This file is indexed.

/usr/share/singular/LIB/assprimeszerodim.lib is in singular-data 4.0.3+ds-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
///////////////////////////////////////////////////////////////////////////////
version="version assprimeszerodim.lib 4.0.0.0 Jun_2014 "; // $Id: 4c9703d9d449016b92ecb5f8786539f6d04d29ed $
category="Commutative Algebra";
info="
LIBRARY:  assprimeszerodim.lib   associated primes of a zero-dimensional ideal

AUTHORS:  N. Idrees       nazeranjawwad@gmail.com
          G. Pfister      pfister@mathematik.uni-kl.de
          A. Steenpass    steenpass@mathematik.uni-kl.de
          S. Steidel      steidel@mathematik.uni-kl.de

OVERVIEW:

  A library for computing the associated primes and the radical of a
  zero-dimensional ideal in the polynomial ring over the rational numbers,
  Q[x_1,...,x_n], using modular computations.

SEE ALSO: primdec_lib

PROCEDURES:
 zeroRadical(I);       computes the radical of I
 assPrimes(I);         computes the associated primes of I
";

LIB "primdec.lib";
LIB "modstd.lib";

////////////////////////////////////////////////////////////////////////////////

proc zeroRadical(ideal I, list #)
"USAGE:  zeroRadical(I[, exactness]); I ideal, exactness int
ASSUME:  I is zero-dimensional in Q[variables]
RETURN:  the radical of I
NOTE:    A final test is applied to the result if exactness != 0 (default),
         otherwise no final test is done.
EXAMPLE: example zeroRadical; shows an example
"
{
   /* read optional parameter */
   int exactness = 1;
   if(size(#) > 0)
   {
      if(size(#) > 1 || typeof(#[1]) != "int")
      {
         ERROR("wrong optional parameter");
      }
      exactness = #[1];
   }

   /* compute a standard basis if necessary */
   if (!attrib(I, "isSB"))
   {
      I = modStd(I, exactness);
   }

   /* call modular() */
   // TODO: write deleteUnluckyPrimes_zeroRadical()
   if(exactness)
   {
      ideal F = modular("Assprimeszerodim::zeroRadP", list(I),
         Modstd::primeTest_std, Modular::deleteUnluckyPrimes_default,
         pTest_zeroRadical, finalTest_zeroRadical);
   }
   else
   {
      ideal F = modular("Assprimeszerodim::zeroRadP", list(I),
         Modstd::primeTest_std, Modular::deleteUnluckyPrimes_default,
         pTest_zeroRadical);
   }

   /* compute the squarefree parts */
   poly f;
   int k;
   int i;
   for(i = nvars(basering); i > 0; i--)
   {
      f = gcd(F[i], diff(F[i], var(i)));
      k = k + deg(f);
      F[i] = F[i]/f;
   }

   /* return the result */
   if(k == 0)
   {
      return(I);
   }
   else
   {
      return(modStd(I + F, exactness));
   }
}
example
{ "EXAMPLE:";  echo = 2;
   ring R = 0, (x,y), dp;
   ideal I = xy4-2xy2+x, x2-x, y4-2y2+1;
   zeroRadical(I);
}

////////////////////////////////////////////////////////////////////////////////

/* The pTest for zeroRadical(), to be used in modular(). */
static proc pTest_zeroRadical(string command, list args, ideal result, int p)
{
   /* change to characteristic p */
   def br = basering;
   list lbr = ringlist(br);
   if(typeof(lbr[1]) == "int")
   {
      lbr[1] = p;
   }
   else
   {
      lbr[1][1] = p;
   }
   def rp = ring(lbr);
   setring(rp);
   ideal Ip = fetch(br, args)[1];
   ideal Fp_result = fetch(br, result);

   /* run the command and compare with given result */
   execute("ideal Fp = "+command+"(Ip);");
   int i;
   for(i = nvars(br); i > 0; i--)
   {
      if(Fp[i] != Fp_result[i])
      {
         setring(br);
         return(0);
      }
   }
   setring(br);
   return(1);
}

////////////////////////////////////////////////////////////////////////////////

/* The finalTest for zeroRadical, to be used in modular(). */
static proc finalTest_zeroRadical(string command, list args, ideal F)
{
   int i;
   for(i = nvars(basering); i > 0; i--)
   {
      if(reduce(F[i], args[1]) != 0) { return(0); }
   }
   return(1);
}

