{std} is used for GB computations,
   otherwise, and by default, @code{slimgb} is used.
@* Computational remark: The time of computation can be very different depending
   on the chosen generators of F, although the result is always the same.
@* Further note that in this proc, the annihilator of f^s in D[s] is computed and
   then a system of linear equations is solved by linear reductions in order to
   find the minimal polynomial of S = s(1)(1) + ... + s(P)(P).
   The resulted is shifted by 1-codim(Var(F)) following (BMS06).
DISPLAY: If printlevel=1, progress debug messages will be printed,
@* if printlevel=2, all the debug messages will be printed.
EXAMPLE: example bfctVarAnn; shows examples
"
{
  dmodvarAssumeViolation();
  if (!isCommutative())
  {
    ERROR("Basering must be commutative");
  }
  int gid = 0; // default
  int eng = 0; // default
  if (size(#)>0)
  {
    if (typeof(#[1])=="int" || typeof(#[1])=="number")
    {
      gid = int(#[1]);
    }
    if (size(#)>1)
    {
      if (typeof(#[2])=="int" || typeof(#[2])=="number")
      {
        eng = int(#[2]);
      }
    }
  }
  def save = basering;
  int ppl = printlevel - voice + 2;
  printlevel = printlevel+1;
  list L = smallGenCoDim(F,gid);
  F = L[1];
  int cd = L[2];
  kill L;
  def @R2 = SannfsVar(F,eng);
  printlevel = printlevel-1;
  int sF = size(F); // no 0 in F
  setring @R2;
  // we are in D[s] and LD is a std of SannfsVar(F)
  ideal F = imap(save,F);
  ideal GF = std(F);
  ideal J = NF(LD,GF);
  J = J, F;
  dbprint(ppl,"// -3-1- starting Groebner basis of ann F^s + F ");
  dbprint(ppl-1,J);
  ideal K = engine(J,eng);
  dbprint(ppl,"// -3-2- finished Groebner basis of ann F^s + F ");
  dbprint(ppl-1,K);
  poly S;
  int i;
  for (i=1; i<=sF; i++)
  {
    //     S = S + s(i)(i);
    S = S + var((i-1)*sF+i);
  }
  dbprint(ppl,"// -4-1- computing the minimal polynomial of S");
  dbprint(ppl-1,"S = "+string(S));
  vector M = pIntersect(S,K);
  dbprint(ppl,"// -4-2- the minimal polynomial has been computed");
  ring @R3 = 0,s,dp;
  vector M = imap(@R2,M);
  poly p = vec2poly(M);
  dbprint(ppl-1,p);
  dbprint(ppl,"// -5-1- codimension of the variety");
  dbprint(ppl-1,cd);
  dbprint(ppl,"// -5-2- shifting BS(s)=minpoly(s-codim+1)");
  p = subst(p,var(1),var(1)-cd+1);
  dbprint(ppl-1,p);
  dbprint(ppl,"// -5-3- factorization of the minimal polynomial");
  list BS = bFactor(p);
  setring save;
  list BS = imap(@R3,BS);
  kill @R2,@R3;
  return(BS);
}
example
{
  "EXAMPLE:"; echo = 2;
  ring R = 0,(x,y,z),Dp;
  ideal F = x^2+y^3, z;
  bfctVarAnn(F);
}

