/usr/share/singular/LIB/JMBTest.lib is in singular-data 4.0.3+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 | //////////////////////////////////////////////////////////////////////
version="version JMBTest.lib 4.0.0.0 Jun_2013 "; // $Id: aba2de11ed1e911bbf56c65b39cfd2621b578a49 $
category="Algebraic Geometry";
// summary description of the library
info="
LIBRARY: JMBTest.lib A library for Singular which performs JM basis test.
AUTHOR: Michela Ceria, email: michela.ceria@unito.it
SEE ALSO: JMSConst_lib
KEYWORDS: J-marked schemes
OVERVIEW:
The library performs the J-marked basis test, as described in [CR], [BCLR].
Such a test is performed via the criterion explained in [BCLR],
concerning Eliahou-Kervaire polynomials (EK from now on).
We point out that all the polynomials are homogeneous
and they must be arranged by degree.
The fundamental steps are the following:@*
-construct the Vm polynomials, via the algorithm VConstructor
explained in [CR];@*
-construct the Eliahou-Kervaire polynomials defined in [BCLR];@*
-reduce the Eliahou-Kervaire polynomials using the Vm's;@*
-if it exist an Eliahou-Kervaire polynomial such that its reduction
mod Vm is different from zero, the given one is not a J-Marked basis.
The algorithm terminates only if the ordering is rp.
Anyway, the number of reduction steps is bounded.
REFERENCES:
[CR] Francesca Cioffi, Margherita Roggero,Flat Families by Strongly
Stable Ideals and a Generalization of Groebner Bases,
J. Symbolic Comput. 46, 1070-1084, (2011).@*
[BCLR] Cristina Bertone, Francesca Cioffi, Paolo Lella,
Margherita Roggero, Upgraded methods for the effective
computation of marked schemes on a strongly stable ideal,
Journal of Symbolic Computation
(2012), http://dx.doi.org/10.1016/j.jsc.2012.07.006 @*
PROCEDURES:
Minimus(ideal) minimal variable in an ideal
Maximus(ideal) maximal variable in an ideal
StartOrderingV(list,list) ordering of polynomials as in [BCLR]
TestJMark(list) tests whether we have a J-marked basis
";
LIB "qhmoduli.lib";
LIB "monomialideal.lib";
LIB "ring.lib";
////////////////////////////////////////////////////////////////////
proc mod_init()
"USAGE: mod_init();
RETURN: struct: jmp
EXAMPLE: example mod_init; shows an example"
{
newstruct("jmp", "poly h, poly t");
}
example
{ "EXAMPLE:"; echo = 2;
mod_init();
}
////////////////////////////////////////////////////////////////////
proc Terns(list G, int c)
"USAGE: Terns(G,c); G list, c int
RETURN: list: T
NOTE: Input is a list of J-marked polynomials
(arranged by degree) and an integer.
EXAMPLE: example Terns; shows an example"
{
list T=list();
int z;
for(int k=1; k<=size(G[c]);k=k+1)
{
//Loop on G[c] making positions of polynomials in G[c]
z=size(T);
T=insert(T,list(1,c,k) ,size(T));
}
return(T);
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0, (x,y,z), rp;
jmp r1;
r1.h=z^3;
r1.t=poly(0);
jmp r2;
r2.h=z^2*y;
r2.t=poly(0);
jmp r3;
r3.h=z*y^2 ;
r3.t=-x^2*y;
jmp r4;
r4.h=y^5;
r4.t=poly(0);
list G2F=list(list(r1,r2,r3),list(r4));
Terns(G2F, 1);
Terns(G2F, 2);
}
////////////////////////////////////////////////////////////////////
proc VConst(list G, int c)
"USAGE: VConst(G, c); G list, c int
RETURN: list: V
NOTES: this procedure computes the Vm polynomials following the
algorithm in [CR],but it only keeps in memory the monomials by
which the G's must be multplied and their positions.
EXAMPLE: example VConst; shows an example"
{
jmp f=G[1][1];
int aJ=deg(f.h);
// minimal degree of polynomials in G
//print(aJ);
list V=list();
V[1]=Terns(G,1);
// V[1]=G[1] (keeping in memory only [head, position])
//print(c-aJ+1);
int i;
int j;
int m;
list OO;
jmp p;
for(m=2; m<=c-aJ+1; m=m+1)
{
//print("entro nel form");
if(m>size(G))
{V[m]=list();
//If we have not G[m] we insert a list()
//print("vuota prima");
}
else
{V[m]=Terns(G,m);
//print("piena prima");
}
for(i=1; i<nvars(basering)+1; i=i+1)
{
//print("entrata fori");
//print(i);
for(j=1; j<=size(V[m-1]); j=j+1)
{
p=G[V[m-1][j][2]][V[m-1][j][3]];
//print(p.h);
//print(p.t);
//print(var(i));
//print(Minimus(V[m-1][j][1]*p.h));
if(var(i)<=Minimus(variables(V[m-1][j][1]*p.h)))
{
//Can I multiply by the current variable?
