This file is indexed.

/usr/share/racket/pkgs/swindle/tiny-clos.rkt is in racket-common 6.3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
;;; Heavily hacked by Eli Barzilay: Maze is Life!  (eli@barzilay.org)

;;> This module is the core object system.  It is a heavily hacked version
;;> of the original Tiny-CLOS code from Xerox, but it has been fitted to
;;> Racket, optimized and extended.  See the source file for a lot of
;;> details about how the CLOS magic is created.
;;>
;;> [There is one difference between Swindle and Tiny-CLOS: the meta object
;;> hierarchy is assumed to be using only single inheritance, or if there is
;;> multiple inheritance then the built in meta objects should come first to
;;> make the slots allocated in the same place.  This should not be a
;;> problem in realistic situations.]

;;; Original copyright:
;;; ***************************************************************************
;;; Copyright (c) 1992 Xerox Corporation.  All Rights Reserved.
;;;
;;; Use, reproduction, and preparation of derivative works are permitted.  Any
;;; copy of this software or of any derivative work must include the above
;;; copyright notice of Xerox Corporation, this paragraph and the one after it.
;;; Any distribution of this software or derivative works must comply with all
;;; applicable United States export control laws.
;;; This software is made available AS IS, and XEROX CORPORATION DISCLAIMS ALL
;;; WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED
;;; WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND
;;; NOTWITHSTANDING ANY OTHER PROVISION CONTAINED HEREIN, ANY LIABILITY FOR
;;; DAMAGES RESULTING FROM THE SOFTWARE OR ITS USE IS EXPRESSLY DISCLAIMED,
;;; WHETHER ARISING IN CONTRACT, TORT (INCLUDING NEGLIGENCE) OR STRICT
;;; LIABILITY, EVEN IF XEROX CORPORATION IS ADVISED OF THE POSSIBILITY OF SUCH
;;; DAMAGES.
;;; ***************************************************************************

#lang s-exp swindle/base

;;; A very simple CLOS-like language, embedded in Scheme, with a simple MOP.
;;; The features of the default base language are:
;;;   * Classes, with instance slots, but no slot options.
;;;   * Multiple-inheritance.
;;;   * Generic functions with multi-methods and class specializers only.
;;;   * Primary methods and call-next-method; no other method combination.
;;;   * Uses Scheme's lexical scoping facilities as the class and generic
;;;     function naming mechanism.  Another way of saying this is that class,
;;;     generic function and methods are first-class (meta)objects.
;;;
;;; While the MOP is simple, it is essentially equal in power to both MOPs in
;;; AMOP.  This implementation is not at all optimized, but the MOP is designed
;;; so that it can be optimized.  In fact, this MOP allows better optimization
;;; of slot access extenstions than those in AMOP.
;;;
;;; In addition to calling a generic, the entry points to the default base
;;; language are:
;;;
;;;   (MAKE-CLASS list-of-superclasses list-of-slot-names)
;;;   (MAKE-GENERIC-FUNCTION)
;;;   (MAKE-METHOD list-of-specializers procedure)
;;;   (ADD-METHOD generic method)
;;;
;;;   (MAKE class . initargs)
;;;   (INITIALIZE instance initargs) ; Add methods to this, dont call directly.
;;;
;;;   (SLOT-REF    object slot-name)
;;;   (SLOT-SET!   object slot-name new-value)
;;;   (SLOT-BOUND? object slot-name)
;;;
;;; So, for example, one might do:
;;;   (define <position> (make-class (list <object>) (list 'x 'y)))
;;;   (add-method initialize
;;;     (make-method (list <position>)
;;;       (lambda (call-next-method pos initargs)
;;;         (for-each (lambda (initarg-name slot-name)
;;;                     (slot-set! pos slot-name
;;;                                (getarg initargs initarg-name 0)))
;;;                   '(x y)
;;;                   '(x y)))))
;;;   (set! p1 (make <position> 'x 1 'y 3))
;;;
;;; NOTE!  Do not use EQUAL? to compare objects!  Use EQ? or some hand written
;;;        procedure.  Objects have a pointer to their class, and classes are
;;;        circular structures, and...
;;;
;;; The introspective part of the MOP looks like the following.  Note that
;;; these are ordinary procedures, not generics.
;;;   * CLASS-OF
;;;     INSTANCE-OF?
;;;     SUBCLASS?
;;;   * CLASS-DIRECT-SUPERS
;;;     CLASS-DIRECT-SLOTS
;;;     CLASS-CPL
;;;     CLASS-SLOTS
;;;     CLASS-NAME
;;;   * GENERIC-METHODS
;;;     GENERIC-ARITY
;;;     GENERIC-NAME
;;;     GENERIC-COMBINATION
;;;   * METHOD-SPECIALIZERS
;;;     METHOD-PROCEDURE
;;;     METHOD-NAME
;;;
;;; The intercessory protocol looks like (generics in uppercase):
;;; ELI: All of these are generic functions now!
;;;   MAKE
;;;     ALLOCATE-INSTANCE
;;;     INITIALIZE                   (really a base-level generic)
;;;   class initialization
;;;     COMPUTE-CPL
;;;     COMPUTE-SLOTS
;;;     COMPUTE-GETTER-AND-SETTER
;;;   method initialization
;;;     COMPUTE-APPLY-METHOD
;;;   ADD-METHOD                    (Notice this is not a generic!) [eli: yes!]
;;;     COMPUTE-APPLY-GENERIC
;;;       COMPUTE-METHODS
;;;         COMPUTE-METHOD-MORE-SPECIFIC?
;;;       COMPUTE-APPLY-METHODS