////////////////////////////////////////////////////////////////////////////////

proc assPrimes(def I, list #)
"USAGE:  assPrimes(I[, alg, exactness]); I ideal or module,
         alg string (optional), exactness int (optional)
         - alg = "GTZ":    method of Gianni/Trager/Zacharias (default)
         - alg = "EHV":    method of Eisenbud/Hunecke/Vasconcelos
         - alg = "Monico": method of Monico
ASSUME:  I is zero-dimensional over Q[variables]
RETURN:  a list of the associated primes of I
NOTE:    A final test is applied to the result if exactness != 0 (default),
         otherwise no final test is done.
EXAMPLE: example assPrimes; shows an example
"
{
   /* read input */
   if(typeof(I) != "ideal")
   {
      if(typeof(I) != "module")
      {
         ERROR("The first argument must be of type 'ideal' or 'module'.");
      }
      module M = I;
      kill I;
      ideal I = Ann(M);
      kill M;
   }

   /* read optional parameters */
   list defaults = list("GTZ", 1);
   int i;
   for(i = 1; i <= size(defaults); i++)
   {
      if(typeof(#[i]) != typeof(defaults[i]))
      {
         # = insert(#, defaults[i], i-1);
      }
   }
   if(size(#) != size(defaults))
   {
      ERROR("wrong optional parameters");
   }
   string alg = #[1];
   int exactness = #[2];
   int a;
   if(alg == "GTZ")
   {
      a = 1;
   }
   if(alg == "EHV")
   {
      a = 2;
   }
   if(alg == "Monico")
   {
      a = 3;
   }
   if(a == 0)   // alg != "GTZ" && alg != "EHV" && alg != "Monico"
   {
      ERROR("unknown method");
   }

   /* compute a standard basis if necessary */
   if(printlevel >= 10) { "========== Start modStd =========="; }
   if (!attrib(I, "isSB")) {
       I = modStd(I, exactness);
   }
   if(printlevel >= 10) { "=========== End modStd ==========="; }
   int d = vdim(I);
   if(d == -1) { ERROR("Ideal is not zero-dimensional."); }
   if(homog(I) == 1) { return(list(maxideal(1))); }

   /* compute the radical if necessary */
   ideal J = I;
   int isRad;
   poly f;
   isRad, f = pTestRad(I, d);
   while(!isRad)
   {
      J = zeroRadical(I, exactness);
      J = modStd(J, exactness);
      d = vdim(J);
      isRad, f = pTestRad(J, d);
   }
   I = J;
   kill J;

   /* call modular() */
   if(exactness)
   {
      ideal F = modular("Assprimeszerodim::modpSpecialAlgDep",
         list(I, f, d, a),
         Modstd::primeTest_std, Modular::deleteUnluckyPrimes_default,
         pTest_assPrimes, finalTest_assPrimes);
   }
   else
   {
      ideal F = modular("Assprimeszerodim::modpSpecialAlgDep",
         list(I, f, d, a),
         Modstd::primeTest_std, Modular::deleteUnluckyPrimes_default,
         pTest_assPrimes);
   }

   /* compute the components */
   list result;
   list H = factorize(F[1]);
   for(i = size(H[1])-1; i > 0; i--)
   {
      result[i] = I + ideal(quickSubst(H[1][i+1], f, I));
   }

   /* return the result */
   return(result);
}
example
{ "EXAMPLE:";  echo = 2;
   ring R = 0,(a,b,c,d,e,f),dp;
   ideal I =
   2fb+2ec+d2+a2+a,
   2fc+2ed+2ba+b,
   2fd+e2+2ca+c+b2,
   2fe+2da+d+2cb,
   f2+2ea+e+2db+c2,
   2fa+f+2eb+2dc;
   assPrimes(I);
}

////////////////////////////////////////////////////////////////////////////////

/* Computes a poly F in Q[T] such that
 * <F> = kernel(Q[T] --> basering, T |-> f),
 * T := last variable in the basering.
 */
static proc specialAlgDepEHV(ideal I, poly f)
{
   def R = basering;
   execute("ring QT = ("+charstr(R)+"), "+varstr(R, nvars(R))+", dp;");
   setring(R);
   map phi = QT, f;
   setring QT;
   ideal F = preimage(R, phi, I); // corresponds to std(I, f-T) in dp(n),dp(1)
   setring(R);
   ideal F = imap(QT, F);
   return(F);
}

