/usr/share/singular/LIB/decomp.lib is in singular-data 4.0.3+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 | ///////////////////////////////////////////////////////////////////////
version="version decomp.lib 4.0.0.0 Jun_2013 "; // $Id: 6bfa7a1841ebda249c7957bf6dba5c0da562ab52 $
// last changed 21.5.12 C.G. reversal wieder eingefuegt (standalone)
category = "general";
info =
"
LIBRARY: decomp.lib Functional Decomposition of Polynomials
AUTHOR: Christian Gorzel, University of Muenster
email: gorzelc@math.uni-muenster.de
OVERVIEW:
@texinfo
This library implements functional uni-multivariate decomposition
of multivariate polynomials.
A (multivariate) polynomial f is a composite if it can be written as
@math{g \\circ h} where g is univariate and h is multivariate,
where @math{\\deg(g), \\deg(h)>1}.
Uniqueness for monic polynomials is up to linear coordinate change
@tex
$g\\circ h = g(x/c -d) \\circ c(h(x)+d)$.
@end tex
If f is a composite, then @code{decompose(f);} returns an ideal (g,h);
such that @math{\\deg(g) < \\deg(f)} is maximal, (@math{\\deg(h)\\geq 2}).
The polynomial h is, by the maximality of @math{\\deg(g)}, not a composite.
The polynomial g is univariate in the (first) variable vvar of f,
such that deg_vvar(f) is maximal.
@code{decompose(f,1);} computes a full decomposition, i.e. if f is a
composite, then an ideal @math{(g_1,\\dots ,g_m,h)} is returned, where
@math{g_i} are univariate and each entry is primitive such that
@math{f=g_1\\circ \\dots \\circ g_m\\circ h}.
If f is not a composite, for instance if @math{\\deg(f)} is prime,
then @code{decompose(f);} returns f.
The command @code{decompose} is the inverse: @code{compose(decompose(f,1))==f}.
Recall, that Chebyshev polynomials of the first kind commute by composition. @*
The decomposition algorithms work in the tame case, that is if
char(basering)=0 or p:=char(basering) > 0 but deg(g) is not divisible by
p.
Additionally, it works for monic polynomials over @math{Z} and in some
cases for monic polyomials over coefficient rings. @* See
@code{is_composite} for examples. (It also works over the reals but
there it seems not be numerical stable.) @*
More information on the univariate resp. multivariate case. @*
Univariate decomposition is created, with the additional assumption
@math{\\deg(g), \\deg(h)>1}. @*
A multivariate polynomial f is a composite, if f can be written as
@math{g \\circ h}, where @math{g} is a univariate polynomial and @math{h}
is multivariate. Note, that unlike in the univariate case, the polynomial
@math{h} may be of degree @math{1}. @*
E.g. @math{f = (x+y)^2+ 2(x+y) +1} is the composite of
@math{g = x^2+2x+1} and @math{h = x+y}. @*
If @code{nvars(basering)>1}, then, by default, a single-variable
multivariate polynomial is not considered to be the same as in the
one-variable polynomial ring; it will always be decomposed. That is: @*
@code{> ring r1=0,x,dp;} @*
@code{> decompose(x3+2x+1);} @*
@code{x3+2x+1} @*
but: @*
@code{> ring r2=0,(x,y),dp;} @*
@code{> decompose(x3+2x+1);} @*
@code{_[1]=x3+2x+1} @*
@code{_[2]=x} @*
In particular: @*
@code{is_composite(x3+2x+1)==1;} in @code{ring r1} but @*
@code{is_composite(x3+2x+1)==0;} in @code{ring r2}. @*
This is justified by interpreting the polynomial decomposition as an
affine Stein factorization of the mapping @math{f:k^n \\to k, n\\geq 2}.
The behaviour can changed by the some global variables.
@code{int DECMETH;} choose von zur Gathen's or Kozen-Landau's method.
@* @code{int MINS;} compute f = g o h, such that h(0) = 0. @*
@code{int IMPROVE;} simplify the coefficients of g and h if f is
not monic. @*
@code{int DEGONE;} single-variable multivariate are
considered uni-variate. @*
See @code{decompopts;} for more information.
Additional information is displayed if @code{printlevel > 0}.
@end texinfo
REFERENCES:
@texinfo
@tex
D. Kozen, S. Landau: Polynomial Decomposition Algorithms, \\par
\\quad \\qquad J. Symb. Comp. (1989), 7, 445-456. \\par
J. von zu Gathen: Functional Decomposition of Polynomials: the Tame Case,\\par
\\quad \\qquad J. Symb. Comp. (1990), 9, 281-299. \\par
J. von zur Gathen, J. Gerhard: Modern computer algebra, \\par
\\quad \\qquad Cambridge University Press, Cambridge, 2003.
@end tex
@end texinfo
PROCEDURES:
// decompunivmonic(f,r);
// decompmultivmonic(f,var,s);
decompopts([\"reset\"]); displays resp. resets global options
decompose(f[,1]); [complete] functional decomposition of poly f
is_composite(f); predicate, is f a composite polynomial?
