/usr/share/singular/LIB/algebra.lib is in singular-data 4.0.3+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 | ///////////////////////////////////////////////////////////////////////////////
version="version algebra.lib 4.0.1.1 Dec_2014 "; // $Id: 2bb3191198fbd2218ed724a0340d9b6d804e14b8 $
category="Commutative Algebra";
info="
LIBRARY: algebra.lib Compute with Algbras and Algebra Maps
AUTHORS: Gert-Martin Greuel, greuel@mathematik.uni-kl.de,
@* Agnes Eileen Heydtmann, agnes@math.uni-sb.de,
@* Gerhard Pfister, pfister@mathematik.uni-kl.de
PROCEDURES:
algebra_containment(); query of algebra containment
module_containment(); query of module containment over a subalgebra
inSubring(p,I); test whether polynomial p is in subring generated by I
algDependent(I); computes algebraic relations between generators of I
alg_kernel(phi); computes the kernel of the ringmap phi
is_injective(phi); test for injectivity of ringmap phi
is_surjective(phi); test for surjectivity of ringmap phi
is_bijective(phi); test for bijectivity of ring map phi
noetherNormal(id); noether normalization of ideal id
mapIsFinite(R,phi,I); query for finiteness of map phi:R --> basering/I
finitenessTest(i,z); find variables which occur as pure power in lead(i)
nonZeroEntry(id); list describing non-zero entries of an identifier
";
LIB "inout.lib";
LIB "elim.lib";
LIB "ring.lib";
LIB "matrix.lib";
///////////////////////////////////////////////////////////////////////////////
proc algebra_containment (poly p, ideal A, list #)
"USAGE: algebra_containment(p,A[,k]); p poly, A ideal, k integer.
@* A = A[1],...,A[m] generators of subalgebra of the basering
RETURN:
@format
- k=0 (or if k is not given) an integer:
1 : if p is contained in the subalgebra K[A[1],...,A[m]]
0 : if p is not contained in K[A[1],...,A[m]]
- k=1 : a list, say l, of size 2, l[1] integer, l[2] ring, satisfying
l[1]=1 if p is in the subalgebra K[A[1],...,A[m]] and then the ring
l[2]: ring, contains poly check = h(y(1),...,y(m)) if p=h(A[1],...,A[m])
l[1]=0 if p is not in the subalgebra K[A[1],...,A[m]] and then
l[2] contains the poly check = h(x,y(1),...,y(m)) if p satisfies
the nonlinear relation p = h(x,A[1],...,A[m]) where
x = x(1),...,x(n) denote the variables of the basering
@end format
DISPLAY: if k=0 and printlevel >= voice+1 (default) display the polynomial check
NOTE: The proc inSubring uses a different algorithm which is sometimes
faster.
THEORY: The ideal of algebraic relations of the algebra generators A[1],...,
A[m] is computed introducing new variables y(i) and the product
order with x(i) >> y(i).
p reduces to a polynomial only in the y(i) <=> p is contained in the
subring generated by the polynomials A[1],...,A[m].
EXAMPLE: example algebra_containment; shows an example
"
{ int DEGB = degBound;
degBound = 0;
if (size(#)==0)
{ #[1] = 0;
}
def br=basering;
int n = nvars(br);
int m = ncols(A);
int i;
string mp=string(minpoly);
//-----------------
// neu CL 10/05:
int is_qring;
if (size(ideal(br))>0) {
is_qring=1;
ideal IdQ = ideal(br);
}
//-----------------
// ---------- create new ring with extra variables --------------------
execute ("ring R=("+charstr(br)+"),(x(1..n),y(1..m)),(dp(n),dp(m));");
if (mp!="0")
{ execute ("minpoly=number("+mp+");"); }
ideal vars=x(1..n);
map emb=br,vars;
ideal A=ideal(emb(A));
poly check=emb(p);
for (i=1;i<=m;i=i+1)
{ A[i]=A[i]-y(i);
}
//-----------------
// neu CL 10/05:
if (is_qring) { A = A,emb(IdQ); }
//-----------------
A=std(A);
check=reduce(check,A);
/*alternatively we could use reduce(check,A,1) which is a little faster
but result is bigger since it is not tail-reduced
*/
//--- checking whether all variables from old ring have disappeared ------
// if so, then the sum of the first n leading exponents is 0, hence i=1
// use i also to control the display
i = (sum(leadexp(check),1..n)==0);
degBound = DEGB;
if( #[1] == 0 )
{ dbprint(printlevel-voice+3,"// "+string(check));
return(i);
}
else
{ list l = i,R;
kill A,vars,emb;
export check;
dbprint(printlevel-voice+3,"
// 'algebra_containment' created a ring as 2nd element of the list.
// The ring contains the polynomial check which defines the algebraic relation.