;;; OK, now let's get going.  But, as usual, before we can do anything
;;; interesting, we have to muck around for a bit first.  First, we need to
;;; load the support library.  [-- replaced with a module.]
(require swindle/misc
         racket/undefined)

;; This is a convenient function for raising exceptions
(define (raise* exn-maker fmt . args)
  (let ([sym (and (symbol? fmt)
                  (begin0 fmt
                    (when (null? args) (error 'raise* "got too few arguments"))
                    (set! fmt (car args)) (set! args (cdr args))))]
        [fmt-num (- (length args) (procedure-arity exn-maker) -2)])
    (when (< fmt-num 0)
      (error 'raise* "got too few arguments"))
    (let loop ([fmt-args '()] [args args] [a fmt-num])
      (if (zero? a)
        (raise (exn-maker
                (if sym
                  (apply format (concat "~s: " fmt) sym (reverse fmt-args))
                  (apply format fmt (reverse fmt-args)))
                (current-continuation-marks) . args))
        (loop (cons (car args) fmt-args) (cdr args) (sub1 a))))))

;; A simple topological sort.
;; It's in this file so that both TinyClos and Objects can use it.
;; This is a fairly modified version of code I originally got from Anurag
;; Mendhekar <anurag@moose.cs.indiana.edu>.
(define (compute-std-cpl c get-direct-supers)
  (top-sort (build-transitive-closure get-direct-supers c)
            (build-constraints get-direct-supers c)
            (std-tie-breaker get-direct-supers)))
(define (top-sort elements constraints tie-breaker)
  (let loop ([elements elements] [constraints constraints] [result '()])
    (if (null? elements)
      result
      (let ([can-go-in-now
             (filter (lambda (x)
                       (every (lambda (constraint)
                                (or (not (eq? (cadr constraint) x))
                                    (memq (car constraint) result)))
                              constraints))
                     elements)])
        (if (null? can-go-in-now)
          (error 'top-sort "invalid constraints")
          (let ([choice (if (null? (cdr can-go-in-now))
                          (car can-go-in-now)
                          (tie-breaker result can-go-in-now))])
            (loop (filter (lambda (x) (not (eq? x choice))) elements)
                  constraints (append result (list choice)))))))))
(define (std-tie-breaker get-supers)
  (lambda (partial-cpl min-elts)
    (let loop ([pcpl (reverse partial-cpl)])
      (let* ([current-elt (car pcpl)]
             [ds-of-ce (get-supers current-elt)]
             [common (filter (lambda (x) (memq x ds-of-ce)) min-elts)])
        (if (null? common)
          (if (null? (cdr pcpl))
            (error 'std-tie-breaker "nothing valid") (loop (cdr pcpl)))
          (car common))))))
(define (build-transitive-closure get-follow-ons x)
  (let track ([result '()] [pending (list x)])
    (if (null? pending)
      result
      (let ([next (car pending)])
        (if (memq next result)
          (track result (cdr pending))
          (track (cons next result)
                 (append (get-follow-ons next) (cdr pending))))))))
(define (build-constraints get-follow-ons x)
  (let loop ([elements (build-transitive-closure get-follow-ons x)]
             [this-one '()]
             [result '()])
    (if (or (null? this-one) (null? (cdr this-one)))
      (if (null? elements)
        result
        (loop (cdr elements)
              (cons (car elements) (get-follow-ons (car elements)))
              result))
      (loop elements
            (cdr this-one)
            (cons (list (car this-one) (cadr this-one)) result)))))

;;; Then, we need to build what, in a more real implementation, would be the
;;; interface to the memory subsystem: instances and entities.  The former are
;;; used for instances of instances of <class>; the latter are used for
;;; instances of instances of <entity-class>.  In this MOP, none of this is
;;; visible to base- or MOP-level programmers.
;;; A few things to note, that have influenced the way all this is done:
;;;   - R4RS doesn't provide a mechanism for specializing the
;;;     behavior of the printer for certain objects.
;;;   - Some Scheme implementations bomb when printing circular structures --
;;;     that is, arrays and/or lists that somehow point back to themselves.
;;; So, the natural implementation of instances -- vectors whose first field
;;; point to the class -- is straight on out.  Instead, we use a procedure to
;;; `encapsulate' that natural representation.
;;; Having gone that far, it makes things simpler to unify the way normal
;;; instances and entities are handled, at least in the lower levels of the
;;; system.  Don't get faked out by this -- the user shouldn't think of normal
;;; instances as being procedures, they aren't. (At least not in this
;;; language.)  If you are using this to teach, you probably want to hide the
;;; implementation of instances and entities from people.

;;>> ???
;;>   This is Racket's `unspecified' value which is used as the default
;;>   value for unbound slots.  It is provided so you can check if a slot is
;;>   unbound.
(define* ??? undefined)
(define unspecified-initializer (lambda args ???))
(define false-func (lambda args #f))

;; Basic allocation follows, all was in a single let, but this is not needed
;; with Racket's modules.  Also modified to use simple structs for
;; everything, including entities since PLT has applicable struct objects.