proc makeMalgrange (ideal F, list #)
  "USAGE:  makeMalgrange(F [,ORD]);  F an ideal, ORD an optional string
RETURN:  ring (Weyl algebra) containing an ideal IF
PURPOSE: create the ideal by Malgrange associated with F = F[1],...,F[P].
NOTE:    Activate the output ring with the @code{setring} command. In this ring,
   the ideal IF is the ideal by Malgrange corresponding to F.
@* The value of ORD must be an arbitrary ordering in K<_t,_x,_Dt,_Dx>
   written in the string form. By default ORD = 'dp'.
DISPLAY: If printlevel=1, progress debug messages will be printed,
@* if printlevel>=2, all the debug messages will be printed.
EXAMPLE: example makeMalgrange; shows examples
"
{
  string ORD = "dp";
  if ( size(#)>0 )
  {
    if ( typeof(#[1]) == "string" )
    {
      ORD = string(#[1]);
    }
  }
  int ppl = printlevel-voice+2;
  def save = basering;
  int N = nvars(save);
  int P = ncols(F);
  int Nnew = 2*P+2*N;
  int i,j;
  string st;
  list RL = ringlist(save);
  list L,Lord;
  list tmp;
  intvec iv;
  L[1] = RL[1];
  L[4] = RL[4];
  //check whether vars have admissible names
  list Name = RL[2];
  list TName, DTName;
  for (i=1; i<=P; i++)
  {
    TName[i] = safeVarName("t("+string(i)+")","cv");
    DTName[i] = safeVarName("Dt("+string(i)+")","cv");
  }
  //now, create the names for new vars
  list DName;
  for (i=1; i<=N; i++)
  {
    DName[i] = safeVarName("D"+Name[i],"cv");  //concat
  }
  list NName = TName + Name + DTName + DName;
  L[2]   = NName;
  // Name, Dname will be used further
  kill NName, TName, Name, DTName, DName;
  // ORD already set, default ord dp;
  L[3] = ORDstr2list(ORD,Nnew);
  // we are done with the list
  def @R@ = ring(L);
  setring @R@;
  def @R = Weyl();
  setring @R;
  kill @R@;
  //dbprint(ppl,"// -1-1- the ring @R(_t,_x,_Dt,_Dx) is ready");
  //dbprint(ppl-1, @R);
  // create the ideal I
  ideal  F = imap(save,F);
  ideal I;
  for (j=1; j<=P; j++)
  {
    //     I[j] = t(j) - F[j];
    I[j] = var(j) - F[j];
  }
  poly p,q;
  for (i=1; i<=N; i++)
  {
    p=0;
    for (j=1; j<=P; j++)
    {
      //       q = Dt(j);
      q = var(P+N+j);
      q = diff(F[j],var(P+i))*q;
      p = p + q;
    }
    I = I, p + var(2*P+N+i);
  }
  // -------- the ideal I is ready ----------
  ideal IF = I;
  export IF;
  return(@R);
}
example
{
  "EXAMPLE:"; echo = 2;
  ring R = 0,(x,y,z),Dp;
  ideal I = x^2+y^3, z;
  def W = makeMalgrange(I);
  setring W;
  W;
  IF;
}

proc bfctVarIn (ideal I, list #)
  "USAGE:  bfctVarIn(I [,a,b,c]);  I an ideal, a,b,c optional ints
RETURN:  list of ideal and intvec
PURPOSE: computes the roots of the Bernstein-Sato polynomial and their
   multiplicities for an affine algebraic variety defined by I.
ASSUME:  The basering is commutative and over a field of characteristic 0.
@* Varnames of the basering do not include t(1),...,t(r) and
   Dt(1),...,Dt(r), where r is the number of entries of the input ideal.
NOTE:    In the output list, say L,
@* - L[1] of type ideal contains all the rational roots of a b-function,
@* - L[2] of type intvec contains the multiplicities of above roots,
@* - optional L[3] of type string is the part of b-function without rational roots.
@* Note, that a b-function of degree 0 is encoded via L[1][1]=0, L[2]=0 and
   L[3] is 1 (for nonzero constant) or 0 (for zero b-function).
@* If a<>0, the ideal is used as given. Otherwise, and by default, a
   heuristically better suited generating set is used to reduce computation time.
@* If b<>0, @code{std} is used for GB computations in characteristic 0,
   otherwise, and by default, @code{slimgb} is used.
@* If c<>0, a matrix ordering is used for GB computations, otherwise,
   and by default, a block ordering is used.
@* Further note, that in this proc, the initial ideal of the multivariate Malgrange
   ideal defined by I is computed and then a system of linear equations is solved
   by linear reductions following the ideas by Noro.
   The result is shifted by 1-codim(Var(F)) following (BMS06).
DISPLAY: If printlevel=1, progress debug messages will be printed,
@* if printlevel>=2, all the debug messages will be printed.
EXAMPLE: example bfctVarIn; shows examples
"
{
  dmodvarAssumeViolation();
  if (!isCommutative())
  {
    ERROR("Basering must be commutative");
  }
  int ppl = printlevel - voice + 2;
  int idealasgiven  = 0; // default
  int whicheng      = 0; // default
  int whichord      = 0; // default
  if (size(#)>0)
  {
    if (typeof(#[1])=="int" || typeof(#[1])=="number")
    {
      idealasgiven = int(#[1]);
    }
    if (size(#)>1)
    {
      if (typeof(#[2])=="int" || typeof(#[2])=="number")
      {
        whicheng = int(#[2]);
      }
      if (size(#)>2)
      {
        if (typeof(#[3])=="int" || typeof(#[3])=="number")
        {
          whichord = int(#[3]);
        }
      }
    }
  }
  def save = basering;
  int i;
  int n = nvars(basering);
  // step 0: get small generating set
  I = simplify(I,2);
  list L = smallGenCoDim(I,idealasgiven);
  I = L[1];
  int c = L[2];
  kill L;
  // step 1: setting up the multivariate Malgrange ideal
  int r = size(I);
  def D = makeMalgrange(I);
  setring D;
  dbprint(ppl-1,"// Computing in " + string(n+r) + "-th Weyl algebra:", D);
  dbprint(ppl-1,"// The Malgrange ideal: ", IF);
  // step 2: compute the b-function of the Malgrange ideal w.r.t. approriate weights
  intvec w = 1:r;
  w[r+n] = 0;
  dbprint(ppl,"// Computing the b-function of the Malgrange ideal...");
  list L = bfctIdeal(IF,w,whicheng,whichord);
  dbprint(ppl,"// ... done.");
  dbprint(ppl-1,"// The b-function: ",L);
  // step 3: shift the result
  ring S = 0,s,dp;
  list L = imap(D,L);
  kill D;
  if (size(L)==2)
  {
    ideal B = L[1];
    ideal BB;
    int nB = ncols(B);
    for (i=nB; i>0; i--)
    {
      BB[i] = -B[nB-i+1]+c-r-1;
    }
    L[1] = BB;
  }
  else // should never get here: BS poly has non-rational roots
  {
    string str = L[3];
    L = delete(L,3);
    str = "poly @b = (" + str + ")*(" + string(fl2poly(L,"s")) + ");";
    execute(str);
    poly b = subst(@b,s,-s+c-r-1);
    L = bFactor(b);
  }
  setring save;
  list L = imap(S,L);
  return(L);
}
example
{
  "EXAMPLE:"; echo = 2;
  ring R = 0,(x,y,z),dp;
  ideal F = x^2+y^3, z;
  list L = bfctVarIn(F);
  L;
}