// To access to the ring and see check you must give the ring a name,
// e.g.:
def S = l[2]; setring S; check;
");
setring br;
return(l);
}
}
example
{ "EXAMPLE: Sturmfels: Algorithms in Invariant Theory 2.3.7:"; echo=2;
int p = printlevel; printlevel = 1;
ring R = 0,(x,y,z),dp;
ideal A=x2+y2,z2,x4+y4,1,x2z-1y2z,xyz,x3y-1xy3;
poly p1=z;
poly p2=
x10z3-x8y2z3+2x6y4z3-2x4y6z3+x2y8z3-y10z3+x6z4+3x4y2z4+3x2y4z4+y6z4;
algebra_containment(p1,A);
algebra_containment(p2,A);
list L = algebra_containment(p2,A,1);
L[1];
def S = L[2]; setring S;
check;
printlevel = p;
}
///////////////////////////////////////////////////////////////////////////////
proc module_containment(poly p, ideal P, ideal S, list #)
"USAGE: module_containment(p,P,M[,k]); p poly, P ideal, M ideal, k int
@* P = P[1],...,P[n] generators of a subalgebra of the basering,
@* M = M[1],...,M[m] generators of a module over the subalgebra K[P]
ASSUME: ncols(P) = nvars(basering), the P[i] are algebraically independent
RETURN:
@format
- k=0 (or if k is not given), an integer:
1 : if p is contained in the module <M[1],...,M[m]> over K[P]
0 : if p is not contained in <M[1],...,M[m]>
- k=1, a list, say l, of size 2, l[1] integer, l[2] ring:
l[1]=1 : if p is in <M[1],...,M[m]> and then the ring l[2] contains
the polynomial check = h(y(1),...,y(m),z(1),...,z(n)) if
p = h(M[1],...,M[m],P[1],...,P[n])
l[1]=0 : if p is in not in <M[1],...,M[m]>, then l[2] contains the
poly check = h(x,y(1),...,y(m),z(1),...,z(n)) if p satisfies
the nonlinear relation p = h(x,M[1],...,M[m],P[1],...,P[n]) where
x = x(1),...,x(n) denote the variables of the basering
@end format
DISPLAY: the polynomial h(y(1),...,y(m),z(1),...,z(n)) if k=0, resp.
a comment how to access the relation check if k=1, provided
printlevel >= voice+1 (default).
THEORY: The ideal of algebraic relations of all the generators p1,...,pn,
s1,...,st given by P and S is computed introducing new variables y(j),
z(i) and the product order: x^a*y^b*z^c > x^d*y^e*z^f if x^a > x^d
with respect to the lp ordering or else if z^c > z^f with respect to
the dp ordering or else if y^b > y^e with respect to the lp ordering
again. p reduces to a polynomial only in the y(j) and z(i), linear in
the z(i) <=> p is contained in the module.
EXAMPLE: example module_containment; shows an example
"
{ def br=basering;
int DEGB = degBound;
degBound=0;
if (size(#)==0)
{ #[1] = 0;
}
int n=nvars(br);
if ( ncols(P)==n )
{ int m=ncols(S);
string mp=string(minpoly);
// ---------- create new ring with extra variables --------------------
execute
("ring R=("+charstr(br)+"),(x(1..n),y(1..m),z(1..n)),(lp(n),dp(m),lp(n));");
if (mp!="0")
{ execute ("minpoly=number("+mp+");"); }
ideal vars = x(1..n);
map emb = br,vars;
ideal P = emb(P);
ideal S = emb(S);
poly check = emb(p);
ideal I;
for (int i=1;i<=m;i=i+1)
{ I[i]=S[i]-y(i);
}
for (i=1;i<=n;i=i+1)
{ I[m+i]=P[i]-z(i);
}
I=std(I);
check = reduce(check,I);
//--- checking whether all variables from old ring have disappeared ------
// if so, then the sum of the first n leading exponents is 0
i = (sum(leadexp(check),1..n)==0);
if( #[1] == 0 )
{ dbprint(i*(printlevel-voice+3),"// "+string(check));
setring br;
return(i);
}
else
{ list l = i,R;
kill I,vars,emb,P,S;
export check;
dbprint(printlevel-voice+3,"
// 'module_containment' created a ring as 2nd element of the list. The
// ring contains the polynomial check which defines the algebraic relation
// for p. To access to the ring and see check you must give the ring
// a name, e.g.:
def S = l[2]; setring S; check;
");
setring br;
return(l);
}
}
else
{
setring br;
"ERROR: the first ideal must have nvars(basering) entries";
return();
}
}
example
{ "EXAMPLE: Sturmfels: Algorithms in Invariant Theory 2.3.7:"; echo=2;
int p = printlevel; printlevel = 1;
ring R=0,(x,y,z),dp;
ideal P = x2+y2,z2,x4+y4; //algebra generators
ideal M = 1,x2z-1y2z,xyz,x3y-1xy3; //module generators
poly p1=
x10z3-x8y2z3+2x6y4z3-2x4y6z3+x2y8z3-y10z3+x6z4+3x4y2z4+3x2y4z4+y6z4;
module_containment(p1,P,M);
poly p2=z;
list l = module_containment(p2,P,M,1);
l[1];
def S = l[2]; setring S; check;
printlevel=p;
}
///////////////////////////////////////////////////////////////////////////////
proc inSubring(poly p, ideal I)
"USAGE: inSubring(p,i); p poly, i ideal
RETURN:
@format
a list l of size 2, l[1] integer, l[2] string
l[1]=1 if and only if p is in the subring generated by i=i[1],...,i[k],
and then l[2] = y(0)-h(y(1),...,y(k)) if p = h(i[1],...,i[k])
l[1]=0 if and only if p is in not the subring generated by i,
and then l[2] = h(y(0),y(1),...,y(k)) where p satisfies the
nonlinear relation h(p,i[1],...,i[k])=0.