(define-values (struct:instance make-instance instance? inst-ref inst-set!)
  ;; slots: applicable, class, function, slots-vector
  (make-struct-type 'swindleobj #f 3 0 #f '() (current-inspector)
                    (lambda (o . args) (apply (instance-proc o) args))))
(defsubst (instance-class x) (inst-ref x 0))
(defsubst (instance-proc  x) (inst-ref x 1))
(defsubst (instance-slots x) (inst-ref x 2))
(defsubst (set-instance-class! x c) (inst-set! x 0 c))
(defsubst (set-instance-proc!  x p) (inst-set! x 1 p))
(defsubst (set-instance-slots! x s) (inst-set! x 2 s))

(defsubst (%instance-ref o f)    (vector-ref (instance-slots o) f))
(defsubst (%instance-set! o f n) (vector-set! (instance-slots o) f n))

(define (%allocate-instance class nfields)
  (make-instance class
                 (lambda args
                   (error 'instance
                          "an instance isn't a procedure -- can't apply it"))
                 (make-vector nfields ???)))

(define (%allocate-entity class nfields)
  (letrec ([o (make-instance
               class
               (lambda args
                 (error 'entity
                        "tried to call an entity before its proc is set"))
               (make-vector nfields ???))])
    o))

;; This is used only once as part of bootstrapping the braid.
(define (set-instance-class-to-self! class)
  (set-instance-class! class class))

;;>>...
;;> *** Low level functionality
;;> (These functions should be used with caution, since they make shooting
;;> legs in exotic ways extremely easy.)

;;>> (change-class! object new-class initargs ...)
;;>   This operation changes the class of the given `object' to the given
;;>   `new-class'.  The way this is done is by creating a fresh instance of
;;>   `new-class', then copying all slot values from `object' to the new
;;>   instance for all shared slot names.  Finally, the new instance's set
;;>   of slots is used for the original object with the new class, so it
;;>   preserves its identity.
(define* (change-class! obj new-class . initargs)
  (let ([new (make new-class . initargs)]
        [new-slots (%class-slots new-class)])
    (dolist [slot (%class-slots (class-of obj))]
      (when (and (not (eq? :class (getarg (cdr slot) :allocation :instance)))
                 (assq (car slot) new-slots))
        (slot-set! new (car slot) (slot-ref obj (car slot)))))
    (set-instance-slots! obj (instance-slots new))
    (set-instance-class! obj new-class)))

;; This might be cute for some ugly hacks but not needed for now.
;; Copies the contents of source to target, making it an "alias" object.  This
;; is no re-provided by clos.rkt, but maybe it will in the future...
;; (define* (copy-object-contents! target source)
;;   (set-instance-class! target (instance-class source))
;;   (set-instance-proc!  target (instance-proc  source))
;;   (set-instance-slots! target (instance-slots source)))

;;>> (set-instance-proc! object proc)
;;>   This function sets the procedure of an entity object.  It is useful
;;>   only for making new entity classes.
(provide set-instance-proc!) ; dangerous!

;; Basic allocation ends here.

;;>>...
;;> *** Basic functionality

;;>> (instance? x)
;;>> (object? x)
;;>   These two are synonyms: a predicate that returns #t for objects that
;;>   are allocated and managed by Swindle.
(provide instance?)
(define* object? instance?)

;;>> (class-of x)
;;>   Return the class object of `x'.  This will either be a Swindle class
;;>   for objects, or a built-in class for other Scheme values.
;;; %allocate-instance, %allocate-entity, %instance-ref, %instance-set! and
;;; class-of are the normal interface, from the rest of the code, to the
;;; low-level memory system.  One thing to take note of is that the protocol
;;; does not allow the user to add low-level instance representations.  I have
;;; never seen a way to make that work.
;;; Note that this implementation of class-of assumes the name of a the
;;; primitive classes that are set up later.
(define* (class-of x)
  ;; This is an early version that will be modified when built-in types are
  ;; introduced later.
  (if (instance? x) (instance-class x) <top>))

;;; Now we can get down to business.  First, we initialize the braid.
;;; For Bootstrapping, we define an early version of MAKE.  It will be changed
;;; to the real version later on.
(define* (make class . initargs)
  (cond [(or (eq? class <class>) (eq? class <entity-class>))
         (let* ([new     (%allocate-instance class
                                             (length the-slots-of-a-class))]
                [dsupers (getarg initargs :direct-supers '())]
                [dslots  (map list (getarg initargs :direct-slots '()))]
                [cpl     (let loop ([sups dsupers] [so-far (list new)])
                           (if (null? sups)
                             (reverse so-far)
                             (loop (append (cdr sups)
                                           (%class-direct-supers (car sups)))
                                   (if (memq (car sups) so-far)
                                     so-far
                                     (cons (car sups) so-far)))))]
                [slots
                 (apply append dslots (map %class-direct-slots (cdr cpl)))]
                [nfields 0]
                [name (or (getarg initargs :name) '-anonymous-)]
                [field-initializers '()]
                ;; this is a temporary allocator version, kept as the original
                ;; one in tiny-clos.  the permanent version below is modified.
                [allocator
                 (lambda (init)
                   (let ([f nfields])
                     (set! nfields (+ nfields 1))
                     (set! field-initializers (cons init field-initializers))
                     (mcons (lambda (o)   (%instance-ref  o f))
                            (lambda (o n) (%instance-set! o f n)))))]
                [getters-n-setters
                 (map (lambda (s)
                        (cons (car s) (allocator unspecified-initializer)))
                      slots)])
           (%set-class-direct-supers!      new dsupers)
           (%set-class-direct-slots!       new dslots)
           (%set-class-cpl!                new cpl)
           (%set-class-slots!              new slots)
           (%set-class-nfields!            new nfields)
           (%set-class-field-initializers! new (reverse field-initializers))
           (%set-class-getters-n-setters!  new getters-n-setters)
           (%set-class-name!               new name)
           (%set-class-initializers!       new '()) ; no class inits now
           (%set-class-valid-initargs!     new #f)  ; no initargs now
           new)]
        [(eq? class <generic>)
         (let ([new   (%allocate-entity class (length (%class-slots class)))]
               [arity (getarg initargs :arity #f)]
               [name  (or (getarg initargs :name) '-anonymous-)])
           (%set-generic-methods!     new '())
           (%set-generic-arity!       new arity)
           (%set-generic-name!        new name)
           (%set-generic-combination! new #f)
           new)]
        [(eq? class <method>)
         (let ([new  (%allocate-entity class (length (%class-slots class)))]
               [name (or (getarg initargs :name) '-anonymous-)])
           (%set-method-specializers! new (getarg initargs :specializers))
           (%set-method-procedure!    new (getarg initargs :procedure))
           (%set-method-qualifier!    new (or (getarg initargs :qualifier)
                                              :primary))
           (%set-method-name!         new name)
           (set-instance-proc!        new (method:compute-apply-method #f new))
           new)]))