chebyshev(n[,1]); the nth Chebyshev polynomial of the first kind
compose(f1,..,fn); compose f1 (f2 (...(fn))), f_i polys of ideal
AUXILIARY PROCEDURES:
makedistinguished(f,var); transforms f to a var-distinguished polynomial
// divisors(n[,1]); intvec [increasing] of the divisors d of n
// gcdv(v); the gcd of the entries in intvec v
// maxdegs(f); maximal degree for each variable of the poly f
// randomintvec(n,a,b[,1]); random intvec size n, [non-zero] entries in {a,b}
KEYWORDS: Functional decomposition
";
/*
decompunivpoly(poly f,list #) // f = goh; r = deg g, s = deg h;
Ablauf ist:
decompose(f)
| check whether f is the composite by a monomial
| check whether f is univariate
| transformation to a distinguished polynomial
decompmultivmonic(f,vvar,r)
decompunivmonic(f,r) // detect vvar by maxdegs
|lift univariate decomposition
| back-transformation
| fulldecompose, iterate
| decompuniv for g
*/
///////////////////////////////////////////////////////////////////////////////
proc decompopts(list #)
"USAGE: decompopts(); or decompopts(\"reset\");
RETURN: nothing
NOTE:
@texinfo
in the first case, it shows the setting of the control parameters;@*
in the second case, it kills the user-defined control parameters and@*
resets to the default setting which will then
be diplayed. @* @*
int DECMETH; Method for computing the univariate decomposition@*
0 : (default) Kozen-Landau @*
1 : von zur Gathen @*
int IMPROVE Choice of coefficients for the decomposition @*
@math{(g_1,\ldots,g_l,h)} of a non-monic polynomials f. @*
0 : leadcoef(@math{g_1}) = leadcoef(@math{f})
and @math{g_2,\ldots,g_l,h} are monic @*
1 : (default), content(@math{g_i}) = 1 @*
int MINS @*
@math{f=g\circ h, (g_1,\ldots,g_m,h)} of a non-monic polynomials f.@*
0 : g(0) = f(0), h(0) = 0 [ueberlegen fuer complete] @*
1 : (default), g(0)=0, h(0) = f(0) @*
2 : Tschirnhaus @*
int DECORD; The order in which the decomposition will be computed@*
0 : minfirst @*
1 : (default) maxfirst @*
int DEGONE; decompose also polynomials built on linear ones @*
0 : (default) @*
1 :
@end texinfo
EXAMPLE: example decompopts; shows an example
"
{
/*
siehe Erlaeuterungen, globale Variablen wie im Header angegeben,
suchen mit CTRL-S Top::
diese eintragen
*/
if (size(#))
{
if (string(#[1]) == "reset")
{
if (defined(DECMETH)) {kill DECMETH;}
// if (defined(DECORD)) {kill DECORD;}
if (defined(MINS)) {kill MINS;}
if (defined(IMPROVE)) {kill IMPROVE;}
}
}
if (voice==2)
{
"";
" === Global variables for decomp.lib === ";
"";
if (!defined(DECMETH)) {" -- DECMETH (int) not defined, implicitly 1";}
else
{
if (DECMETH!=0 and DECMETH!=1) { DECMETH=1; }
" -- DECMETH =", DECMETH;
}
/*
if (!defined(DECORD)) {" -- DECORD (int) not defined, implicitly 1";}
else
{
if (DECORD!=0 and DECORD!=1) { DECORD=1; }
" -- (int) DECORD =", DECORD;
}
*/
if (!defined(MINS)) {" -- MINS (int) not defined, implicitly 0";}
else
{
if (MINS!=0 and MINS!=1) { MINS = 0; }
" -- (int) MINS =", MINS;
}
if (!defined(IMPROVE)) {" -- IMPROVE (int) not defined, implicitly 1";}
else
{
if (IMPROVE!=0 and IMPROVE!=1) { IMPROVE=1; }
" -- (int) IMPROVE =", IMPROVE;
}
}
}
example;
{ "EXAMPLE:"; echo =2;
decompopts();
}
///////////////////////////////////////////////////////////////////////////////
//static
proc decompmonom(poly f, list #)
"USAGE: decompmonom(f[,vvar]); f poly, vvar poly
PURPOSE: compute a maximal decomposition in case that
f = g o h, where g is univariate and h is a single monomial
RETURN: ideal, (g,h); g univariate, h monomial if such a decomposition exist,
poly, the input, otherwise
ASSUME: f is non-constant
EXAMPLE: example decompmonom; shows an example
"
{
int i,k;
poly g;
poly vvar = var(1);
if (size(#)) { vvar = var(rvar(#[1])); }
//poly vvar = maxdeg(f);
poly zeropart = jet(f,0);
poly ff = f - zeropart;
int mindeg = -deg(ff,-1:nvars(basering));
poly minff = jet(ff,mindeg);
if (size(minff)>1) { return(f); }
intvec minv = leadexp(minff);
minv = minv/gcdv(minv);
for (i=1;i<=size(ff);i++)
{
k = divintvecs(leadexp(ff[i]),minv);
if (k==0) { return(f); }
else { g = g + leadcoef(ff[i])*vvar^k; }
}
g = g + zeropart;
dbprint("* Sucessfully multivariate decomposed by a monomial"+newline);
return(ideal(g,monomial(minv)));
}
example
{ "EXAMPLE:"; echo =2;
ring r = 0,(x,y),dp;
poly f = subst((x2+x3)^150,x,x2y3);
decompmonom(f);
ring rxyz = 0,(x,y,z),dp;
poly g = 1+x2+x3+x5;
poly G = subst(g,x,x7y5z3);
ideal I = decompmonom(G^50);
I[2];
}
///////////////////////////////////////////////////////////////////////////////
static proc divintvecs(intvec v,intvec w)
"USAGE: divintvecs(v,w); v,w intvec, w!=0
RETURN: int, k if v = k*w,
0 otherwise
NOTE: if w==0, then an Error message occurs
EXAMPLE: example divintevcs; shows an example
"
{
if (w==0) {
ERROR("// Error: proc divintvecs: the second argument has to be non-zero.");
return(0);
}
int i=1;
while (w[i]==0) { i++; }
int k = v[i] div w[i];
if (v == k*w) { return(k); }
else { return(0); }
}
example
{ "EXAMPLE:"; echo =2;
intvec v = 1,2,3;
intvec w = 2,4,6;
divintvecs(w,v);
divintvecs(intvec(3,2,9),v);
}
///////////////////////////////////////////////////////////////////////////////
static proc gcdv(intvec v)
"USAGE: gcdv(v); intvec v
RETURN: int, the gcd of the entries in v
NOTE: if v=0, then gcdv(v)=1 @*
this is different from Singular's builtin gcd, where gcd(0,0)==0
EXAMPLE: example gcdv; shows an example
"
{
int ggt;
int i,n;
ggt = v[1];
for (i=2;i<=size(v);i++)
{
ggt = gcd(ggt,v[i]);
}
if (ggt==0)
{
ggt = 1;
}
return(ggt);
}
example
{ "EXAMPLE:"; echo =2;
intvec v = 6,15,21;
gcdv(v);
gcdv(0:3);
}
///////////////////////////////////////////////////////////////////////////////
static proc divisors(int n,list #)
"USAGE: divisors(n); n int
divisors(n,1); n int
RETURN: intvec, the positive divisors of n @*
in decreasing order (default) @*
in increasing order in the second case
EXAMPLE: example divisors; shows an example
"
{
int i,j;
intvec v = 1;
list l = primefactors(n);
list primesl = l[1];
list multl = l[2];
for (i=1;i<=size(primesl);i++)
{
for (j=1;j<=multl[i];j++)
{ v = v,primesl[i]*v;}
}
ring rhelp =0,x,dp; // sort the intvec
poly h;
for(i=1;i<=size(v);i++)
{
h = h+x^v[i];
}
v=0;
for(i=1;i<=size(h);i++)
{
v[i]=leadexp(h[i])[1];
}
if (size(#)) {
return(intvec(v[size(v)..1]));
}
return(v);
}
example
{ "EXAMPLE:"; echo = 2;
divisors(30);
divisors(-24,1);
}
///////////////////////////////////////////////////////////////////////////////
//
// Dies wirkt sich nur aus wenn Brueche vorhanden sind?!