@end format
NOTE: the proc algebra_containment tests the same using a different
algorithm, which is often faster
if l[1] == 0 then l[2] may contain more than one relation h(y(0),y(1),...,y(k)),
separated by comma
EXAMPLE: example inSubring; shows an example
"
{int z=ncols(I);
int i;
def gnir=basering;
int n = nvars(gnir);
string mp=string(minpoly);
list l;
// neu CL 10/05:
int is_qring;
if (size(ideal(gnir))>0)
{
is_qring=1;
ideal IdQ = ideal(gnir);
}
// ---------- create new ring with extra variables --------------------
//the intersection of ideal nett=(p-y(0),I[1]-y(1),...)
//with the ring k[y(0),...,y(n)] is computed, the result is ker
execute ("ring r1= ("+charstr(basering)+"),(x(1..n),y(0..z)),lp;");
// execute ("ring r1= ("+charstr(basering)+"),(y(0..z),x(1..n)),dp;");
if (mp!="0")
{ execute ("minpoly=number("+mp+");"); }
ideal va = x(1..n);
map emb = gnir,va;
ideal nett = emb(I);
for (i=1;i<=z;i++)
{ nett[i]=nett[i]-y(i);
}
nett=emb(p)-y(0),nett;
// neu CL 10/05:
if (is_qring) { nett = nett,emb(IdQ); }
//-----------------
ideal ker=eliminate(nett,product(va));
ker=std(ker);
//---------- test wether y(0)-h(y(1),...,y(z)) is in ker --------------
l[1]=0;
l[2]="";
for (i=1;i<=size(ker);i++)
{ if (deg(ker[i]/y(0))==0)
{ string str=string(ker[i]);
setring gnir;
l[1]=1;
l[2]=str;
return(l);
}
if (deg(ker[i]/y(0))>0)
{ if( l[2] != "" ){ l[2] = l[2] + ","; }
l[2] = l[2] + string(ker[i]);
}
}
setring gnir;
return(l);
}
example
{ "EXAMPLE:"; echo = 2;
ring q=0,(x,y,z,u,v,w),dp;
poly p=xyzu2w-1yzu2w2+u4w2-1xu2vw+u2vw2+xyz-1yzw+2u2w-1xv+vw+2;
ideal I =x-w,u2w+1,yz-v;
inSubring(p,I);
}
//////////////////////////////////////////////////////////////////////////////
proc algDependent( ideal A, list # )
"USAGE: algDependent(f[,c]); f ideal (say, f = f1,...,fm), c integer
RETURN:
@format
a list l of size 2, l[1] integer, l[2] ring:
- l[1] = 1 if f1,...,fm are algebraic dependent, 0 if not
- l[2] is a ring with variables x(1),...,x(n),y(1),...,y(m) if the
basering has n variables. It contains the ideal 'ker', depending
only on the y(i) and generating the algebraic relations between the
f[i], i.e. substituting y(i) by fi yields 0. Of course, ker is
nothing but the kernel of the ring map
K[y(1),...,y(m)] ---> basering, y(i) --> fi.
@end format
NOTE: Three different algorithms are used depending on c = 1,2,3.
If c is not given or c=0, a heuristically best method is chosen.
The basering may be a quotient ring.
To access to the ring l[2] and see ker you must give the ring a name,
e.g. def S=l[2]; setring S; ker;
DISPLAY: The above comment is displayed if printlevel >= 0 (default).
EXAMPLE: example algDependent; shows an example
"
{
int bestoption = 3;
// bestoption is the default algorithm, it may be set to 1,2 or 3;
// it should be changed, if another algorithm turns out to be faster
// in general. Is perhaps dependent on the input (# vars, size ...)