;;; These are the real versions of slot-ref and slot-set!.  Because of the way
;;; the new slot access protocol works, with no generic call in line, they can
;;; be defined up front like this.  Cool eh?

;;>> (slot-ref obj slot)
;;>   Pull out the contents of the slot named `slot' in the given `obj'.
;;>   Note that slot names are usually symbols, but can be other values as
;;>   well.
(define* (slot-ref object slot-name)
  ((lookup-slot-info (class-of object) slot-name mcar) object))
(defsubst (%slot-ref object slot-name)
  ((lookup-slot-info (class-of object) slot-name mcar) object))

;;>> (slot-set! obj slot new)
;;>   Change the contents of the `slot' slot of `obj' to the given `new'
;;>   value.
(define* (slot-set! object slot-name new-value)
  ((lookup-slot-info (class-of object) slot-name mcdr) object new-value))
(defsubst (%slot-set! object slot-name new-value)
  ((lookup-slot-info (class-of object) slot-name mcdr) object new-value))
;;>> (set-slot-ref! obj slot new)
;;>   An alias for `slot-set!', to enable using `setf!' on it.
(define* set-slot-ref! slot-set!)

;; This is a utility that is used to make locked slots
(define (make-setter-locked! g+s key error)
  (let ([setter (mcdr g+s)])
    (set-mcdr! g+s
      (lambda (o n)
        (cond [(and (pair? n) (eq? key (car n)) (not (eq? key #t)))
               (setter o (cdr n))]
              [(eq? ??? ((mcar g+s) o)) (setter o n)]
              [else (error)])))))

;;>> (slot-bound? object slot)
;;>   Checks if the given `slot' is bound in `object'.  See also `???'
;;>   above.
(define* (slot-bound? object slot-name)
  (not (eq? ??? (%slot-ref object slot-name))))

(define (lookup-slot-info class slot-name selector)
  (selector (cdr (or (assq slot-name
                           ;; no need to ground slot-ref any more! -- see below
                           ;; (if (eq? class <class>)
                           ;;   ;;* This grounds out the slot-ref tower
                           ;;   getters-n-setters-for-class
                           ;;   (%class-getters-n-setters class))
                           (%class-getters-n-setters class))
                     (raise* make-exn:fail:contract
                             "slot-ref: no slot `~.s' in ~.s"
                             slot-name class)))))

;;; These are for optimizations - works only for single inheritance!
(define (%slot-getter class slot-name)
  (lookup-slot-info class slot-name mcar))
(define (%slot-setter class slot-name)
  (lookup-slot-info class slot-name mcdr))

;;>>... Singleton and Struct Specifiers

;;; Singleton class.  A hash-table is used so it is still possible to compare
;;; classes with eq?.
(define singleton-classes (make-hash-table 'weak))
;;>> (singleton x)
;;>   Returns a singleton specification.  Singletons can be used as type
;;>   specifications that have only one element in them so you can
;;>   specialize methods on unique objects.
;;>
;;>   This is actually just a list with the symbol `singleton' in its head
;;>   and the value, but this function uses a hash table to always return
;;>   the same object for the same value.  For example:
;;>     => (singleton 1)
;;>     (singleton 1)
;;>     => (eq? (singleton 1) (singleton 1))
;;>     #t
;;>   but if the input objects are not `eq?', the result isn't either:
;;>     => (eq? (singleton "1") (singleton "1"))
;;>     #f
;;>   Only `eq?' is used to compare objects.
(define* (singleton x)
  (or (hash-table-get singleton-classes x false-func)
      (let ([c (list 'singleton x)])
        (hash-table-put! singleton-classes x c)
        c)))
;;>> (singleton? x)
;;>   Determines if something is a singleton specification (which is any
;;>   list with a head containing the symbol `singleton').
(define* (singleton? x)
  (and (pair? x) (eq? (car x) 'singleton)))
(defsubst (%singleton? x)
  (and (pair? x) (eq? (car x) 'singleton)))
;;>> (singleton-value x)
;;>   Pulls out the value of a singleton specification.
(define* singleton-value cadr)

;;>>...
;;> Also note that Racket struct types are converted to appropriate
;;> Swindle classes.  This way, it is possible to have Swindle generic
;;> functions that work with struct type specializers.