// Laeuft dann so statt cleardenom usw. problemlos ueber Z,Z_m
// ansehen.
//
static proc improvecoef(poly g0,poly h0,number lc)
"USAGE: improvecoef(g0,h0,lc); g0, h0 poly; lc number
RETURN: poly, poly, number
ASSUME: global ordering
EXAMPLE: example improvecoef; shows an example
"
{
int Zcoefs = find(charstr(basering),"integer");
poly vvar = var(univariate(g0));
number lch0 = leadcoef(h0);
number denom;
if (Zcoefs and lch0<0) // da cleardenom fuer integer buggy ist.
{
h0 = h0/(-1);
denom = -1;
}
else
{
h0 = cleardenom(h0);
denom = leadcoef(h0)/lch0;
}
g0 = subst(g0,vvar,1/denom*vvar);
g0 = lc*g0;
lc = leadcoef(g0);
g0= 1/lc*g0;
return(g0,h0,lc);
}
example
{ "EXAMPLE:"; echo = 2;
ring r = 0,x,dp;
poly g = 3x2+5x;
poly h = 4x3+2/3x;
number lc = 7;
improvecoef(g,h,lc);
}
///////////////////////////////////////////////////////////////////////////////
proc compose(list #)
"USAGE: compose(f1,...,fn); f1,...,fn poly
compose(I); I ideal, @*
ASSUME: the ideal consists of n=ncols(I) >= 1 entries, @*
where I[1],...,I[n-1] are univariate in the same variable @*
but I[n] may be multivariate.
RETURN: poly, the composition I[1](I[2](...I[n]))
NOTE: this procedure is the inverse of decompose
EXAMPLE: example compose; shows some examples
SEE: decompose
"
{
def d = basering; // Ohne dies kommt es zu Fehler, wenn auf Toplevel
// ring r definiert ist.
ideal I = ideal(#[1..size(#)]);
int n=ncols(I);
poly f=I[1];
map phisubst;
ideal phiid = maxideal(1);
int varnum = univariate(f);
if (varnum<0) {
" // the first polynomial is a constant";
return(f);
}
if (varnum==0 and n>1) {
" // the first polynomial is not univariate";
return(f);
}
// Hier noch einen Test ergaenzen
poly vvar = var(varnum);
for(int i=2;i<=n;i++)
{
phiid[varnum]=I[i];
// phisubst=d,phiid;
phisubst=basering,phiid;
f = phisubst(f);
}
return(f);
}
example
{ "EXAMPLE:"; echo =2;
ring r = 0,(x,y),dp;
compose(x3+1,x2,y3+x);
// or the input as one ideal
compose(ideal(x3+1,x2,x3+y));
}
///////////////////////////////////////////////////////////////////////////////
proc is_composite(poly f)
"USAGE: is_composite(f); f poly
RETURN: int @*
1, if f is decomposable @*
0, if f is not decomposable @*
-1, if char(basering)>0 and deg(f) is divisible by char(basering) but no
decomposition has been found.
NOTE: The last case means that it could exist a decomposition f=g o h with
char(basering)|deg(g), but this wild case cannot be decided by the algorithm.@*
Some additional information will be displayed when called by the user.
EXAMPLE: example is_composite; shows some examples
"
{
int d = deg(f,nvars(basering));
int cb = char(basering);
if (d<1)
{
" The polynomial is constant ";
return(0);
}
if (d==1)
{
" The polynomial is linear ";
return(0);
}
if (nvars(basering)==1 and d==prime(d))
{
" The degree is prime.";
return(0);
}
if (nvars(basering)>1 and univariate(f)) // and not(defined(DEGONE))
{
return(1);
}
// else try to decompose
int nc = ncols(ideal(decompose(f)));
if (cb > 0) // check the not covered wild case
{
if ((d mod cb == 0) and (nc == 1))
{
if (voice==2)
{
"// -- Warning: wild case, cannot decide whether the polynomial has a";
"// -- decomposition goh with deg(g) divisible by char(basering) = "
+ string(cb) + ".";
}
return(-1);
}
}
// in the tame case, decompose gives the correct result
return(nc>1);
}
example
{ "EXAMPLE:"; echo =2;
ring r0 = 0,x,dp;
is_composite(x4+5x2+6); // biquadratic polynomial
is_composite(2x2+x+1); // prime degree
// -----------------------------------------------------------------------
// polynomial ring with several variables
ring R = 0,(x,y),dp;
// -----------------------------------------------------------------------
// single-variable multivariate polynomials
is_composite(2x+1);
is_composite(2x2+x+1);
// -----------------------------------------------------------------------
// prime characteristic
ring r7 = 7,x,dp;
is_composite(compose(ideal(x2+x,x14))); // is_composite(x14+x7);
is_composite(compose(ideal(x14+x,x2))); // is_composite(x14+x2);
}
///////////////////////////////////////////////////////////////////////////////
proc decompose(poly f,list #)
"USAGE: decompose(f); f poly
decompose(f,1); f poly
RETURN: poly, the input, if f is not a composite
ideal, if the input is a composite
NOTE: computes a full decomposition if called by the second variant
EXAMPLE: example decompose; shows some examples
SEE: compose
"
{
if (!defined(IMPROVE)){ int IMPROVE = 1; }
if (!defined(MINFIRST)){ int MINFIRST = 0; }
int fulldecompose;
if (size(#)) { // cf. ERROR-msg in randomintvec
if (typeof(#[1])=="int") {
fulldecompose = (#[1]==1);
}
}
int m,iscomposed;
int globalord = 1;
ideal I;
// --- preparatory stuff ----------------------------------------------------
// The degree is not independent of the term order
int n = deg(f,1:nvars(basering));
int varnum = univariate(f); // to avoid transformation if f is univariate
// if (deg(f)<=1) {return(f);} //steigt automatisch bei der for-schleife aus m = 2
if (n==prime(n) and nvars(basering)==1
// or (varnum>0 and nvars(basering))
) {return(f);}
if (varnum<0)
{
ERROR("// -- Error proc decompoly: the polynomial is constant.");
}
//--------------------------------------------------------------------------
int minfirst = MINFIRST!=0;
list mdeg;
intvec maxdegv,degcand;
// -- switch to global order, necessary for division -- // Weiter nach oben
if (typeof(attrib(basering,"global"))!="int") {
globalord = 0;
}
else {
globalord = attrib(basering,"global");
}
if (!globalord) {
def d = basering;
list ll = ringlist(basering);
ll[3] = list(list("dp",1:nvars(basering)),list("C",0));
def rneu = ring(ll);