int tt;
if( size(#) > 0 )
{ if( typeof(#[1]) == "int" )
{ tt = #[1];
}
}
if( size(#) == 0 or tt == 0 )
{ tt = bestoption;
}
def br=basering;
int n = nvars(br);
ideal B = ideal(br);
int m = ncols(A);
int s = size(B);
int i;
string mp = string(minpoly);
// --------------------- 1st variant of algorithm ----------------------
// use internal preimage command (should be equivalent to 2nd variant)
if ( tt == 1 )
{
execute ("ring R1=("+charstr(br)+"),y(1..m),dp;");
if (mp!="0")
{ execute ("minpoly=number("+mp+");"); }
setring br;
map phi = R1,A;
setring R1;
ideal ker = preimage(br,phi,B);
}
// ---------- create new ring with extra variables --------------------
execute ("ring R2=("+charstr(br)+"),(x(1..n),y(1..m)),(dp);");
if (mp!="0")
{ execute ("minpoly=number("+mp+");"); }
if( tt == 1 )
{
ideal ker = imap(R1,ker);
}
else
{
ideal vars = x(1..n);
map emb = br,vars;
ideal A = emb(A);
for (i=1; i<=m; i=i+1)
{ A[i] = A[i]-y(i);
}
// --------------------- 2nd variant of algorithm ----------------------
// use internal eliminate for eliminating m variables x(i) from
// ideal A[i] - y(i) (uses extra eliminating 'first row', a-order)
if ( s == 0 and tt == 2 )
{ ideal ker = eliminate(A,product(vars));
}
else
// eliminate does not work in qrings
// --------------------- 3rd variant of algorithm ----------------------
// eliminate m variables x(i) from ideal A[i] - y(i) by choosing product
// order
{execute ("ring R3=("+charstr(br)+"),(x(1..n),y(1..m)),(dp(n),dp(m));");
if (mp!="0")
{ execute ("minpoly=number("+mp+");"); }
if ( s != 0 )
{ ideal vars = x(1..n);
map emb = br,vars;
ideal B = emb(B);
attrib(B,"isSB",1);
qring Q = B;
}
ideal A = imap(R2,A);
A = std(A);
ideal ker = nselect(A,1..n);
setring R2;
if ( defined(Q)==voice )
{ ideal ker = imap(Q,ker);
}
else
{ ideal ker = imap(R3,ker);
}
kill A,emb,vars;
}
}
// --------------------------- return ----------------------------------
s = size(ker);
list L = (s!=0), R2;
export(ker);
dbprint(printlevel-voice+3,"
// The 2nd element of the list l is a ring with variables x(1),...,x(n),
// and y(1),...,y(m) if the basering has n variables and if the ideal
// is f[1],...,f[m]. The ring contains the ideal ker which depends only
// on the y(i) and generates the relations between the f[i].
// I.e. substituting y(i) by f[i] yields 0.
// To access to the ring and see ker you must give the ring a name,
// e.g.:
def S = l[2]; setring S; ker;
");
setring br;
return (L);
}
example
{ "EXAMPLE:"; echo = 2;
int p = printlevel; printlevel = 1;
ring R = 0,(x,y,z,u,v,w),dp;
ideal I = xyzu2w-1yzu2w2+u4w2-1xu2vw+u2vw2+xyz-1yzw+2u2w-1xv+vw+2,
x-w, u2w+1, yz-v;
list l = algDependent(I);
l[1];
def S = l[2]; setring S;
ker;
printlevel = p;
}
//////////////////////////////////////////////////////////////////////////////
proc alg_kernel( map phi, def pr, list #)
"USAGE: alg_kernel(phi,pr[,s,c]); phi map to basering, pr preimage ring,
s string (name of kernel in pr), c integer.
RETURN: a string, the kernel of phi as string.
If, moreover, a string s is given, the algorithm creates, in the
preimage ring pr the kernel of phi with name s.
Three different algorithms are used depending on c = 1,2,3.
If c is not given or c=0, a heuristically best method is chosen.
(algorithm 1 uses the preimage command)
NOTE: Since the kernel of phi lives in pr, it cannot be returned to the
basering. If s is given, the user has access to it in pr via s.
The basering may be a quotient ring.
EXAMPLE: example alg_kernel; shows an example
"
{ int tt;
def BAS = basering;
if( size(#) >0 )
{ if( typeof(#[1]) == "int")
{ tt = #[1];
}
if( typeof(#[1]) == "string")
{ string nker=#[1];
}
if( size(#)>1 )
{ if( typeof(#[2]) == "string")
{ string nker=#[2];
}
if( typeof(#[2]) == "int")
{ tt = #[2];
}
}
}
int n = nvars(basering);
string mp = string(minpoly);
ideal A = ideal(phi);
//def pr = preimage(phi);
//folgendes Auffuellen oder Stutzen ist ev nicht mehr noetig
//falls map das richtig macht
int m = nvars(pr);
ideal j;
j[m]=0;
A=A,j;
A=A[1..m];
list L = algDependent(A,tt);
// algDependent is called with "bestoption" if tt = 0
def S = L[2];
execute ("ring R=("+charstr(basering)+"),(@(1..n),"+varstr(pr)+"),(dp);");
if (mp!="0")
{ execute ("minpoly=number("+mp+");"); }
ideal ker = fetch(S,ker); //in order to have variable names correct
string sker = string(ker);
if (defined(nker) == voice)
{ setring pr;
execute("ideal "+nker+"="+sker+";");
execute("export("+nker+");");
}
setring BAS;
return(sker);
}
example
{ "EXAMPLE:"; echo = 2;
ring r = 0,(a,b,c),ds;
ring s = 0,(x,y,z,u,v,w),dp;
ideal I = x-w,u2w+1,yz-v;
map phi = r,I; // a map from r to s:
alg_kernel(phi,r); // a,b,c ---> x-w,u2w+1,yz-v
ring S = 0,(a,b,c),ds;
ring R = 0,(x,y,z),dp;
qring Q = std(x-y);
ideal i = x, y, x2-y3;
map phi = S,i; // a map to a quotient ring
alg_kernel(phi,S,"ker",3); // uses algorithm 3
setring S; // you have access to kernel in preimage
ker;
}
//////////////////////////////////////////////////////////////////////////////
proc is_injective( map phi,def pr,list #)
"USAGE: is_injective(phi,pr[,c,s]); phi map, pr preimage ring, c int, s string
RETURN:
@format
- 1 (type int) if phi is injective, 0 if not (if s is not given).