;;>> (struct-type->class struct-type)
;;>   This function is used to convert a struct-type to a corresponding
;;>   Swindle subclass of `<struct>'.  See the Racket manual for details
;;>   on struct types.
(define struct-to-class-table (make-hash-table))
(define* (struct-type->class stype)
  (hash-table-get
   struct-to-class-table stype
   (thunk
     (let-values ([(name init-field-k auto-field-k accessor mutator
                    immutable-k-list super skipped?)
                   (struct-type-info stype)])
       (let* ([supers (list (cond [super (struct-type->class super)]
                                  [skipped? <opaque-struct>]
                                  [else <struct>]))]
              [proc? (procedure-struct-type? stype)]
              [supers (if proc? (cons <primitive-procedure> supers) supers)]
              [this (parameterize ([*default-object-class* #f])
                      (make (if proc? <procedure-class> <primitive-class>)
                            :name name :direct-supers supers))])
         (hash-table-put! struct-to-class-table stype this)
         this)))))

;;>>...
;;> *** Common accessors

;;; Given that the early version of MAKE is allowed to call accessors on class
;;; metaobjects, the definitions for them come here, before the actual class
;;; definitions, which are coming up right afterwards.
;;>> (class-direct-slots class)
;;>> (class-direct-supers class)
;;>> (class-slots class)
;;>> (class-cpl class)
;;>> (class-name class)
;;>> (class-initializers class)
;;>   Accessors for class objects (look better than using `slot-ref').
(define* (class-direct-slots       c) (%slot-ref c 'direct-slots))
(define* (class-direct-supers      c) (%slot-ref c 'direct-supers))
(define* (class-slots              c) (%slot-ref c 'slots))
(define  (class-nfields            c) (%slot-ref c 'nfields))
(define  (class-field-initializers c) (%slot-ref c 'field-initializers))
(define  (class-getters-n-setters  c) (%slot-ref c 'getters-n-setters))
(define* (class-cpl                c) (%slot-ref c 'cpl))
(define* (class-name               c) (%slot-ref c 'name))
(define* (class-initializers       c) (%slot-ref c 'initializers))
(define  (class-valid-initargs     c) (%slot-ref c 'valid-initargs))
;;>> (generic-methods generic)
;;>> (generic-arity generic)
;;>> (generic-name generic)
;;>> (generic-combination generic)
;;>   Accessors for generic function objects.
(define* (generic-methods          g) (%slot-ref g 'methods))
(define* (generic-arity            g) (%slot-ref g 'arity))
(define* (generic-name             g) (%slot-ref g 'name))
(define* (generic-combination      g) (%slot-ref g 'combination))
;;>> (method-specializers method)
;;>> (method-procedure method)
;;>> (method-qualifier method)
;;>> (method-name method)
;;>> (method-arity method)
;;>   Accessors for method objects.  `method-arity' is not really an
;;>   accessor, it is deduced from the arity of the procedure (minus one for
;;>   the `call-next-method' argument).
(define* (method-specializers      m) (%slot-ref m 'specializers))
(define* (method-procedure         m) (%slot-ref m 'procedure))
(define* (method-qualifier         m) (%slot-ref m 'qualifier))
(define* (method-name              m) (%slot-ref m 'name))
(define* (method-arity m)
  (let ([a (procedure-arity (%method-procedure m))])
    (cond [(integer? a) (sub1 a)]
          [(arity-at-least? a)
           (make-arity-at-least (sub1 (arity-at-least-value a)))]
          [else (error 'method-arity "the procedure in ~.s has bad arity ~e"
                       m a)])))

;;; These versions will be optimized later.
(define %class-direct-slots       class-direct-slots)
(define %class-direct-supers      class-direct-supers)
(define %class-slots              class-slots)
(define %class-nfields            class-nfields)
(define %class-field-initializers class-field-initializers)
(define %class-getters-n-setters  class-getters-n-setters)
(define %class-cpl                class-cpl)
(define %class-name               class-name)
(define %class-initializers       class-initializers)
(define %class-valid-initargs     class-valid-initargs)
(define %generic-methods          generic-methods)
(define %generic-arity            generic-arity)
(define %generic-name             generic-name)
(define %generic-combination      generic-combination)
(define %method-specializers      method-specializers)
(define %method-procedure         method-procedure)
(define %method-qualifier         method-qualifier)
(define %method-name              method-name)

(define (%set-class-direct-slots!   c x) (%slot-set! c 'direct-slots   x))
(define (%set-class-direct-supers!  c x) (%slot-set! c 'direct-supers  x))
(define (%set-class-slots!          c x) (%slot-set! c 'slots          x))
(define (%set-class-nfields!        c x) (%slot-set! c 'nfields        x))
(define (%set-class-field-initializers! c x)
                                         (%slot-set! c 'field-initializers x))
(define (%set-class-getters-n-setters! c x)
                                         (%slot-set! c 'getters-n-setters x))
(define (%set-class-cpl!            c x) (%slot-set! c 'cpl            x))
(define (%set-class-name!           c x) (%slot-set! c 'name           x))
(define (%set-class-initializers!   c x) (%slot-set! c 'initializers   x))
(define (%set-class-valid-initargs! c x) (%slot-set! c 'valid-initargs x))
(define (%set-generic-methods!      g x) (%slot-set! g 'methods        x))
(define (%set-generic-arity!        g x) (%slot-set! g 'arity          x))
(define (%set-generic-name!         g x) (%slot-set! g 'name           x))
(define (%set-generic-combination!  g x) (%slot-set! g 'combination    x))
(define (%set-method-specializers!  m x) (%slot-set! m 'specializers   x))
(define (%set-method-procedure!     m x) (%slot-set! m 'procedure      x))
(define (%set-method-qualifier!     m x) (%slot-set! m 'qualifier      x))
(define (%set-method-name!          m x) (%slot-set! m 'name           x))

;;; These are used to access the two slots that optimize generic invocations.
(define (%generic-app-cache            g  ) (%slot-ref  g 'app-cache))
(define (%generic-singletons-list      g  ) (%slot-ref  g 'singletons-list))
(define (%set-generic-app-cache!       g x) (%slot-set! g 'app-cache x))
(define (%set-generic-singletons-list! g x) (%slot-set! g 'singletons-list x))

;;; The next 7 clusters define the 6 initial classes.  It takes 7 to 6 because
;;; the first and fourth both contribute to <class>.