setring rneu;
poly f = fetch(d,f);
ideal I;
}
// -----------------------------------------------------------------------
map phiback;
poly f0,g0,h0,vvar;
number lc;
ideal J; // wird erst in fulldecompose benoetigt
// --- Determine the candidates for deg(g) a decreasing sequence of divisors
poly lf = jet(f,n)-jet(f,n-1);
//"lf = ",lf;
if (size(lf)==1) // the leading homogeneous part is a monomial
{
degcand = divisors(gcdv(leadexp(lf)));
}
else
{
degcand = divisors(n); // Das ist absteigend
}
if(printlevel>0) {degcand;}
// --- preparatory steps for the multivariate case -------------------------
if (varnum>0) // -- univariate polynomial
{
vvar = var(varnum);
f0 = f; // save f
}
else // i.e. multivariate (varnum==0),the case varnum < 0 is excluded above
{
// -- find variable with maximal degree
mdeg = maxdegs(f);
maxdegv = mdeg[2];
varnum = maxdegv[2];
vvar = var(varnum);
phiback = maxideal(1);
// special case, the polynomial is a composite of a single monomial //20.6.10
if (qhweight(f)!=0) { I = decompmonom(f,vvar); }
iscomposed = size(I)>1;
if (iscomposed) // 3.6.11 - dies decompmonom
{ //I;
ideal J = decompunivmonic(I[1],deg(I[1]));
I[2]= subst(J[2],vvar,I[2]);
I[1] = J[1];
//I;
}
if (!iscomposed) // -- transform into a distinguished polynomial
{
f0,phiback = makedistinguished(f,vvar);
}
}
// ------ Start computation ------------------------------------------------
// -- normalize and save the leading coefficient
lc = 1;
//f0;
//"vvar = ",vvar;
// --- 11.4.11 hier auch noch gewichteten Grad beruecksichtigen ? --
if (!iscomposed) { lc = leadcoef(coeffs(f0,vvar)[deg(f0)+1,1]); } // 20.6.10
// if Z, Z_m, and f is not monic (and content !=1) // if (f0/lc*lc!=f0)
if (find(charstr(basering),"integer") and not(lc==1 or lc==-1)) // 6.4.11
{
ERROR("// -- Error proc decompose: Can not decompose non-monic polynomial over Z!");
}
if (lc!=1){ f0 = 1/number(lc)*f0;} // --- normalize the polynomial
// -- Now the input is prepared to be monic and vvar-distinguished
//----------------------------------------------------------------
m = 1;
// --- Special case: a multivariate can be composite of a linear polynom
if (univariate(f) and nvars(basering)==1) // 11.8.09 d.h.
{ // --- if univariate ----------------------------------------
if(minfirst) {degcand = divisors(n,1);} // dies ist aufsteigend
m = 2; // skip first entry
}
// if decomposed as the decomposition with a monomial
// then skip the multivariate process // 20.6.10 detected as decompmonomial
if (iscomposed) { degcand = 1; }
if (printlevel>0 and !iscomposed) { "* Degree candidates are", degcand; }
// -- check succesively for each candidate
// whether f is decomposable with deg g = r
for(;m<size(degcand);m++) // decreasing
{ //r = degcand[m];
I = decompmultivmonic(f0,vvar,degcand[m]);
if (size(I)>1)
{
iscomposed = 1;
break;
}
}
// -- all candidates have be checked but f is primitive
if(!iscomposed) {
if (!globalord) { setring d; } // restore old ring
dbprint("** not decomposable: linear / not tame / prime degree --");
return(f);
}
// -- the monic vvar-distinguished polynomial f0 is decomposed -------
// -- retransformation for the multivariate case ---------------------
g0,h0 = I;
if (!univariate(f)) { h0 = phiback(h0);}
if (IMPROVE) { g0,h0,lc=improvecoef(g0,h0,lc);} // ueber switch
I = h0;
// -- Full decomposition: try to decompose g further ------------------
if (fulldecompose) {
dbprint(newline+"** Compute a complete decomposition");
while (iscomposed) {
iscomposed=0;
degcand=divisors(deg(g0,1:nvars(basering))); // absteigend
if (printlevel> 0) { "** Degree candidates are now: ", degcand; }
for (m=2;m<size(degcand);m++) //OK, ergibt lexicographically ..
{
J =decompunivmonic(g0,degcand[m]); /* J =decompuniv(g0);*/
g0 = J[1];
h0=J[2];
iscomposed = deg(h0,1:nvars(basering))>1;
if (iscomposed) {
if (IMPROVE) { g0,h0,lc=improvecoef(g0,h0,lc); } // ueber switch
I = h0,I;
break;
}
}
}
dbprint("** completely decomposed"+newline);
}
I = lc*g0,I;
if (!globalord) {
setring d;
I = fetch(rneu,I);
}
return(I);
}
example
{ "EXAMPLE:"; echo =2;
ring r2 = 0,(x,y),dp;
decompose(((x3+2y)^6+x3+2y)^4);
// complete decomposition
decompose(((x3+2y)^6+x3+2y)^4,1);
// -----------------------------------------------------------------------
// decompose over the integers
ring rZ = integer,x,dp;
decompose(compose(ideal(x3,x2+2x,x3+2)),1);
// -----------------------------------------------------------------------
// prime characteristic
ring r7 = 7,x,dp;
decompose(compose(ideal(x2+x,x7))); // tame case
// -----------------------------------------------------------------------
decompose(compose(ideal(x7+x,x2))); // wild case
// -----------------------------------------------------------------------
ring ry = (0,y),x,dp; // y is now a parameter
compose(x2+yx+5,x5-2yx3+x);
decompose(_);
// Usage of variable IMPROVE
ideal J = x2+10x, 64x7-112x5+56x3-7x, 4x3-3x;
decompose(compose(J),1);
int IMPROVE=0;
exportto(Decomp,IMPROVE);
decompose(compose(J),1);
}
///////////////////////////////////////////////////////////////////////////////
/* ring rt =(0,t),x,dp;
poly f = 36*x6+12*x4+15*x3+x2+5/2*x+(-t);
decompose(f);
*/
// Dies gibt stets ein ideal zurueck, wenn f composite ist
// gibt das polynom zurueck, wenn es primitiv ist
// static
proc decompmultivmonic(poly f,poly vvar,int r)
"USAGE: decompmultivmonic(f,vvar,r); f,vvar poly; r int
RETURN: ideal, I = ideal(g,h) if f = g o h with deg(g) = r@*
poly f, if f is not a composite or char(basering) divides r
ASSUME: f is monic and distinguished w.r.t. vvar,
1<=r<=deg(f) is a divisor of deg(f)
and char(basering) does not divide r.