//print("minoremin");
//print("fin qui ci sono");
//print(V[m-1][j][1]);
OO=list(var(i)*V[m-1][j][1],V[m-1][j][2],V[m-1][j][3]);
V[m]=insert(V[m], OO ,size(V[m]));
}
}
}
}
return (V);}
example
{ "EXAMPLE:"; echo = 2;
ring r=0, (x,y,z), rp;
jmp r1;
r1.h=z^3;
r1.t=poly(0);
jmp r2;
r2.h=z^2*y;
r2.t=poly(0);
jmp r3;
r3.h=z*y^2 ;
r3.t=-x^2*y;
jmp r4;
r4.h=y^5;
r4.t=poly(0);
list G2F=list(list(r1,r2,r3),list(r4));
VConst(G2F,4,basering);}
////////////////////////////////////////////////////////////////////
proc Minimus(ideal L)
"USAGE: Minimus(L); G list, c int
RETURN: list: V
NOTES: it returns the minimal variable generating the ideal L.@*
The input must be an ideal generated by variables.
EXAMPLE: example Minimus; shows an example"
{
poly min=L[1];
int i;
for(i=2;i<=size(L); i++)
{
if(L[i]<min){min=L[i];}
}
return(min);
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0, (x,y,z), rp;
ideal I=y,x,z;
Minimus(I);
}
////////////////////////////////////////////////////////////////////
proc Maximus(ideal L)
"USAGE: Maximus(L); G list, c int
RETURN: list: V
NOTES: it returns the maximal variable generating the ideal L.@*
The input must be an ideal generated by variables.
EXAMPLE: example Maximus; shows an example"
{
poly max=L[1];
int i;
for(i=2;i<=size(L); i++)
{
if(L[i]>max){max=L[i];}
}
return(max);
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0, (x,y,z), rp;
ideal I=y,x,z;
Maximus(I);
}
////////////////////////////////////////////////////////////////////
proc GJmpMins(jmp P, jmp Q)
"USAGE: GJmpMins(P,Q); P jmp, Q jmp
RETURN: int: d
EXAMPLE: example GJmpMins; shows an example"
{
int d=1;
//-1=lower, 0=equal, 1=higher
//At the beginning suppose Q is higher
if(deg(P.h)<deg(Q.h))
{
//Compare degrees;
d=-1;
//print("Per Grado");
}
if(deg(P.h)==deg(Q.h))
{
if(P.h==Q.h)
{
if(P.t==Q.t)
{
//head=tail
d=0;
//print("Uguali");
}
}
else
{
//print(Minimus(variables(P.h/gcdMon(P.h,Q.h))));
//print(Minimus(variables(Q.h/gcdMon(P.h,Q.h))));
if(Minimus(variables(P.h/gcdMon(P.h,Q.h)))<Minimus(variables(Q.h/gcdMon(P.h,Q.h))))
{
d=-1;
//print("Per Indice");
}
}
}
return(d);
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0, (x,y,z), rp;
jmp p1;
p1.h=poly(1);
p1.t=poly(1);
jmp p2;
p2.h=x^2;
p2.t=poly(0);
jmp p3;
p3.h=x;
p3.t=poly(0);
GJmpMins(p1, p2);
GJmpMins(p2, p3);
GJmpMins(p1,p1);
}
////////////////////////////////////////////////////////////////////
proc TernCompare(list A, list B, list G)
"USAGE: TernCompare(A,B,C); A list, B list, G list
RETURN: int: d
NOTE: A and B are terns, while G is the given list of
J-marked polynomials.