(define the-slots-of-a-class
  '(direct-supers              ; (class ...)
    direct-slots               ; ((name . options) ...)
    cpl                        ; (class ...)
    slots                      ; ((name . options) ...)
    nfields                    ; an integer
    field-initializers         ; (proc ...)
    getters-n-setters          ; ((slot-name getter setter) ...)
    name                       ; a symbol
    initializers               ; (proc ...)
    valid-initargs))           ; (initarg ...) or #f
(define getters-n-setters-for-class ; see lookup-slot-info
  (map (lambda (s)
         (let ([f (position-of s the-slots-of-a-class)])
           (cons s (mcons (lambda (o)   (%instance-ref  o f))
                          (lambda (o n) (%instance-set! o f n))))))
       the-slots-of-a-class))

;;>>...
;;> *** Basic classes

;;>> <class>
;;>   This is the "mother of all classes": every Swindle class is an
;;>   instance of `<class>'.
;;>   Slots:
;;>   * direct-supers:  direct superclasses
;;>   * direct-slots:   direct slots, each a list of a name and options
;;>   * cpl:            class precedence list (classes list this to <top>)
;;>   * slots:          all slots (like direct slots)
;;>   * nfields:        number of fields
;;>   * field-initializers: a list of functions to initialize slots
;;>   * getters-n-setters:  an alist of slot-names, getters, and setters
;;>   * name:           class name (usually the defined identifier)
;;>   * initializers:   procedure list that perform additional initializing
;;>   See the `clos' documentation for available class and slot keyword
;;>   arguments and their effect.
(define* <class> (%allocate-instance #f (length the-slots-of-a-class)))
(set-instance-class-to-self! <class>)

;; In the original tiny-clos, this block used to just set the getters-n-setters
;; slot of a class to '() since it wasn't used anyway.  In Swindle the MOP
;; accessors are all optimized to directly get the vector element because the
;; meta hierarchy is assumed to be single-inheritance only (allocation of more
;; slots always come after the built in ones), so what I do here is set the
;; slot value properly, and since `%class-getters-n-setters' accesses the
;; vector directly it doesn't go through slot-ref, which means that the
;; slot-ref definition above is fine. So,
;;   (%set-class-getters-n-setters! <class> getters-n-setters-for-class)
;; translates into this:
((mcdr (cdr (assq 'getters-n-setters getters-n-setters-for-class)))
 <class> getters-n-setters-for-class)
;; and now the direct `%class-getters-n-setters' version:
(set! %class-getters-n-setters
      ;; and (lookup-slot-info <class> 'getters-n-setters mcar) translates to:
      (mcar (cdr (assq 'getters-n-setters getters-n-setters-for-class))))

;;>> <top>
;;>   This is the "mother of all values": every value is an instance of
;;>   `<top>' (including standard Scheme values).
(define* <top> (make <class> :direct-supers '()
                             :direct-slots  '()
                             :name          '<top>))

;;>> <object>
;;>   This is the "mother of all objects": every Swindle object is an
;;>   instance of `<object>'.
(define* <object> (make <class> :direct-supers (list <top>)
                                :direct-slots  '()
                                :name          '<object>))

;;; This cluster, together with the first cluster above that defines <class>
;;; and sets its class, have the effect of:
;;;   (define <class>
;;;     (make <class> :direct-supers (list <object>)
;;;                   :direct-slots  '(direct-supers ...)
;;;                   :name          '<class>))
(%set-class-direct-supers!      <class> (list <object>))
(%set-class-cpl!                <class> (list <class> <object> <top>))
(%set-class-direct-slots!       <class> (map list the-slots-of-a-class))
(%set-class-slots!              <class> (map list the-slots-of-a-class))
(%set-class-nfields!            <class> (length the-slots-of-a-class))
(%set-class-field-initializers! <class> (map (lambda (s)
                                               unspecified-initializer)
                                             the-slots-of-a-class))
(%set-class-name!               <class> '<class>)
(%set-class-initializers!       <class> '())
(%set-class-valid-initargs!     <class> #f)

;;>> <procedure-class>
;;>   The class of all procedures classes, both standard Scheme procedures
;;>   classes and entity (Swindle procedure objects) classes.  (Note that
;;>   this is a class of *classes*).
(define* <procedure-class>
  (make <class> :direct-supers (list <class>)
                :direct-slots  '()
                :name          '<procedure-class>))

;;>> <entity-class>
;;>   The class of entity classes -- generic functions and methods.  An
;;>   entity is a procedural Swindle object, something that you can apply as
;;>   a function but it is still a Swindle object.  Note that this is the
;;>   class of entity *classes* not of entities themselves.
(define* <entity-class>
  (make <class> :direct-supers (list <procedure-class>)
                :direct-slots  '()
                :name          '<entity-class>))

;;>> <function>
;;>   The class of all applicable values: methods, generic functions, and
;;>   standard closures.
(define* <function>
  (make <class> :direct-supers (list <top>)
                :direct-slots  '()
                :name          '<function>))