////////////////////////////////////////////////////////////////////////////////

/* Assume I is zero-dimensional.
 * Computes a poly F in Q[T] such that
 * <F> = kernel(Q[T] --> basering, T |-> f),
 * T := last variable in the basering.
 */
static proc specialAlgDepGTZ(ideal I, poly f)
{
   def R = basering;
   if(nvars(R) > 1)
   {
      def Rlp = changeord(list(list("dp", 1:(nvars(R)-1)), list("dp", 1:1)));
      setring(Rlp);
      poly f = imap(R, f);
      ideal I;
   }
   ideal K = maxideal(1);
   K[nvars(R)] = 2*var(nvars(R))-f;
   map phi = R, K;
   I = phi(I);
   I = std(I);
   ideal F = I[1];
   if(nvars(R) > 1)
   {
      setring(R);
      ideal F = imap(Rlp, F);
   }
   return(F);
}

////////////////////////////////////////////////////////////////////////////////

/* Assume I is zero-dimensional.
 * Computes a poly F in Q[T], the characteristic polynomial of the map
 * basering/I ---> basering/I  defined by the multiplication with f,
 * T := last variable in the basering.
 * In case I is radical, it is the same polynomial as in specialAlgDepEHV.
 */
static proc specialAlgDepMonico(ideal I, poly f, int d)
{
   def R = basering;
   int j;
   matrix M[d][d];
   ideal J = std(I);
   ideal basis = kbase(J);
   poly vars = var(nvars(R));
   for(j = nvars(R)-1; j > 0; j--)
   {
     vars = var(j)*vars;
   }
   for(j = 1; j <= d; j++)
   {
     M[1..d, j] = coeffs(reduce(f*basis[j], J), basis, vars);
   }
   execute("ring QT = ("+charstr(R)+"), "+varstr(R, nvars(R))+", dp;");
   matrix M = imap(R, M);
   ideal F = det(M-var(1)*freemodule(d));
   setring(R);
   ideal F = imap(QT, F);
   return(F);
}

////////////////////////////////////////////////////////////////////////////////

static proc specialTest(int d, poly p, ideal I)
{
//=== computes a poly F in Q[T] such that <F>=kernel(Q[T]--->basering)
//=== mapping T to p and test if d=deg(F)
   def R = basering;
   execute("ring Rhelp = ("+charstr(R)+"), T, dp;");
   setring R;
   map phi = Rhelp,p;
   setring Rhelp;
   ideal F = preimage(R,phi,I);
   int e=deg(F[1]);
   setring R;
   return((e==d), fetch(Rhelp, F)[1]);
}

////////////////////////////////////////////////////////////////////////////////

/* Assume d = vector space dim(basering/J).
 * Tries to find a (sparse) linear form r such that d = deg(F), where
 * F is a poly in Q[T] such that <F> = kernel(Q[T]-->basering) mapping T to r.
 * If found, returns (1, r, F). If not found, returns (0, 0, 0).
 */
static proc findGen(ideal J, int d)
{
   def R = basering;
   int n = nvars(R);
   int okay;
   poly F;

   /* try trivial transformation */
   poly r = var(n);
   okay, F = specialTest(d, r, J);
   if(okay)
   {
      return(1, r, F);
   }

   /* try transformations of the form var(n) + var(i) */
   int i;
   for(i = 1; i < n; i++)
   {
      okay, F = specialTest(d, r+var(i), J);
      if(okay)
      {
         return(1, r+var(i), F);
      }
   }

   /* try transformations of the form var(n) + \sum var(i) */
   if(n > 2)
   {
      for(i = 1; i < n; i++)
      {
         r = r + var(i);
         okay, F = specialTest(d, r, J);
         if(okay)
         {
            return(1, r, F);
         }
      }
   }

   /* try random transformations */
   int N = 2;   // arbitrarily chosen
   for(i = N; i > 0; i--)
   {
      r = randomLast(100)[n];
      okay, F = specialTest(d, r, J);
      if(okay)
      {
         return(1, r, F);
      }
   }