EXAMPLE: example decompmultivmonic; shows an example
"
{
def d = basering;
int i,isprimitive;
int m = nvars(basering);
int n = deg(f);
int varnum = rvar(vvar);
intvec v = 1:m; // weight-vector for jet
v[varnum]=0;
int s = n div r;
// r = deg g; s = deg h;
poly f0 = f;
poly h,h0,g,gp,fgp,k,t,u;
ideal I,rem,phiid;
list l;
map phisubst;
// -- entscheidet intern, abhaengig von der Anzahl der Ringvariablen,
// -- ob f0 primitive ist.
// " r = ",r;
if (s*r!=n)
{
ERROR("// -- Error proc decompmultivmonic: r = "+string(r)+
" does not divide deg(f) = "+string(n)+".");
}
int cb = char(basering); // oder dies in decompunivmonic
if (cb>0)
{
if (r mod cb == 0)
{
if (voice == 2)
{
"// Warning: wild case in characteristic " + string(cb) +
". We cannot decide";
"// whether a decomposition goh with deg(g) = " + string(r)+
" exists.";"";
}
return(f);
}
}
//---------------------------------------------------------------------------
for (i=1;i<=m;i++)
{
if (i!=varnum) {f0 = subst(f0,var(i),0);}
}
//" f0 = ",f0;
// f0 ist nun das univariate
// 24.3.09 // 11.8.09 nochmals ansehen
if (r==deg(f0)) // the case of a linear multivarcomposite
{
dbprint("** try to decompose in linear h, deg g = "+string(r));
I = f0,vvar; // Das ist hier wichtig
}
else // find decomposition of the univariate f0
{
I = decompunivmonic(f0,r);
// dbprint(" ** monic decomposed");//" I = ";I;
isprimitive=(deg(I[2])==1);
if (isprimitive) {return(f);}
}
//---- proceed in the multivariate case
//---- lift the univariate decomposition
if (!univariate(f))
{
dbprint("* Lift the univariate decomposition");
g,h0 = I;
k = h0;
gp = diff(g,vvar);
// -- This is substitution ----
// t = substitute(gp,vvar,h0);
phiid = maxideal(1);
phiid[varnum]=h0;
phisubst=basering,phiid;
t = phisubst(gp);
// -- substitution ende
fgp = 1;
i = 0;
while(fgp!=0)
{
i++;
// -- This is substitution ----
//gp = substitute(g,vvar,k);
phiid[varnum]=k;
phisubst=basering,phiid;
gp = phisubst(g);
// -- substitution ende
fgp = f - gp;
u = jet(fgp,i,v) - jet(fgp,i-1,v); // oder mit reduce(maxideal(x))
l = division(u,t); // die kleineren Terme abschneiden
rem = l[2];
u = l[1][1,1]; // the factor
if (rem!=0)
{
isprimitive = 1;
break;
}
k = k + u;
}
h = k;
I = g,h;
//"decomposed as =";
//I;
}
if (isprimitive) {
dbprint(">>> not multivariate decomposed"+newline);
return(f);
}
else {
dbprint("* Sucessfully multivariate decomposed"+newline);
return(I);
}
}
example
{ "EXAMPLE:"; echo = 2;
ring r = 0,(x,y),lp;
poly f = 3xy4 + 2xy2 + x5y3 + x + y6;
decompmultivmonic(f,y,2);
ring rx = 0,x,lp;
decompmultivmonic(x8,x,4);
}
///////////////////////////////////////////////////////////////////////////////
//static
proc decompunivmonic(poly f,int r)
"USAGE: decompunivmonic(f,r); f poly, r int
RETURN: ideal, (g,h) such that f = goh and deg(g) = r
poly f, if such a decomposition does not exist.
ASSUME: f is univariate, r is a divisor of deg(f) @*
and char(basering) does not divide r in case that char(basering) > 0.
global order of the basering is assumed.
EXAMPLE: example decompunivmonic; shows an example
"
{
int d = deg(f);
int s; // r = deg g; s = deg h;
int minf,mins;
int iscomposed = 1;
if (!defined(MINS)) { int MINS = 0; }
if (!defined(DECMETH)) { int DECMETH = 1; }
int savedecmeth = DECMETH;
int Zcoefs =charstr(basering)=="integer";//find(charstr(basering),"integer");
number cf;
poly h,g;
ideal I;
matrix cc;
// --- Check input and create the results for the simple cases
if (deg(f)<1){return(ideal(f,var(1)));} // wird dies aufgerufen?
//-------------------------
int varnum = univariate(f);
if (varnum==0)
{
"// -- The polynomial is not univariate";
return(f);
}
poly vvar = var(varnum);
I = f,vvar;
if (leadcoef(f)!=1)
{
"// -- Error proc decompunivmonic: the polynomial is not monic.";
return(f);
}
/* Dies einklammern, wenn (x+1)^2 zerlegt werden sollte
// aus decompose heraus, wird dies gar nicht aufgerufen!
if (deg(f)==1 or deg(f)==prime(deg(f)))
{
"// -- The polynomial is not a composite.";
return(I);
}
*/
/* ---------------------------------------------------- */
s = d div r;
if (d!=s*r)
{
ERROR("// -- Error proc decompunivmonic: the second argument does not divide deg f.");
}
int cb = char(basering);
if (cb>0)
{
if (r mod cb ==0)
{
"wild case: cannot determine a decomposition";
return(I);
}
}
// -------------------------------------------------------------------------
// The Newton iteration only works over coefficient *fields*
// Therefore use in this case the Kozen-Landau method i.e. set DECMETH = 1;
if (savedecmeth==0 and Zcoefs) { DECMETH=1; }
// -- Start the computation ----------------------------------------------
dbprint("* STEP 1: Determine h");
dbprint(" d = deg f = " +string(n) + " f = goh"," r = deg g = "+string(r),
" s = deg h = " +string(s));
int tt = timer;
if(DECMETH==1) { // Kozen-Landau
dbprint("* Kozen-Landau method");
// Determine ord(f);
//cc = coef(f,vvar); // extract coefficents of f
//print(cc); read("");
// dbprint("time: "+string(timer-tt)); tt = timer;
// minf = deg(cc[1,ncols(cc)]); // 11.8.09 Doch OK.
minf = -deg(f,-1:nvars(basering)); // this is local ord 15.3.10
// oder: mins = 1; if (minf) { .. dies .. }
mins = (minf div r) + (minf mod r) > 0; // i.e. ceil(minf/r)
if (mins==0 and MINS) { mins=1; } // omit the constant term i.e. h(0) = 0
dbprint("** min f = "+string(minf) + " | min s = "+string(mins) +
" | s-mins = "+ string(s-mins));
// Dies wird wohl nicht benoetigt.