;;; The two extra slots below (app-cache and singletons-list) are used to
;;; optimize generic invocations: app-cache holds an 'equal hash-table that
;;; maps a list of classes to the lambda expression that holds the method call
;;; (it used to be an l-hash-table, but 'equal is ok since we can't compare
;;; swindleobj instances recursively -- which is also why tool.rkt needs to
;;; redefine the `render-value/format' method).  The contents of this slot is
;;; reset whenever a method is added to the generic.  Two problems make things
;;; a little more complicated.  First, if add-method is used to modify any of
;;; the generic-invocation-generics then all of these caches should be flushed,
;;; this is achieved by setting *generic-app-cache-tag* to a new [list] object
;;; and the value of app-cache is a cons of that value and the actual hash
;;; table - if we see that the car is not eq? to the current tag, then we flush
;;; the cache.  Second, singleton values might screw things up, so we hold in
;;; singletons-list a list that has the same length as all method specializer
;;; lists, each element contains a hash table with all singleton values that
;;; appear in that place matched to #t, then when we try to see if we have a
;;; cached function for a generic application, we scan the argument list
;;; against this list, and any value that has a singleton with that value at
;;; some method, is left in place for the app-cache lookup (it is used itself
;;; rather than its class).  This whole thing is a bit complicated but leads to
;;; dramatic run-time improvement.
;;>> <generic>
;;>   The class of generic functions: objects that contain method objects
;;>   and calls the appropriate ones when applied.
;;>   Slots:
;;>   * methods:     a list of <method> objects
;;>   * arity:       the generic arity (same for all of its methods)
;;>   * name:        generic name
;;>   * combination: a method combination function or #f, see
;;>                  `make-generic-combination' below for details
(define* <generic>
  (make <entity-class> :direct-supers (list <object> <function>)
                       :direct-slots  '(methods arity name combination
                                        app-cache singletons-list) ; see above
                       :name          '<generic>))

;;>> <method>
;;>   The class of methods: objects that are similar to Scheme closures,
;;>   except that they have type specifiers attached.  Note that in contrast
;;>   to Tiny CLOS, methods are applicable objects in Swindle -- they check
;;>   supplied argument types when applied.
;;>   Slots:
;;>   * specializers: a list of class (and singleton) specializers
;;>   * procedure:    the function (never call directly!)
;;>   * qualifier:    some qualifier tag, used when applying a generic
;;>   * name:         method name
(define* <method>
  (make <entity-class> :direct-supers (list <object> <function>)
                       :direct-slots  '(specializers procedure qualifier name)
                       :name          '<method>))
;; Do this since compute-apply-method relies on them not changing, as well as a
;; zillion other places.  A method should be very similar to a lambda.
(dolist [slot '(specializers procedure qualifier)]
  (make-setter-locked! (lookup-slot-info <method> slot values) #t
    (lambda ()
      (raise* make-exn:fail:contract
              "slot-set!: slot `~.s' in <method> is locked" slot))))

;;>>...
;;> *** Convenience functions
;;>
;;> These are some convenience functions -- no new syntax, just function
;;> wrappers for `make' with some class and some slot values.  See `clos'
;;> for a more sophisticated (and convenient) approach.

;;; These are the convenient syntax we expose to the base-level user.
;;>> (make-class direct-supers direct slots)
;;>   Creates a class object -- an instance of <class>.
(define* (make-class direct-supers direct-slots)
  (make <class> :direct-supers direct-supers
                :direct-slots  direct-slots))
;;>> (make-generic-function [name/arity])
;;>   Creates a generic function object -- an instance of <generic>.  The
;;>   argument can specify name and/or arguments number.
(define* (make-generic-function . name/arity)
  (cond
   [(null? name/arity) (make <generic>)]
   [(null? (cdr name/arity))
    (let ([n/a (car name/arity)])
      (if (integer? n/a)
        (make <generic> :arity n/a) (make <generic> :name n/a)))]
   [else (make <generic> :name (car name/arity) :arity (cadr name/arity))]))
;;>> (make-method specializers procedure)
;;>   Creates a method object -- an instance of <method>, using the given
;;>   specializer list and procedure.  The procedure should have a first
;;>   argument which is being used to access a `call-next-method' call.
(define* (make-method specializers procedure)
  (make <method> :specializers specializers
                 :procedure    procedure))

;;>> (no-next-method generic method [args ...])
;;>> (no-applicable-method generic [args ...])
;;>   These two generic functions are equivalents to the ones in CL.  The
;;>   first one is applied on a generic and a method in case there was no
;;>   next method and `call-next-method' was used.  The second is used when
;;>   a generic was called but no matching primary methods were found.  The
;;>   only difference is that in Swindle methods can be applied directly,
;;>   and if `call-next-method' is used, then `no-next-method' gets `#f' for
;;>   the generic argument.
(define* no-next-method       (make-generic-function 'no-next-method))
(define* no-applicable-method (make-generic-function 'no-applicable-method))