   /* not found */
   return(0, 0, 0);
}

////////////////////////////////////////////////////////////////////////////////

/* Assume d = vector space dim(basering/I).
 * Tests if I is radical over F_p, where p is some randomly chosen prime.
 * If yes, chooses a linear form r such that d = deg(squarefreepart(F)), where
 * F is a poly in Z/p[T] such that <F> = kernel(Z/p[T]-->Z/p[vars(basering)])
 * mapping T to r.
 * Returns (1, r), if I is radical over F_p, and (0, 0) otherwise.
 */
static proc pTestRad(ideal I, int d)
{
   int N = 2;   // Try N random primes. Value of N can be chosen arbitrarily.
   def R = basering;
   list rl = ringlist(R);
   int p;
   int okay;
   int i;
   for(i = N; i > 0; i--)
   {
      p = prime(random(100000000,536870912));

      // change to characteristic p
      if(typeof(rl[1]) == "int")
      {
         rl[1] = p;
      }
      else
      {
         rl[1][1] = p;
      }
      def Rp(i) = ring(rl);
      setring Rp(i);
      ideal I = imap(R, I);

      // find and test transformation
      poly r;
      poly F;
      okay, r, F = findGen(I, d);
      if(okay)
      {
         poly f = gcd(F, diff(F, var(1)));
         if(d == deg(F/f))   // F squarefree?
         {
            setring(R);
            return(1, imap(Rp(i), r));
         }
      }
      setring(R);
   }
   return(0, 0);
}

////////////////////////////////////////////////////////////////////////////////

/* Computes an ideal F such that ncols(F) = nvars(basering),
 * < F[i] > = (I intersected with K[var(i)]), and F[i] is monic.
 */
static proc zeroRadP(ideal I)
{
   intvec opt = option(get);
   option(redSB);
   I = std(I);
   ideal F = finduni(I);   // F[i] generates I intersected with K[var(i)]
   F = simplify(F, 1);
   option(set, opt);
   return(F);
}

////////////////////////////////////////////////////////////////////////////////

static proc quickSubst(poly h, poly r, ideal I)
{
//=== assume h is in Q[x_n], r is in Q[x_1,...,x_n], computes h(r) mod I
   attrib(I,"isSB",1);
   int n = nvars(basering);
   poly q = 1;
   int i,j,d;
   intvec v;
   list L;
   for(i = 1; i <= size(h); i++)
   {
      L[i] = list(leadcoef(h[i]),leadexp(h[i])[n]);
   }
   d = L[1][2];
   i = 0;
   h = 0;

   while(i <= d)
   {
      if(L[size(L)-j][2] == i)
      {
         h = reduce(h+L[size(L)-j][1]*q,I);
         j++;
      }
      q = reduce(q*r,I);
      i++;
   }
   return(h);
}

////////////////////////////////////////////////////////////////////////////////

/* Simple switch for specialAlgDepEHV, specialAlgDepGTZ, and
 * specialAlgDepMonico.
 */
static proc modpSpecialAlgDep(ideal I, poly f, int d, int alg)
{
   ideal F;
   if(alg == 1) { F = specialAlgDepEHV(I, f); }
   if(alg == 2) { F = specialAlgDepGTZ(I, f); }
   if(alg == 3) { F = specialAlgDepMonico(I, f, d); }
   F = simplify(F, 1);
   return(F);
}

////////////////////////////////////////////////////////////////////////////////

/* The pTest for assPrimes(), to be used in modular(). */
static proc pTest_assPrimes(string command, list args, ideal F, int p)
{
   def br = basering;
   list lbr = ringlist(br);
   if(typeof(lbr[1]) == "int")
   {
      lbr[1] = p;
   }
   else
   {
      lbr[1][1] = p;
   }
   def rp = ring(lbr);
   setring(rp);
   list args_p = fetch(br, args);
   ideal F = fetch(br, F);
   execute("ideal Fp = "+command+"("
      +Tasks::argsToString("args_p", size(args_p))+");");
   int k = (Fp[1] == F[1]);
   setring br;
   return(k);
}