static proc smallGenCoDim (ideal I, int Iasgiven)
{
  // call from K[x], returns list L
  // L[1]=I or L[1]=smaller generating set of I
  // L[2]=codimension(I)
  int ppl = printlevel - voice + 2;
  int n = nvars(basering);
  int c;
  if (attrib(I,"isSB"))
  {
    c = n - dim(I);
    if (!Iasgiven)
    {
      list L = mstd(I);
    }
  }
  else
  {
    def save = basering;
    list RL = ringlist(save);
    list @ord;
    @ord[1] = list("dp", intvec(1:n));
    @ord[2] = list("C", intvec(0));
    RL[3] = @ord;
    kill @ord;
    if (size(RL)>4) // commutative G-algebra present
    {
      RL = RL[1..4];
    }
    def R = ring(RL);
    kill RL;
    setring R;
    ideal I = imap(save,I);
    if (!Iasgiven)
    {
      list L = mstd(I);
      c = n - dim(L[1]);
      setring save;
      list L = imap(R,L);
    }
    else
    {
      I = std(I);
      c = n - dim(I);
      setring save;
    }
    kill R;
  }
  if (!Iasgiven)
  {
    if (size(L[2]) < size(I))
    {
      I = L[2];
      dbprint(ppl,"// Found smaller generating set of the given variety: ", I);
    }
    else
    {
      dbprint(ppl,"// Have not found smaller generating set of the given variety.");
    }
  }
  dbprint(ppl-1,"// The codim of the given variety is " + string(c) + ".");
  if (!defined(L))
  {
    list L;
  }
  L[1] = I;
  L[2] = c;
  return(L);
}

/*
// Some more examples

static proc TXcups()
{
"EXAMPLE:"; echo = 2;
//TX tangent space of X=V(x^2+y^3)
ring R = 0,(x0,x1,y0,y1),Dp;
ideal F = x0^2+y0^3, 2*x0*x1+3*y0^2*y1;
printlevel = 0;
//ORD = "(a(1,1),a(1,1,1,1,1,1),dp)";
//eng = 0;
def A = SannfsVar(F);
setring A;
LD;
}

static proc ex47()
{
ring r7 = 0,(x0,x1,y0,y1),dp;
ideal I = x0^2+y0^3, 2*x0*x1+3*y0^2*y1;
bfctVarIn(I);
// second ex - too big
ideal J = x0^4+y0^5, 4*x0^3*x1+5*y0^4*y1;
bfctVarIn(J);
}

static proc ex48()
{
ring r8 = 0,(x1,x2,x3),dp;
ideal I = x1^3-x2*x3, x2^2-x1*x3, x3^2-x1^2*x2;
bfctVarIn(I);
}

static proc ex49 ()
{
ring r9 = 0,(z1,z2,z3,z4),dp;
ideal I = z3^2-z2*z4, z2^2*z3-z1*z4, z2^3-z1*z3;
bfctVarIn(I);
}

static proc ex410()
{
LIB "toric.lib";
ring r = 0,(z(1..7)),dp;
intmat A[3][7];
A = 6,4,2,0,3,1,0,0,1,2,3,0,1,0,0,0,0,0,1,1,2;
ideal I = toric_ideal(A,"pt");
I = std(I);
//ideal I = z(6)^2-z(3)*z(7), z(5)*z(6)-z(2)*z(7), z(5)^2-z(1)*z(7),
//  z(4)*z(5)-z(3)*z(6), z(3)*z(5)-z(2)*z(6), z(2)*z(5)-z(1)*z(6),
//  z(3)^2-z(2)*z(4), z(2)*z(3)-z(1)*z(4), z(2)^2-z(1)*z(3);
bfctVarIn(I,1); // no result yet
}
*/