- If s is given, return a list l of size 2, l[1] int, l[2] ring:
l[1] is 1 if phi is injective, 0 if not
l[2] is a ring with variables x(1),...,x(n),y(1),...,y(m) if the
basering has n variables and the map m components, it contains the
ideal 'ker', depending only on the y(i), the kernel of the given map
@end format
NOTE: Three differnt algorithms are used depending on c = 1,2,3.
If c is not given or c=0, a heuristically best method is chosen.
The basering may be a quotient ring. However, if the preimage ring is
a quotient ring, say pr = P/I, consider phi as a map from P and then
the algorithm returns 1 if the kernel of phi is 0 mod I.
To access to the ring l[2] and see ker you must give the ring a name,
e.g. def S=l[2]; setring S; ker;
DISPLAY: The above comment is displayed if printlevel >= 0 (default).
EXAMPLE: example is_injective; shows an example
"
{ def bsr = basering;
int tt;
if( size(#) >0 )
{ if( typeof(#[1]) == "int")
{ tt = #[1];
}
if( typeof(#[1]) == "string")
{ string pau=#[1];
}
if( size(#)>1 )
{ if( typeof(#[2]) == "string")
{ string pau=#[2];
}
if( typeof(#[2]) == "int")
{ tt = #[2];
}
}
}
int n = nvars(basering);
string mp = string(minpoly);
ideal A = ideal(phi);
//def pr = preimage(phi);
//folgendes Auffuellen oder Stutzen ist ev nicht mehr noetig
//falls map das richtig macht
int m = nvars(pr);
ideal j;
j[m]=0;
A=A,j;
A=A[1..m];
list L = algDependent(A,tt);
L[1] = L[1]==0;
// the preimage ring may be a quotient ring, we still have to check whether
// the kernel is 0 mod ideal of the quotient ring
setring pr;
if ( size(ideal(pr)) != 0 )
{ def S = L[2];
ideal proj;
proj [n+1..n+m] = maxideal(1);
map psi = S,proj;
L[1] = size(NF(psi(ker),std(0))) == 0;
}
setring bsr;
if ( defined(pau) != voice )
{ return (L[1]);
}
else
{
dbprint(printlevel-voice+3,"
// The 2nd element of the list is a ring with variables x(1),...,x(n),
// y(1),...,y(m) if the basering has n variables and the map is
// F[1],...,F[m].
// It contains the ideal ker, the kernel of the given map y(i) --> F[i].
// To access to the ring and see ker you must give the ring a name,
// e.g.:
def S = l[2]; setring S; ker;
");
return(L);
}
}
example
{ "EXAMPLE:"; echo = 2;
int p = printlevel;
ring r = 0,(a,b,c),ds;
ring s = 0,(x,y,z,u,v,w),dp;
ideal I = x-w,u2w+1,yz-v;
map phi = r,I; // a map from r to s:
is_injective(phi,r); // a,b,c ---> x-w,u2w+1,yz-v
ring R = 0,(x,y,z),dp;
ideal i = x, y, x2-y3;
map phi = R,i; // a map from R to itself, z --> x2-y3
list l = is_injective(phi,R,"");
l[1];
def S = l[2]; setring S;
ker;
}
///////////////////////////////////////////////////////////////////////////////
proc is_surjective( map phi )
"USAGE: is_surjective(phi); phi map to basering, or ideal defining it
RETURN: an integer, 1 if phi is surjective, 0 if not
NOTE: The algorithm returns 1 if and only if all the variables of the basering are
contained in the polynomial subalgebra generated by the polynomials
defining phi. Hence, it tests surjectivity in the case of a global odering.
If the basering has local or mixed ordering or if the preimage ring is a
quotient ring (in which case the map may not be well defined) then the return
value 1 needs to be interpreted with care.