////////////////////////////////////////////////////////////////////////////////

/* The finalTest for assPrimes(), to be used in modular(). */
static proc finalTest_assPrimes(string command, alias list args, ideal F)
{
   F = cleardenom(F[1]);
   if(deg(F[1]) != args[3]) { return(0); }
   if(gcd(F[1], diff(F[1], var(nvars(basering)))) != 1) { return(0); };
   if(quickSubst(F[1], args[2], args[1]) != 0) { return(0); }
   return(1);
}

////////////////////////////////////////////////////////////////////////////////

/*
Examples:
=========

//=== Test for zeroR
ring R = 0,(x,y),dp;
ideal I = xy4-2xy2+x, x2-x, y4-2y2+1;

//=== Cyclic_6
ring R = 0,x(1..6),dp;
ideal I = cyclic(6);

//=== Amrhein
ring R = 0,(a,b,c,d,e,f),dp;
ideal I = 2fb+2ec+d2+a2+a,
          2fc+2ed+2ba+b,
          2fd+e2+2ca+c+b2,
          2fe+2da+d+2cb,
          f2+2ea+e+2db+c2,
          2fa+f+2eb+2dc;

//=== Becker-Niermann
ring R = 0,(x,y,z),dp;
ideal I = x2+xy2z-2xy+y4+y2+z2,
          -x3y2+xy2z+xyz3-2xy+y4,
          -2x2y+xy4+yz4-3;

//=== Roczen
ring R = 0,(a,b,c,d,e,f,g,h,k,o),dp;
ideal I = o+1, k4+k, hk, h4+h, gk, gh, g3+h3+k3+1,
          fk, f4+f, eh, ef, f3h3+e3k3+e3+f3+h3+k3+1,
          e3g+f3g+g, e4+e, dh3+dk3+d, dg, df, de,
          d3+e3+f3+1, e2g2+d2h2+c, f2g2+d2k2+b,
          f2h2+e2k2+a;

//=== FourBodyProblem
//=== 4 bodies with equal masses, before symmetrisation.
//=== We are looking for the real positive solutions
ring R = 0,(B,b,D,d,F,f),dp;
ideal I = (b-d)*(B-D)-2*F+2,
          (b-d)*(B+D-2*F)+2*(B-D),
          (b-d)^2-2*(b+d)+f+1,
          B^2*b^3-1,D^2*d^3-1,F^2*f^3-1;

//=== Reimer_5
ring R = 0,(x,y,z,t,u),dp;
ideal I = 2x2-2y2+2z2-2t2+2u2-1,
          2x3-2y3+2z3-2t3+2u3-1,
          2x4-2y4+2z4-2t4+2u4-1,
          2x5-2y5+2z5-2t5+2u5-1,
          2x6-2y6+2z6-2t6+2u6-1;

//=== ZeroDim.example_12
ring R = 0, (x, y, z), lp;
ideal I = 7xy+x+3yz+4y+2z+10,
          x3+x2y+3xyz+5xy+3x+2y3+6y2z+yz+1,
          3x4+2x2y2+3x2y+4x2z2+xyz+xz2+6y2z+5z4;

//=== ZeroDim.example_27
ring R = 0, (w, x, y, z), lp;
ideal I = -2w2+9wx+9wy-7wz-4w+8x2+9xy-3xz+8x+6y2-7yz+4y-6z2+8z+2,
          3w2-5wx-3wy-6wz+9w+4x2+2xy-2xz+7x+9y2+6yz+5y+7z2+7z+5,
          7w2+5wx+3wy-5wz-5w+2x2+9xy-7xz+4x-4y2-5yz+6y-4z2-9z+2,
          8w2+5wx-4wy+2wz+3w+5x2+2xy-7xz-7x+7y2-8yz-7y+7z2-8z+8;

//=== Cassou_1
ring R = 0, (b,c,d,e), dp;
ideal I = 6b4c3+21b4c2d+15b4cd2+9b4d3+36b4c2+84b4cd+30b4d2+72b4c+84b4d-8b2c2e
          -28b2cde+36b2d2e+48b4-32b2ce-56b2de-144b2c-648b2d-32b2e-288b2-120,
          9b4c4+30b4c3d+39b4c2d2+18b4cd3+72b4c3+180b4c2d+156b4cd2+36b4d3+216b4c2
          +360b4cd+156b4d2-24b2c3e-16b2c2de+16b2cd2e+24b2d3e+288b4c+240b4d
          -144b2c2e+32b2d2e+144b4-432b2c2-720b2cd-432b2d2-288b2ce+16c2e2-32cde2
          +16d2e2-1728b2c-1440b2d-192b2e+64ce2-64de2-1728b2+576ce-576de+64e2
          -240c+1152e+4704,
          -15b2c3e+15b2c2de-90b2c2e+60b2cde-81b2c2+216b2cd-162b2d2-180b2ce
          +60b2de+40c2e2-80cde2+40d2e2-324b2c+432b2d-120b2e+160ce2-160de2-324b2
          +1008ce-1008de+160e2+2016e+5184,
          -4b2c2+4b2cd-3b2d2-16b2c+8b2d-16b2+22ce-22de+44e+261;