// int minr= (minf div s) + ((minf mod s)>0); // ceil
dbprint("** extract the coeffs ");
cc = coeffs(f,vvar);
dbprint("time: "+ string(timer -tt));
h = vvar^s;
for (int j=1;j<=s-mins;j++)
{
/*
timer = 1;H = Power(h,r); "Power H"; timer;
timer = 1;G = h^r; "h^r"; timer;
*/
cf = (number(cc[d-j+1,1])-number(coeffs(h^r,vvar)[d-j+1,1]));
// d-j+1,"cf =",cf, " r= ",r;
// dbprint("*** "+ string(d-j+1) + " cf = "+string(cf) + " r= "+string(r));
if (Zcoefs) { if (bigint(cf) mod r != 0) { iscomposed = 0; break; }}
cf = cf/r;
//else { cf = cf/r; }
h = h + cf*vvar^(s-j);
// " h = ",h;
}
} else {
dbprint("* von zur Gathen-method");
// "f=",f;
h = reversal(newtonrroot(reversal(f,d),r,s+!MINS),s,vvar); // verdreht OK
// " h = ",h;
dbprint("* END STEP 1: time: "+string(timer -tt));
}
DECMETH=savedecmeth; // restore the original method
if (iscomposed == 0) {
dbprint("** Failed in STEP 1: not decomposed with deg h = "+string(s)+newline);
return(I);
}
// -- Step 2: try to rewrite f as a sum of powers of h ---
dbprint("* STEP 2: Determine g");
poly H = h^r;
int dalt = r;
int ds;
number c;
while (d >= 0) // i.e. f!=0
{
//dbprint("d = ",d);
ds = d div s;
if (ds * s !=d) // d mod s != 0, i.e. remaining f is a power of h
{
iscomposed = 0;
break;
}
c = leadcoef(f);
g = g + c*vvar^ds;
H = division(H,h^(dalt - ds))[1][1,1]; // 10.3.10
// H = H / h^(dalt - ds);
f = f - c*H;
//"f = ",f;
dalt = ds;
d = deg(f);
}
dbprint("* END STEP 2: time: "+string(timer -tt));
if (iscomposed)
{
dbprint("** Sucessfully univariate decomposed with deg g = "+string(r)+newline);
I = g,h;
} else {
dbprint("** Failed in STEP 2: not decomposed with deg g = "+string(r)+newline);
}
return(I);
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0,(x,y),dp;
decompunivmonic((x2+x+1)^3,3);
decompunivmonic((x2+x)^3,3);
decompunivmonic((y2+y+1)^3,3);
}
///////////////////////////////////////////////////////////////////////////////
// aus polyaux.lib
proc reversal(poly f,list #)
"USAGE: reversal(f); f poly
reversal(f,k); f poly, k int
reversal(f,k,vvar); f poly, k int, vvar poly (a ring variable)
RETURN: poly, the reversal x^k*f(1/x) of the input f
ASSUME: f is univariate and that k>=deg(f)
@* since no negative exponents are possible in Singular
@* if k<deg(f) then k = deg(f) is used
NOTE: reversal(f); is by default reversal(f,deg(f));
the third variant is needed if f is a non-zero constant and k>0 @*
@* reversal is only idempotent,
@* if called twice with the deg(f) as second argument
EXAMPLE: example reversal; shows an example
"
{
int k = 0;
poly vvar = var(1);
if (size(#)) {
k = #[1] - deg(f) ;
if (k<0) { k=0; }
if (size(#)==2){ // check whether second optional argument
vvar = var(univariate(#[2])); // is a ring variable
}
}
int varnum = univariate(f);
if (varnum==0) {
ERROR("// -- the input is not univariate.");
}
if (varnum<0) { // the polynomial is constant
return(f*vvar^k);
}
def d = basering;
list l = ringlist(d);
list varl = l[2];
varl = insert(varl,"@z",size(varl));
l[2] = varl;
def rnew = ring(l);
setring rnew;
poly f = fetch(d,f);
f = subst(homog(f,@z),var(varnum),1,@z,var(varnum))*var(varnum)^k;
setring d;
f = fetch(rnew,f);
return(f);
}
example
{ "EXAMPLE:"; echo = 2;
ring r = 0,x,dp;
poly f = x3+2x+5;
reversal(f);
// the same as
reversal(f,3);
reversal(f,5);
poly g = x3+2x;
reversal(g);
// Not idempotent
reversal(reversal(g));
// idempotent
reversal(reversal(g,deg(g)),deg(g));
// or for short
// reversal(reversal(g),deg(g));
}
///////////////////////////////////////////////////////////////////////////////
// aus polyaux.lib
proc newtonrroot(poly f,int r,int l)
"USAGE: newtonrroot(f,r,l); f poly; r int; l int
RETURN: poly h, the solution of h^r = f modulo vvar^l
ASSUME: f(0) = 1
NOTE: this uses p-adic Newton iteration. It is the adaption of Algorithm 9.22@*
of von zur Gathen & Gerhard p. 264 for the special case: phi = Y^r - f
EXAMPLE: example newtonrroot; shows some examples
"
{
// phi = Y^r - f
poly g = 1; // start polynomial
poly s = 1/number(r); // initial solution
int i = 2;
//"s initial",s;
while(i<l) {
// "iteration i",i;
// g = (g -(g^r-f)*s) mod x^i;
g = jet((g -(g^r-f)*s), i-1);
// s = 2*s - (r*g^(r-1)*s^2) mod x^i;
s = jet(2*s - (r*g^(r-1)*s^2),i-1);
// "s is now ",s;
i = 2*i;
}
//"return newtonrroot";
//jet((g -(g^r-f)*s),l-1);
return(jet((g -(g^r-f)*s),l-1));
}
example
{ "EXAMPLE:"; echo = 2;
ring r = 0,x,dp;
ring r3 = 3,x,dp;
poly f = x+1;
// determine square root of f modulo x^4
poly g = newtonrroot(f,2,4);
g;
g^2;
ring R = (0,b,c,d),x,ds;
// poly f = 1 + bx +cx2+dx3;
poly f = 1 + 5bx +5cx2+5dx3;
poly g2 = newtonrroot(f,2,4);
g2;
f-g2^2;
poly f5 = 1 +5*(bx+cx2+dx3);
poly g5 = newtonrroot(f5,5,4);
g5;
f5-g5^5;
// Multivariate polynomials
ring r = 0,(x,y,z),ds;
ring r2 =(0,a,b,c,d,e),(x,y),ds;
// poly f = 1 +ax+by+cx2+dxy+ey2;
poly f3 = 1 +9*(ax+by+cx2+dxy+ey2);
poly g3 = newtonrroot(f3,3,4);
jet(g3^3-f3,5);
}
///////////////////////////////////////////////////////////////////////////////
static proc randomintvec(int n,int a,int b,list #)
"USAGE: randomintvec(n,a,b); n,a,b int;
randomintvec(n,a,b,1); n,a,b int;
RETURN: intvec, say v, of length n
with entries a<=v[i]<=b, in the first case, resp.
with entries a<=v[i]<=b, where v[i]!=0, in the second case
NOTE: a<=b should be satisfied, otherwise always v[i]=b (due to random).