EXAMPLE: example is_surjective; shows an example
"
{
def br=basering;
ideal B = ideal(br);
int s = size(B);
int n = nvars(br);
ideal A = ideal(phi);
int m = ncols(A);
int ii,t=1,1;
string mp=string(minpoly);
// ------------ create new ring with extra variables ---------------------
execute ("ring R=("+charstr(br)+"),(x(1..n),y(1..m)),(dp(n),dp(m));");
if (mp!="0")
{ execute ("minpoly=number("+mp+");"); }
ideal vars = x(1..n);
map emb = br,vars;
if ( s != 0 )
{ ideal B = emb(B);
attrib(B,"isSB",1);
qring Q = B;
ideal vars = x(1..n);
map emb = br,vars;
}
ideal A = emb(A);
for ( ii=1; ii<=m; ii++ )
{ A[ii] = A [ii]-y(ii);
}
A=std(A);
// ------------- check whether the x(i) are in the image -----------------
poly check;
for (ii=1; ii<=n; ii++ )
{ check=reduce(x(ii),A,1);
// --- checking whether all variables from old ring have disappeared -----
// if so, then the sum of the first n leading exponents is 0
if( sum(leadexp(check),1..n)!=0 )
{ t=0;
break;
}
}
setring br;
return(t);
}
example
{ "EXAMPLE:"; echo = 2;
ring R = 0,(x,y,z),dp;
ideal i = x, y, x2-y3;
map phi = R,i; // a map from R to itself, z->x2-y3
is_surjective(phi);
qring Q = std(ideal(z-x37));
map psi = R, x,y,x2-y3; // the same map to the quotient ring
is_surjective(psi);
ring S = 0,(a,b,c),dp;
map psi = R,ideal(a,a+b,c-a2+b3); // a map from R to S,
is_surjective(psi); // x->a, y->a+b, z->c-a2+b3
}
///////////////////////////////////////////////////////////////////////////////
proc is_bijective ( map phi,def pr )
"USAGE: is_bijective(phi,pr); phi map to basering, pr preimage ring
RETURN: an integer, 1 if phi is bijective, 0 if not
NOTE: The algorithm checks first injectivity and then surjectivity.
To interprete this for local/mixed orderings, or for quotient rings
type help is_surjective; and help is_injective;
DISPLAY: A comment if printlevel >= voice-1 (default)
EXAMPLE: example is_bijective; shows an example
"
{
def br = basering;
int n = nvars(br);
ideal B = ideal(br);
int s = size(B);
ideal A = ideal(phi);
//folgendes Auffuellen oder Stutzen ist ev nicht mehr noetig
//falls map das richtig macht
int m = nvars(pr);
ideal j;
j[m]=0;
A=A,j;
A=A[1..m];
int ii,t = 1,1;
string mp=string(minpoly);
// ------------ create new ring with extra variables ---------------------
execute ("ring R=("+charstr(br)+"),(x(1..n),y(1..m)),(dp(n),dp(m));");
if (mp!="0")
{ execute ("minpoly=number("+mp+");"); }
ideal vars = x(1..n);
map emb = br,vars;
if ( s != 0 )
{ ideal B = emb(B);
attrib(B,"isSB",1);
qring Q = B;
ideal vars = x(1..n);
map emb = br,vars;
}
ideal A = emb(A);
for ( ii=1; ii<=m; ii++ )
{ A[ii] = A[ii]-y(ii);
}
A=std(A);
def bsr = basering;
// ------- checking whether phi is injective by computing the kernel -------
ideal ker = nselect(A,1..n);
t = size(ker);
setring pr;
if ( size(ideal(pr)) != 0 )
{
ideal proj;
proj[n+1..n+m] = maxideal(1);
map psi = bsr,proj;
t = size(NF(psi(ker),std(0)));
}
if ( t != 0 )
{ dbprint(printlevel-voice+3,"// map not injective" );
setring br;
return(0);
}
else
// -------------- checking whether phi is surjective ----------------------
{ t = 1;
setring bsr;
poly check;
for (ii=1; ii<=n; ii++ )
{ check=reduce(x(ii),A,1);
// --- checking whether all variables from old ring have disappeared -----
// if so, then the sum of the first n leading exponents is 0
if( sum(leadexp(check),1..n)!=0 )
{ t=0;
break;
}
}
if ( t == 0 )
{ dbprint(printlevel-voice+3,"// map injective, but not surjective" );
}
setring br;
return(t);
}
}
example
{ "EXAMPLE:"; echo = 2;
int p = printlevel; printlevel = 1;
ring R = 0,(x,y,z),dp;
ideal i = x, y, x2-y3;
map phi = R,i; // a map from R to itself, z->x2-y3
is_bijective(phi,R);
qring Q = std(z-x2+y3);
is_bijective(ideal(x,y,x2-y3),Q);
ring S = 0,(a,b,c,d),dp;
map psi = R,ideal(a,a+b,c-a2+b3,0); // a map from R to S,
is_bijective(psi,R); // x->a, y->a+b, z->c-a2+b3
qring T = std(d,c-a2+b3);
map chi = Q,a,b,a2-b3; // amap between two quotient rings
is_bijective(chi,Q);
printlevel = p;
}
///////////////////////////////////////////////////////////////////////////////
proc noetherNormal(ideal i, list #)
"USAGE: noetherNormal(id[,p]); id ideal, p integer
RETURN:
@format
a list l of two ideals, say I,J:
- I defines a map (coordinate change in the basering), such that:
- J is generated by a subset of the variables with size(J) = dim(id)
if we define map phi=basering,I;
then k[var(1),...,var(n)]/phi(id) is finite over k[J].