================================================================================

The following timings are conducted on an Intel Xeon X5460 with 4 CPUs, 3.16 GHz
each, 64 GB RAM under the Gentoo Linux operating system by using the 32-bit
version of Singular 3-1-1.
The results of the timinings are summarized in the following table where
assPrimes* denotes the parallelized version of the algorithm on 4 CPUs and
 (1) approach of Eisenbud, Hunecke, Vasconcelos (cf. specialAlgDepEHV),
 (2) approach of Gianni, Trager, Zacharias      (cf. specialAlgDepGTZ),
 (3) approach of Monico                         (cf. specialAlgDepMonico).

Example             | minAssGTZ |     assPrimes         assPrimes*
                    |           |  (1)   (2)   (3)   (1)   (2)   (3)
--------------------------------------------------------------------
Cyclic_6            |      5    |    5    10     7     4     7     6
Amrhein             |      1    |    3     3     5     1     2    21
Becker-Niermann     |      -    |    0     0     1     0     0     0
Roczen              |      0    |    3     2     0     2     4     1
FourBodyProblem     |      -    |  139   139   148    96    83    96
Reimer_5            |      -    |  132   128   175    97    70   103
ZeroDim.example_12  |    170    |  125   125   125    67    68    63
ZeroDim.example_27  |     27    |  215   226   215   113   117   108
Cassou_1            |    525    |  112   112   112    56    56    57

minAssGTZ (cf. primdec_lib) runs out of memory for Becker-Niermann,
FourBodyProblem and Reimer_5.

================================================================================

//=== One component at the origin

ring R = 0, (x,y), dp;
poly f1 = (y5 + y4x7 + 2x8);
poly f2 = (y3 + 7x4);
poly f3 = (y7 + 2x12);
poly f = f1*f2*f3 + y19;
ideal I = f, diff(f, x), diff(f, y);

ring R = 0, (x,y), dp;
poly f1 = (y5 + y4x7 + 2x8);
poly f2 = (y3 + 7x4);
poly f3 = (y7 + 2x12);
poly f4 = (y11 + 2x18);
poly f = f1*f2*f3*f4 + y30;
ideal I = f, diff(f, x), diff(f, y);

ring R = 0, (x,y), dp;
poly f1 = (y15 + y14x7 + 2x18);
poly f2 = (y13 + 7x14);
poly f3 = (y17 + 2x22);
poly f = f1*f2*f3 + y49;
ideal I = f, diff(f, x), diff(f, y);

ring R = 0, (x,y), dp;
poly f1 = (y15 + y14x20 + 2x38);
poly f2 = (y19 + 3y17x50 + 7x52);
poly f = f1*f2 + y36;
ideal I = f, diff(f, x), diff(f, y);

//=== Several components

ring R = 0, (x,y), dp;
poly f1 = (y5 + y4x7 + 2x8);
poly f2 = (y13 + 7x14);
poly f = f1*subst(f2, x, x-3, y, y+5);
ideal I = f, diff(f, x), diff(f, y);

ring R = 0, (x,y), dp;
poly f1 = (y5  + y4x7 + 2x8);
poly f2 = (y3 + 7x4);
poly f3 = (y7 + 2x12);
poly f = f1*f2*subst(f3, y, y+5);
ideal I = f, diff(f, x), diff(f, y);

ring R = 0, (x,y), dp;
poly f1 = (y5  + 2x8);
poly f2 = (y3 + 7x4);
poly f3 = (y7 + 2x12);
poly f = f1*subst(f2,x,x-1)*subst(f3, y, y+5);
ideal I = f, diff(f, x), diff(f, y);
*/