EXAMPLE: example randomintvec; shows some examples
"
{
int i,randint,nozeroes;
intvec v;
if (size(#)) {
if (typeof(#[1])!="int") {
ERROR("4th argument can only be an integer, assumed 1.");
}
nozeroes = #[1]==1;
}
for (i=1;i<=n;i++)
{
randint = random(a,b);
while (nozeroes and randint==0) { randint = random(a,b); }
v[i] = randint;
}
return(v);
}
example
{ "EXAMPLE:"; echo = 1;
int randval = system("--random"); // store initial value
system("--random",0815);
echo = 2;
randomintvec(7,-1,1); // 7 entries in {-1,0,1}
randomintvec(7,-1,1,1); // 7 entries either -1 or 1
randomintvec(3,-10,10);
echo = 1;
system("--random",randval); // reset random generator
}
///////////////////////////////////////////////////////////////////////////////
proc makedistinguished(poly f,poly vvar)
"USAGE: makedistinguished(f,vvar); f, vvar poly; where vvar is a ring variable
RETURN: (poly, ideal): the transformed polynomial and an ideal defining
the map which reverses the transformation.
PURPOSE: let vvar = var(1). Then f is transformed by a random linear
coordinate change
phi = (var(1), var(2)+c_2*vvar,...,var(n)+c_n*vvar) @*
such that phi(f) = f o phi becomes distinguished with respect
to vvar. That is, the new polynomial contains the monomial vvar^d,
where d is the degree of f. @*
If already f is distinguished w.r.t. vvar, then f is left unchanged
and the re-transformation is the identity.
NOTE 1: (this proc correctly works independent of the term ordering.)
to apply the reverse transformation, either define a map
or use substitute (to be loaded from poly.lib).
NOTE 2: If p=char(basering) > 0, then there exist polynomials of degree d>=p,
e.g. @math{(p-1)x^p y + xy^p}, that cannot be transformed to a
vvar-distinguished polynomial. @*
In this case, *p random trials will be made and the proc
may leave with an ERROR message.
EXAMPLE: example makedistinguished; shows some examples
"
{
def d = basering; // eigentlich ueberfluessig // wg Bug mit example part
map phi; // erforderlich
ideal Db= maxideal(1);
int n,b = nvars(basering),1;
intvec v= 0:n;
intvec w =v;
int varnum = rvar(vvar);
w[varnum]=1; // weight vector for deg
poly g = f;
int degg = deg(g);
int count = 1; // limit the number of trials in char(p) > 0
//int count =2*char(basering);
while(deg(g,w)!=degg and (count-2*char(basering))) // do a transformation
{
v = randomintvec(n,-b,b,1); // n non-zero entries
v[varnum] = 0;
phi = d,ideal(matrix(maxideal(1),n,1) + var(varnum)*v); // transformation;
g = phi(f);
b++; // increase the range for the random values
// count--;
count++;
}
if (deg(g,w)!=degg) {
ERROR("it could not be transform to a "+string(vvar)+"-distinguished polynomial.");
}
Db = ideal(matrix(maxideal(1),n,1) - var(varnum)*v); // back transformation
return(g,Db);
}
example
{ "EXAMPLE:";
int randval = system("--random"); // store initial value
system("--random",0815);
echo = 2;
ring r = 0,(x,y),dp;
poly g;
map phi;
// -----------------------------------------------------------------------
// Example 1:
poly f = 3xy4 + 2xy2 + x5y3 + x + y6; // degree 8
// make the polynomial y-distinguished
g, phi = makedistinguished(f,y);
g;
phi;
// to reverse the transformation apply the map
f == phi(g);
// -----------------------------------------------------------------------
// Example 2:
// The following polynomial is already x-distinguished
f = x6+y4+xy;
g,phi = makedistinguished(f,x);
g; // f is left unchanged
phi; // the transformation is the identity.
echo = 1;
system("--random",randval); // reset random generator
// -----------------------------------------------------------------------
echo = 2;
// Example 3: // polynomials which cannot be transformed
// If p=char(basering)>0, then (p-1)*x^p*y + x*y^p factorizes completely
// in linear factors, since (p-1)*x^p+x equiv 0 on F_p. Hence,
// such polynomials cannot be transformed to a distinguished polynomial.
ring r3 = 3,(x,y),dp;
makedistinguished(2x3y+xy3,y);
}
///////////////////////////////////////////////////////////////////////////////
static proc maxdegs(poly f)
"USAGE: maxdegs(f); f poly
RETURN: list of two intvecs
_[1] intvec: degree for variable i, 1<=i<=nvars(basering) @*
_[2] intvec: max of _[1], index of first variable with this max degree
EXAMPLE: example maxdegs; shows an example
"
{
int i,n;
intvec degs,maxdeg;
list l;
n = nvars(basering);
for (i=1;i<=n;i++)
{
degs[i] = nrows(coeffs(f,var(i)))-1;
if (degs[i] > maxdeg)
{
maxdeg[1] = degs[i];
maxdeg[2] = i;
}
}
return(list(degs,maxdeg));
}
example
{ "EXAMPLE:"; echo =2;
ring r = 0,(x,y,z),lp;
poly f = 3xy4 + 2xy2 + x5y3 + xz6 + y6;
maxdegs(f);
}
///////////////////////////////////////////////////////////////////////////////
proc chebyshev(int n,list #)
"USAGE: chebyshev(n); n int, n >= 0
chebyshev(n,c); n int, n >= 0, c number, c!=0
RETURN: poly, the [monic] nth Chebyshev polynomial of the first kind. @*
The polynomials are defined in the first variable, say x, of the
basering.
NOTE: @texinfo
The (generalized) Chebyshev polynomials of the first kind can be
defined by the recursion:
@tex
$C_0 = c,\ C_1 = x,\ C_n = 2/c\cdot x\cdot C_{n-1}-C_{n-2},\ n \geq 2,c\neq 0$.