If p is given, 0<=p<=100, a sparse coordinate change with p percent
of the matrix entries being 0 (default: p=0 i.e. dense)
@end format
NOTE: Designed for characteristic 0.It works also in char k > 0 if it
terminates,but may result in an infinite loop in small characteristic.
EXAMPLE: example noetherNormal; shows an example
"
{
i=simplify(i,2);
if (size(i)== 0)
{
list l = maxideal(1),maxideal(1);
return( l );
}
int p;
if( size(#) != 0 )
{
p = #[1];
}
def r = basering;
int n = nvars(r);
list good;
// ------------------------ change of ordering ---------------------------
//a procedure from ring.lib changing the order to dp creating a new
//basering @R in order to compute the dimension d of i
def @R=changeord(list(list("dp",1:nvars(basering))));
setring @R;
ideal i = imap(r,i);
list j = mstd(i);
i = j[2];
int d = dim(j[1]);
if ( d <= 0)
{
setring r;
list l = maxideal(1),ideal(0);
return( l );
}
// ------------------------ change of ordering ---------------------------
//Now change the order to (dp(n-d),lp) creating a new basering @S
def @S=changeord(list(list("dp",1:(n-d)),list("lp",1:d)));
setring @S;
ideal m;
// ----------------- sparse-random coordinate change --------------------
//creating lower triangular random generators for the maximal ideal
//a procedure from random.lib, as sparse as possible
if( char(@S) > 0 )
{
m=ideal(sparsetriag(n,n,p,char(@S)+1)*transpose(maxideal(1)));
}
if( char(@S) == 0 )
{
if ( voice <= 6 )
{
m=ideal(sparsetriag(n,n,p,10)*transpose(maxideal(1)));
}
if( voice > 6 and voice <= 11)
{
m=ideal(sparsetriag(n,n,p,100)*transpose(maxideal(1)));
}
if ( voice > 11 )
{
m=ideal(sparsetriag(n,n,p,30000)*transpose(maxideal(1)));
}
}
map phi=r,m;
//map phi=@R,m;
ideal i=std(phi(i));
// ----------------------- test for finiteness ---------------------------
//We need a test whether the coordinate change was random enough, if yes
//we are ready, else call noetherNormal again
list l=finitenessTest(i);
setring r;
list l=imap(@S,l);
if(size(l[3]) == d) //the generic case
{
good = fetch(@S,m),l[3];
kill @S,@R;
return(good);
}
else //the bad case
{ kill @S,@R;
if ( voice >= 21 )
{
"// WARNING: In case of a finite ground field";
"// the characteristic may be too small.";
"// This could result in an infinte loop.";
"// Loop in noetherNormal, voice:";, voice;"";
}
if ( voice >= 16 )
{
"// Switch to dense coordinate change";"";
return(noetherNormal(i));
}
return(noetherNormal(i,p));
}
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0,(x,y,z),dp;
ideal i= xy,xz;
noetherNormal(i);
}
///////////////////////////////////////////////////////////////////////////////
proc finitenessTest(ideal i, list #)
"USAGE: finitenessTest(J[,v]); J ideal, v intvec (say v1,...,vr with vi>0)
RETURN:
@format
a list l with l[1] integer, l[2], l[3], l[4] ideals
- l[1] = 1 if var(v1),...,var(vr) are in l[2] and 0 else
- l[2] (resp. l[3]) contains those variables which occur,
(resp. do not occur) as pure power in the leading term of one of the
generators of J,
- l[4] contains those J[i] for which the leading term is a pure power
of a variable (which is then in l[2])
(default: v = [1,2,..,nvars(basering)])
@end format
THEORY: If J is a standard basis of an ideal generated by x_1 - f_1(y),...,
x_n - f_n with y_j ordered lexicographically and y_j >> x_i, then,
if y_i appears as pure power in the leading term of J[k], J[k] defines
an integral relation for y_i over the y_(i+1),... and the f's.
Moreover, in this situation, if l[2] = y_1,...,y_r, then K[y_1,...y_r]
is finite over K[f_1..f_n]. If J contains furthermore polynomials
h_j(y), then K[y_1,...y_z]/<h_j> is finite over K[f_1..f_n].