EXAMPLE: example TernCompare; shows an example"
{
int d=-1;
//Start: A<B
if(A[1]==B[1])
{
if(A[2]==B[2]&& A[3]==B[3])
{
//print("Uguali");
d=0;
}
else
{
jmp g1=G[A[2]][A[3]];
jmp g2=G[B[2]][B[3]];
if(GJmpMins(g1, g2)==1)
{
//print("Maggiore per il G");
d=1;
}
}
}
else
{
if(A[1]>B[1])
{
//the ordering MUST be rp
//print("Maggiore per Lex");
d=1;
}
}
return(d);
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0, (x,y,z), rp;
jmp r1;
r1.h=z^3;
r1.t=poly(0);
jmp r2;
r2.h=z^2*y;
r2.t=poly(0);
jmp r3;
r3.h=z*y^2 ;
r3.t=-x^2*y;
jmp r4;
r4.h=y^5;
r4.t=poly(0);
list G2F=list(list(r1,r2,r3),list(r4));
TernCompare([1,1,1],[x,1,1],G2F);
}
////////////////////////////////////////////////////////////////////
proc MinOfV(list V, list G)
"USAGE: Minimal(V,G); V list, G list
RETURN: int: R
NOTE: Input=lista(terne), G.
EXAMPLE: example Minimal; shows an example"
{
//Minimal element for a given degree
list R=list();
list MIN=V[1];
int h=1;
int i;
for(i=2; i<=size(V); i++)
{
//I consider the first as minimum
//If I find something smaller I change minimum
if(TernCompare(V[i],MIN,G)<=0)
{
MIN=V[i];
h=i;
}
}
//Return: [minimum,position of the minimum]
R=MIN,h;
return(R);
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0, (x,y,z), rp;
jmp r1;
r1.h=z^3;
r1.t=poly(0);
jmp r2;
r2.h=z^2*y;
r2.t=poly(0);
jmp r3;
r3.h=z*y^2 ;
r3.t=-x^2*y;
jmp r4;
r4.h=y^5;
r4.t=poly(0);
list G2F=list(list(r1,r2,r3),list(r4));
MinOfV(VConst(G2F,4,basering)[1],G2F);
}
////////////////////////////////////////////////////////////////////
proc OrderingV(list V,list G,list R)
"USAGE: OrderingV(V,G,R); V list, G list, R list
RETURN: list: R
NOTE: Input: Vm,G,emptylist
EXAMPLE: example OrderingV; shows an example"
{
//Order V[m]
//R will contain results but at the beginning it is empty
list M=list();
if(size(V)==1)
{
R=insert(R,V[1],size(R));
}
else
{
M=MinOfV(V,G);
R=insert(R,M[1],size(R));
V=delete(V,M[2]);
//recursive call
R=OrderingV(V,G,R);
}
return(R);
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0, (x,y,z), rp;
jmp r1;
r1.h=z^3;
r1.t=poly(0);
jmp r2;
r2.h=z^2*y;
r2.t=poly(0);
jmp r3;
r3.h=z*y^2;
r3.t=-x^2*y;
jmp r4;
r4.h=y^5;
r4.t=poly(0);
list G2F=list(list(r1,r2,r3),list(r4));
OrderingV(VConst(G2F,4,basering)[1],G2F,list());
}
////////////////////////////////////////////////////////////////////
proc StartOrderingV(list V,list G)
"USAGE: StartOrdina(V,G); V list, G list
RETURN: list: R
NOTE: Input Vm,G. This procedure uses OrderingV to get
the ordered polynomials as in [BCLR].
EXAMPLE: example StartOrderingV; shows an example"
{
return(OrderingV(V,G, list()));
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0, (x,y,z), rp;
jmp r1;
r1.h=z^3;
r1.t=poly(0);
jmp r2;
r2.h=z^2*y;
r2.t=poly(0);
jmp r3;
r3.h=z*y^2;
r3.t=-x^2*y;
jmp r4;
r4.h=y^5;
r4.t=poly(0);
list G2F=list(list(r1,r2,r3),list(r4));
StartOrderingV(VConst(G2F,4,basering)[1],G2F);
}
////////////////////////////////////////////////////////////////////
proc Multiply(list L, list G)
"USAGE: moltiplica(L,G); L list, G list
RETURN: jmp: K
NOTE: Input: a 3-ple,G. It performs the product associated
to the 3-uple.
EXAMPLE: example Multiply; shows an example"
{
jmp g=G[L[2]][L[3]];
jmp K;
K.h=L[1]*g.h;
K.t=L[1]*g.t;
return(K);
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0, (x,y,z), rp;
list P=x^2,1,1;
jmp r1;
r1.h=z^3;
r1.t=poly(0);
jmp r2;
r2.h=z^2*y;
r2.t=poly(0);
jmp r3;
r3.h=z*y^2 ;
r3.t=-x^2*y;
jmp r4;
r4.h=y^5;
r4.t=poly(0);
list G2F=list(list(r1,r2,r3),list(r4));
Multiply(P,G2F);
}
////////////////////////////////////////////////////////////////////
proc IdealOfV(list V)
"USAGE: IdealOfV(V); V list
RETURN: ideal: I
NOTES: this procedure takes a list of Vm's of a certain degree
and construct their ideal, multiplying the head by the weighted
variable t.