@end tex
@end texinfo
These polynomials commute by composition:
@math{C_m \circ C_n = C_n\circ C_m}. @*
For c=1, we obtain the standard (non monic) Chebyshev polynomials
@math{T_n} which satisfy @math{T_n(x) = \cos(n \cdot \arccos(x))}. @*
For c=2 (default), we obtain the monic Chebyshev polynomials @math{P_n}
which satisfy the relation @math{P_n(x+ 1/x) = x^n+ 1/x^n}. @*
By default the monic Chebyshev polynomials are returned:
@math{P_n =}@code{chebyshev(n)} and @math{T_n=}@code{chebyshev(n,1)}.@*
It holds @math{P_n(x) = 2\cdot T_n(x/2)} and more generally
@math{C_n(c\cdot x) = c\cdot T_n(x)} @*
That is @code{subst(chebyshev(n,c),var(1),c*var(1))= c*chebyshev(n,1)}.
If @code{char(basering) = 2}, then
@math{C_0 = 1, C_1 = x, C_2 = 1, C_3 = x}, and so on.
EXAMPLE: example chebyshev; shows some examples
"
{
number startv = 2;
if (size(#)){ startv = #[1]; }
if (startv == 0) { startv = 1; }
poly f0,f1 = startv,var(1);
poly fneu,falt = f1,f0;
poly fh;
if (n<=0) {return(f0);}
if (n==1) {return(f1);}
for(int i=2;i<=n;i++)
{
fh = 2/startv*var(1)*fneu - falt;
// fh = 2*var(1)*fneu - falt;
falt = fneu;
fneu = fh;
}
return(fh);
}
example
{ "EXAMPLE:"; echo = 2;
ring r = 0,x,lp;
// The monic Chebyshev polynomials
chebyshev(0);
chebyshev(1);
chebyshev(2);
chebyshev(3);
// These polynomials commute
compose(chebyshev(2),chebyshev(6)) ==
compose(chebyshev(6),chebyshev(2));
// The standard Chebyshev polynomials
chebyshev(0,1);
chebyshev(1,1);
chebyshev(2,1);
chebyshev(3,1);
// -----------------------------------------------------------------------
// The relation for the various Chebyshev polynomials
5*chebyshev(3,1)==subst(chebyshev(3,5),x,5x);
// -----------------------------------------------------------------------
// char 2 case
ring r2 = 2,x,dp;
chebyshev(2);
chebyshev(3);
}
///////////////////////////////////////////////////////////////////////////////
/*
// Examples for decomp.lib
ring r02 = 0,(x,y),dp;
decompose(compose(x6,chebyshev(4),x2+y3+x5y7),1);
int MINS = 0;
decompose((xy+1)^7);
//_[1]=x7
//_[2]=xy+1
decompose((x2y3+1)^7);
//_[1]=y7
//_[2]=x2y3+1
MINS = 1;
ring r01 = 0,x,dp;
decompose((x+1)^7);
//x7+7x6+21x5+35x4+35x3+21x2+7x+1
decompunivmonic((x+1)^7,7);
//_[1]=x7
//_[2]=x+1
int MINS =1;
decompunivmonic((x+1)^7,7);
//_[1]=x7+7x6+21x5+35x4+35x3+21x2+7x+1
//_[2]=x
// -- Example -------------
// Comparision Kozen-Landau vs. von zur Gathen
ring r02 = 0,(x,y),dp;
// printlevel = 5;
decompopts("reset");
poly F = compose(x6,chebyshev(4)+3,8x2+y3+7x5y7+2);
deg(F);
timer = 1;decompose(F,1);timer;
int MINS = 1;
timer = 1;decompose(F,1);timer;
int IMPROVE =0;
timer = 1;decompose(F,1);timer;
decompopts("reset");
int DECMETH = 0; // von zur Gathen
timer = 1;decompose(F,1);timer;
decompopts("reset");
// -- Example -------------
ring rZ10 = (integer,10),x,dp;
chebyshev(2);
//x2+8
chebyshev(3);
//x3+7x
compose(chebyshev(2),chebyshev(3));
//x6+4x4+9x2+8
decompose(_);
int MINS =1;
decompose(compose(chebyshev(2),chebyshev(3)));
compose(_);
decompopts("reset");
// -- Example -------------
ring rT =(0,y),x,dp;
compose(x2,x3+y,(y+1)*x2);
//(y6+6y5+15y4+20y3+15y2+6y+1)*x12+(2y4+6y3+6y2+2y)*x6+(y2)
decompose(_,1);
//_[1]=(y6+6y5+15y4+20y3+15y2+6y+1)*x2
//_[2]=x3+(y)/(y3+3y2+3y+1)
//_[3]=x2
int MINS =1;
compose(x2,x3+y,(y+1)*x2);
//(y6+6y5+15y4+20y3+15y2+6y+1)*x12+(2y4+6y3+6y2+2y)*x6+(y2)
decompose(_,1);
//_[1]=(y6+6y5+15y4+20y3+15y2+6y+1)*x2+(2y4+6y3+6y2+2y)*x+(y2)
//_[2]=x3
//_[3]=x2
//ring rt =(0,t),x,dp;
//compose(x2+tx+5,x5-2tx3+x);
//x10+(-4t)*x8+(4t2+2)*x6+(t)*x5+(-4t)*x4+(-2t2)*x3+x2+(t)*x+5
decompose(_);
//_[1]=x2+(-1/4t2+5)
//_[2]=x5+(-2t)*x3+x+(1/2t)
int IMPROVE = 1;
compose(x2+tx+5,x5-2tx3+x);
//x10+(-4t)*x8+(4t2+2)*x6+(t)*x5+(-4t)*x4+(-2t2)*x3+x2+(t)*x+5
decompose(_);
//_[1]=x2+(-1/4t2+5)
//_[2]=x5+(-2t)*x3+x+(1/2t)
int IMPROVE = 0;
compose(x2+tx+5,x5-2tx3+x);
//x10+(-4t)*x8+(4t2+2)*x6+(t)*x5+(-4t)*x4+(-2t2)*x3+x2+(t)*x+5
decompose(_);
//_[1]=x2+(-1/4t2+5)
//_[2]=x5+(-2t)*x3+x+(1/2t)
int MINS = 1;
compose(x2+tx+5,x5-2tx3+x);
//x10+(-4t)*x8+(4t2+2)*x6+(t)*x5+(-4t)*x4+(-2t2)*x3+x2+(t)*x+5
decompose(_);
//_[1]=x2+(t)*x+5
//_[2]=x5+(-2t)*x3+x
*/
///////////////////////////////////////////////////////////////////////////////
// --- End of decomp.lib --------------------------------------------------- //
///////////////////////////////////////////////////////////////////////////////
|