For a proof cf. Prop. 3.1.5, p. 214. in [G.-M. Greuel, G. Pfister:
A SINGULAR Introduction to Commutative Algebra, 2nd Edition,
Springer Verlag (2007)]
EXAMPLE: example finitenessTest; shows an example
"
{ int n = nvars(basering);
intvec v,w;
int j,z,ii;
v[n]=0; //v should have size n
intvec V = 1..n;
list nze; //the non-zero entries of a leadexp
if (size(#) != 0 )
{
V = #[1];
}
intmat W[1][n]; //create intmat with 1 row, having 1 at
//position V[j], i = 1..size(V), 0 else
for( j=1; j<=size(V); j++ )
{
W[1,V[j]] = 1;
}
ideal relation,zero,nonzero;
// ---------------------- check leading exponents -------------------------
for(j=1;j<=ncols(i);j++)
{
w = leadexp(i[j]);
nze = nonZeroEntry(w);
if( nze[1] == 1 ) //the leading term of i[j] is a
{ //pure power of some variable
if( W*w != 0 ) //case: variable has index appearing in V
{
relation[size(relation)+1] = i[j];
v=v+w;
}
}
}
// ----------------- pick the corresponding variables ---------------------
//the nonzero entries of v correspond to variables which occur as
//pure power in the leading term of some polynomial in i
for(j=1; j<=size(v); j++)
{
if(v[j]==0)
{
zero[size(zero)+1]=var(j);
}
else
{
nonzero[size(nonzero)+1]=var(j);
}
}
// ---------------- do we have all pure powers we want? -------------------
// test this by dividing the product of corresponding variables
ideal max = maxideal(1);
max = max[V];
z = (product(nonzero)/product(max) != 0);
return(list(z,nonzero,zero,relation));
}
example
{ "EXAMPLE:"; echo = 2;
ring s = 0,(x,y,z,a,b,c),(lp(3),dp);
ideal i= a -(xy)^3+x2-z, b -y2-1, c -z3;
ideal j = a -(xy)^3+x2-z, b -y2-1, c -z3, xy;
finitenessTest(std(i),1..3);
finitenessTest(std(j),1..3);
}
///////////////////////////////////////////////////////////////////////////////
proc mapIsFinite(map phi,def R, list #)
"USAGE: mapIsFinite(phi,R[,J]); R the preimage ring of the map
phi: R ---> basering
J an ideal in the basering, J = 0 if not given
RETURN: 1 if R ---> basering/J is finite and 0 else
NOTE: R may be a quotient ring (this will be ignored since a map R/I-->S/J
is finite if and only if the induced map R-->S/J is finite).
SEE ALSO: finitenessTest
EXAMPLE: example mapIsFinite; shows an example
"
{
def bsr = basering;
ideal J;
if( size(#) != 0 )
{
J = #[1];
}
string os = ordstr(bsr);
int m = nvars(bsr);
int n = nvars(R);
ideal PHI = ideal(phi);
if ( ncols(PHI) < n )
{ PHI[n]=0;
}
// --------------------- change of variable names -------------------------
execute("ring @bsr = ("+charstr(bsr)+"),y(1..m),("+os+");");
ideal J = fetch(bsr,J);
ideal PHI = fetch(bsr,PHI);
// --------------------------- enlarging ring -----------------------------
execute("ring @rr = ("+charstr(bsr)+"),(y(1..m),x(1..n)),(lp(m),dp);");
ideal J = imap(@bsr,J);
ideal PHI = imap(@bsr,PHI);
ideal M;
int i;
for(i=1;i<=n;i++)
{
M[i]=x(i)-PHI[i];
}
M = std(M+J);
// ----------------------- test for finiteness ---------------------------
list l = finitenessTest(M,1..m);
int result = l[1];
setring bsr;
return( result );
}
example
{ "EXAMPLE:"; echo = 2;
ring r = 0,(a,b,c),dp;
ring s = 0,(x,y,z),dp;
ideal i= xy;
map phi= r,(xy)^3+x2+z,y2-1,z3;
mapIsFinite(phi,r,i);
}
//////////////////////////////////////////////////////////////////////////////
proc nonZeroEntry(def id)
"USAGE: nonZeroEntry(id); id=object for which the test 'id[i]!=0', i=1,..,N,
N=size(id) (resp. ncols(id) for id of type ideal or module)
is defined (e.g. ideal, vector, list of polynomials, intvec,...)
RETURN: @format
a list, say l, with l[1] an integer, l[2], l[3] integer vectors:
- l[1] number of non-zero entries of id
- l[2] intvec of size l[1] with l[2][i]=i if id[i] != 0
in case l[1]!=0 (and l[2]=0 if l[1]=0)
- l[3] intvec with l[3][i]=1 if id[i]!=0 and l[3][i]=0 else
@end format
NOTE:
EXAMPLE: example nonZeroEntry; shows an example
"
{
int ii,jj,N,n;
intvec v,V;
if ( typeof(id) == "ideal" || typeof(id) == "module" )
{
N = ncols(id);
}
else
{
N = size(id);
}
for ( ii=1; ii<=N; ii++ )
{
V[ii] = 0;
if ( id[ii] != 0 )
{
n++;
v=v,ii; //the first entry of v is always 0
V[ii] = 1;
}
}
if ( size(v) > 1 ) //if id[ii] != 0 for at least one ii delete the first 0
{
v = v[2..size(v)];
}
list l = n,v,V;
return(l);
}
example
{ "EXAMPLE:"; echo = 2;
ring r = 0,(a,b,c),dp;
poly f = a3c+b3+c2+a;
intvec v = leadexp(f);
nonZeroEntry(v);
intvec w;
list L = 37,0,f,v,w;
nonZeroEntry(L);
}
//////////////////////////////////////////////////////////////////////////////
|