EXAMPLE: example IdealOfV; shows an example"
{
ideal I=0;
int i;
if (size(V)!=0)
{
list M=list();
jmp g;
for(i=1; i<= size(V); i++)
{
g=V[i];
g.h=t*g.h;
M[i]=g.h+g.t;
}
I=M[1..size(M)];
//print("IdealOfV");
//I=std(I);
}
return(I);
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0, (x,y,z,t), rp;
jmp r1;
r1.h=z^3;
r1.t=poly(0);
jmp r2;
r2.h=z^2*y;
r2.t=poly(0);
jmp r3;
r3.h=z*y^2 ;
r3.t=-x^2*y;
jmp r4;
r4.h=y^5;
r4.t=poly(0);
list G2F=list(list(r1,r2,r3),list(r4));
IdealOfV(G2F[1]);
}
////////////////////////////////////////////////////////////////////
proc NewWeight(int n)
"USAGE: NewWeight(n); n int
RETURN: intvec: u
EXAMPLE: example NewWeight; shows an example"
{
intvec u=0;
u[n]=1;
return(u);
}
example
{ "EXAMPLE:"; echo = 2;
NewWeight(3);
}
////////////////////////////////////////////////////////////////////
proc FinalVm(list V1 , list G1 ,def r)
"USAGE: FinalVm(V1, G1, r); V1 list, G1 list , r
RETURN: intvec: u
EXAMPLE: example NewWeight; shows an example"
{
//multiply and reduce, degree by degree
intvec u=NewWeight(nvars(r)+1);
list L=ringlist(r);
L[2]=insert(L[2],"t",size(L[2]));
//print(L[2]);
list ordlist="a",u;
L[3]=insert(L[3],ordlist,0);
def H=ring(L);
//print(V1);
//print(G1);
list M=list();
jmp p;
list N;
poly q;
poly s;
int i;
int j;
for(i=1; i<=size(G1); i++)
{
N=list();
for(j=1; j<=size(G1[i]); j++)
{
p=G1[i][j];
q=p.h;
s=p.t;
N[j]=list(q,s);
}
M[i]=N;
}
p.h=poly(0);
p.t=poly(0);
setring H;
list R=list();
list S=list();
//print("anello definito");
def V=imap(r,V1);
//def G=imap(r,G1);
//print(V);
def MM=imap(r,M);
list G=list();
list N=list();
for(i=1; i<=size(MM); i++)
{
for(j=1; j<=size(MM[i]); j++)
{
p.h=MM[i][j][1];
p.t=MM[i][j][2];
N[j]=p;
}
G[i]=N;
}
ideal I=0;
jmp LL;
jmp UU;
for(i=1; i<=size(V);i++)
{
R[i]=list();
S[i]=list();
I=0;
for(j=1;j<=size(V[i]); j++)
{
LL=Multiply(V[i][j],G);
LL.t=reduce(t*LL.t,I);
//I only reduce the tail
LL.t=subst(LL.t,t,1);
S[i]=insert(S[i],LL,size(S[i]));
LL.h=t*LL.h;
R[i]=insert(R[i],LL,size(R[i]));
UU=R[i][j];
I=I+ideal(UU.h+UU.t);
attrib(I,"isSB",1);
}
}
list M=list();
poly q;
poly s;
for(i=1; i<=size(S); i++)
{
N=list();
for(j=1; j<=size(S[i]); j++)
{
p=S[i][j];
q=p.h;
s=p.t;
N[j]=list(q,s);
}
M[i]=N;
}
p.h=poly(0);
p.t=poly(0);
setring r;
def MM=imap(H,M);
list MMM=list();
for(i=1; i<=size(MM); i++)
{
N=list();
for(j=1; j<=size(MM[i]); j++)
{
p.h=MM[i][j][1];
p.t=MM[i][j][2];
N[j]=p;
}
MMM[i]=N;
}
return(MMM);
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0, (x,y,z), rp;
jmp r1;
r1.h=z^3;
r1.t=poly(0);
jmp r2;
r2.h=z^2*y;
r2.t=poly(0);
jmp r3;
r3.h=z*y^2 ;
r3.t=-x^2*y;
jmp r4;
r4.h=y^5;
r4.t=poly(0);
list G2F=list(list(r1,r2,r3),list(r4));
FinalVm(VConst(G2F,6,r) , G2F, r);
}
////////////////////////////////////////////////////////////////////
proc ConstructorMain(list G, int c,def r)
"USAGE: Costruttore(G,c); G list, c int
RETURN: list: R
NOTE: At the end separated by degree.
EXAMPLE: example Costruttore; shows an example"
{
list V=list();
V= VConst(G,c);
//print("VConst");
//V non ordered
list L=list();
list R=list();
int i;
// head, position
//order the different degrees
for(i=1; i<=size(V); i++)
{
L[i]=StartOrderingV(V[i], G);
}
//multiply and reduce
//print("Ordinare");
R=FinalVm(L, G, r);
//print("FinalVm");
return(R);
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0, (x,y,z), rp;
jmp r1;
r1.h=z^3;
r1.t=poly(0);
jmp r2;
r2.h=z^2*y;
r2.t=poly(0);
jmp r3;
r3.h=z*y^2 ;
r3.t=-x^2*y;
jmp r4;
r4.h=y^5;
r4.t=poly(0);
list G2F=list(list(r1,r2,r3),list(r4));
ConstructorMain(G2F,6,r);
}
////////////////////////////////////////////////////////////////////
proc EKCouples(jmp A, jmp B)
"USAGE: CoppiaEK(A,B); A list, B list
RETURN: list: L
NOTE: At the end the monomials involved by EK.
EXAMPLE: example EKCouples; shows an example"
{
poly E;
list L=0,0;
string s=varstr(basering);
list VVV=varstr(basering);
//L will contain results
poly h=Minimus(variables(A.h));
//print(h);
int l=findvars(h,1)[2][1];
if(l!=nvars(basering))
{
//print("vero");
//print(l);
for(int j=l+1;j<=nvars(basering); j++)
{
//print("entrata");
//print(var(j));
E=var(j)*A.h/B.h;
//Candidate for * product
//print(E);
if(E!=0)
{
//print("primo if passato");
if(Minimus(variables(B.h))>=Maximus(variables(E)))
{
//Does it work with * ?
//print("secondo if passato");
L[1]=j;
L[2]=E;
break;
}
}
}
}
return (L);
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0, (x,y,z), rp;
jmp A;
A.h=y*z^2;
A.t=poly(0);
jmp B;
B.h=y^2*z;
B.t=poly(0);
EKCouples(A,B);
EKCouples(B,A);
}
////////////////////////////////////////////////////////////////////
proc EKPolys(list G)
"USAGE: PolysEK(G); G list
RETURN: list: EK, list: D
NOTE: At the end EK polynomials and their degrees
EXAMPLE: example PolysEK; shows an example"
{
list D=list();
list C=list();
list N=0,0;
list EK=list();
int i;
int j;
int k;
int l;
jmp p;
for(i=1; i<=size(G); i++)
{
for(j=1; j<=size(G[i]); j++)
{
for(k=1; k<=size(G); k++)
{
for(l=1; l<=size(G[k]); l++)
{
if(i!=k||j!=l)
{
//Loop on polynomials
C=EKCouples(G[i][j], G[k][l]);
//print("coppia");
if(C[2]!=0)
{
C=insert(C,list(i,j,k,l),size(C));
EK=insert(EK,C,size(EK));
p=G[k][l];
D=insert(D,deg(C[2]*p.h),size(D));
}
}
}
}
}
}
//Double Return
return(EK, D);
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0, (x,y,z), rp;
jmp r1;
r1.h=z^3;
r1.t=poly(0);
jmp r2;
r2.h=z^2*y;
r2.t=poly(0);
jmp r3;
r3.h=z*y^2;
r3.t=-x^2*y;
jmp r4;
r4.h=y^5;
r4.t=poly(0);
list G2F=list(list(r1,r2,r3),list(r4));
EKPolys(G2F);
}
////////////////////////////////////////////////////////////////////
proc EKPolynomials(list EK, list G)
"USAGE: EKPolynomials(EK,G); EK list, G list
RETURN: list: p
NOTE: At the end I obtain the EK polynomials and
their degrees.
EXAMPLE: example SpolyEK; shows an example"
{
jmp u=G[EK[3][1]][EK[3][2]];
jmp q=G[EK[3][3]][EK[3][4]];
return(var(EK[1])*(u.h+u.t)-EK[2]*(q.h+q.t));
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0, (x,y,z), rp;
jmp r1;
r1.h=z^3;
r1.t=poly(0);
jmp r2;
r2.h=z^2*y;
r2.t=poly(0);
jmp r3;
r3.h=z*y^2;
r3.t=-x^2*y;
jmp r4;
r4.h=y^5;
r4.t=poly(0);
list G2F=list(list(r1,r2,r3),list(r4));
list EK,D=EKPolys(G2F);
EKPolynomials(EK[1],G2F);
}
////////////////////////////////////////////////////////////////////
proc TestJMark(list G1,def r)
"USAGE: TestJMark(G); G list
RETURN: int: i
NOTE:
This procedure performs J-marked basis test.@*
The input is a list of J-marked polynomials (jmp) arranged
by degree, so G1 is a list of list.@*
The output is a boolean evaluation:
True=1/False=0
EXAMPLE: example TestJMark; shows an example"
{int flag=1;
if(size(G1)==1 && size(G1[1])==1)
{
//Hypersurface
print("Only One Polynomial");
flag=1;
}
else
{
int d=0;
list EK,D=EKPolys(G1);
//print("PolysEK");
//I found EK couples
int massimo=Max(D);
list V1=ConstructorMain(G1,massimo,r);
//print("Costruttore");
//print(V1);
jmp mi=V1[1][1];
int minimo=Min(deg(mi.h));
intvec u=NewWeight(nvars(r)+1);
list L=ringlist(r);
L[2]=insert(L[2],"t",size(L[2]));
//print(L[2]);
list ordlist="a",u;
L[3]=insert(L[3],ordlist,0);
def H=ring(L);
list JJ=list();
jmp pp;
jmp qq;
int i;
int j;
list NN;
for(i=size(V1);i>0;i--)
{
NN=list();
for(j=size(V1[i]);j>0;j--)
{
//print(j);
pp=V1[i][j];
NN[j]=list(pp.h,pp.t);
}
//print(NN);
JJ[i]=NN;
//print(JJ[i]);
//print(i);
}
//print(JJ);
list KK=list();
list UU=list();
//jmp qq;
for(i=size(G1);i>0;i--)
{
for(j=size(G1[i]);j>0;j--)
{
//print(j);
qq=G1[i][j];
UU[j]=list(qq.h,qq.t);
}
//print(UU);
KK[i]=UU;
}
setring H;
//I defined the new ring with the weighted
//variable t
poly p;
//print("anello definito");
def JJJ=imap(r,JJ);
def EK=imap(r,EK);
//print(flag);
//imap(r,D);
list V=list();
jmp fp;
//int i;
//int j;
list N;
for(i=size(JJJ); i>0; i--)
{
N=list();
for(j=size(JJJ[i]); j>0; j--)
{
fp.h=JJJ[i][j][1];
fp.t=JJJ[i][j][2];
N[j]=fp;
}
V[i]=N;
}
//print(V);
def KKJ=imap(r,KK);
list G=list();
list U=list();
for(i=1; i<=size(KKJ); i++)
{
for(j=1; j<=size(KKJ[i]); j++)
{
fp.h=KKJ[i][j][1];
fp.t=KKJ[i][j][2];
U[j]=fp;
}
G[i]=U;
}
// print(V);
//print(G);
//I imported in H everithing I need
poly q;
ideal I;
for(j=1; j<=size(EK);j++)
{
d=D[j];
p=EKPolynomials(EK[j],G);
//print("arrivo");
I=IdealOfV(V[d-minimo+1]);
attrib(I,"isSB",1);
//print(I);
q=reduce(t*p,I);
//print(I[1]);
//print(t*p);
q=subst(q,t,1);
//I reduce all the EK polynomials
// q=RiduzPoly(V[d-minimo+1], p);
if(q!=0)
{
//check whether reduction is 0
print("NOT A BASIS");
flag=0;
break;
}
}
}
//print(flag);
setring r;
//typeof(flag);
return(flag);
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0, (x,y,z), rp;
jmp r1;
r1.h=z^3;
r1.t=poly(0);
jmp r2;
r2.h=z^2*y;
r2.t=poly(0);
jmp r3;
r3.h=z*y^2 ;
r3.t=-x^2*y;
jmp r4;
r4.h=y^5;
r4.t=poly(0);
list G2F=list(list(r1,r2,r3),list(r4));
TestJMark(G2F,r);
}
|