;;; Add possibility of generic-independent method application - this is the
;;; instance-proc of methods, which is activated when you apply the object (in
;;; the original, methods could not be applied).  This is defined using this
;;; name and arguments because it is later used directly by the generic
;;; function (cannot use the generic in the initial make since methods need to
;;; be created when the generics are constructed).
(define (method:compute-apply-method call-next-method method)
  (let* ([specializers (%method-specializers method)]
         [*no-next-method* ; see the *no-next-method* trick below
          (lambda args (no-next-method #f method . args))]
         [proc     (%method-procedure method)]
         [arity    (method-arity method)]
         [exact?   (integer? arity)]
         [required ((if exact? identity arity-at-least-value) arity)])
    (when (and exact? (> (length specializers) required))
      (error 'compute-apply-method
             "got ~e specializers for ~s - too much for procedure arity ~a"
             (length specializers) (%method-name method) required))
    (lambda args
      (cond [(if exact?
               (not (= (length args) required)) (< (length args) required))
             (raise* make-exn:fail:contract:arity
                     "method ~a: expects ~a~e argument~a, given ~e~a"
                     (%method-name method)
                     (if exact? "" "at least ") required
                     (if (= 1 required) "" "s") (length args)
                     (if (null? args) "" (format ": ~e" args)))]
            [(not (every instance-of? args specializers))
             (let loop ([args args] [specs specializers])
               (if (instance-of? (car args) (car specs))
                 (loop (cdr args) (cdr specs))
                 (raise* make-exn:fail:contract
                         "method ~a: expects argument of type ~a; given ~e"
                         (%method-name method) (%class-name (car specs))
                         (car args))))]
            [else (proc *no-next-method* . args)]))))

;;>>... Generics in the instance initialization protocol
;;> The following generic functions are used as part of the protocol of
;;> instantiating an instance, and some are used specifically to instantiate
;;> class objects.

;;; The instance structure protocol.
;;>> (allocate-instance class initargs)
;;>   This generic function is called to allocate an instance of a class.
;;>   It is applied on the class object, and is expected to return the new
;;>   instance object of that class.
(define* allocate-instance
  (make-generic-function 'allocate-instance))
;;>> (initialize instance initargs)
;;>   This generic is called to initialize an instance.  It is applied on
;;>   the newly allocated object and the given initargs, and is not expected
;;>   to return any meaningful value -- only do some side effects on the
;;>   instance to initialize it.  When overriding this for a some class, it
;;>   is not a good idea to skip `call-next-method' since it is responsible
;;>   for initializing slot values.
(define* initialize
  (make-generic-function 'initialize))
;;>> (compute-getter-and-setter class slot allocator)
;;>   This generic is used to get a getter and setter functions for a given
;;>   slot.  It is passed the class object, the slot information (a list of
;;>   a slot name and options), and an allocator function.  The allocator is
;;>   a function that gets an initializer function and returns an index
;;>   position for the new slot.  The return value should be a list of two
;;>   elements -- a getter and a setter functions.
(define* compute-getter-and-setter
  (make-generic-function 'compute-getter-and-setter))
;;; The class initialization protocol.
;;>> (compute-cpl class)
;;>   This generic is used to get the class-precedence-list for a class
;;>   object.  The standard <class> object uses the `compute-std-cpl' (see
;;>   in the code) which flattens the class ancestors using a topological
;;>   sort that resolve ambiguities left-to-right.
(define* compute-cpl
  (make-generic-function 'compute-cpl))
;;>> (compute-slots class)
;;>   This generic is used to compute all slot information for a given
;;>   class, after its precedence list has been computed.  The standard
;;>   <class> collects information from all preceding classes.
(define* compute-slots
  (make-generic-function 'compute-slots))

;;>> (compute-apply-method method)
;;>   This generic is used to compute the procedure that will get executed
;;>   when a method is applied directly.
(define* compute-apply-method
  (make-generic-function 'compute-apply-method))

;;>>... Generics in the generic invocation protocol
;;> These generics are used for invocation of generic functions.  See the
;;> code to see how this circularity is achieved.

;;>> ((compute-apply-generic generic) args ...)
;;>   This generic is used to compute the object (a closure) that is
;;>   actually applied to execute the generic call.  The standard version
;;>   uses `compute-method' and `compute-apply-methods' below, and caches
;;>   the result.
(define* compute-apply-generic
  (make-generic-function 'compute-apply-generic))
;;>> (compute-methods generic args)
;;>   Computes the methods that should be applied for this generic
;;>   invocation with args.  The standard code filters applicable methods
;;>   and sorts them according to their specificness.  The return value is
;;>   expected to depend only on the types of the arguments (and values if
;;>   there are singleton specializers).
(define* compute-methods
  (make-generic-function 'compute-methods))
;;>> ((compute-method-more-specific? generic) mthd1 mthd2 args)
;;>   Get a generic and return a function that gets two methods and a list
;;>   of arguments and decide which of the two methods is more specific.
;;>   This decision should only be based on the argument types, or values
;;>   only in case of singletons.
(define* compute-method-more-specific?
  (make-generic-function 'compute-method-more-specific?))
;;>> ((compute-apply-methods generic methods) args ...)
;;>   Gets a generic and returns a function that gets the given arguments
;;>   for this call.  This function which it returns is the combination of
;;>   all given methods.  The standard one arranges them by default using
;;>   the `call-next-method' argument that methods have.  Swindle extends
;;>   this with qualified methods and applies `before', `after', and
;;>   `around' methods in a similar way to CLOS: first the `around' methods
;;>   are applied (and they usually call their `call-next-method' to
;;>   continue but can return a different value), then all the `before'
;;>   methods are applied (with no `call-next-method'), then all `primary'
;;>   methods as usual (remembering the return value), and finally the
;;>   `after' methods (similar to the `before', but in reverse specificness
;;>   order).  If the generic has a `combination' slot value, then it is a
;;>   procedure that is used to combine the primary methods, but the
;;>   auxiliary ones are still applied in the same way.  This is unlike CLOS
;;>   where the standard combinations run only `around' methods, and there
;;>   is generally more control with method combinations, but in Swindle
;;>   `compute-apply-methods' should be overridden for this.  See
;;>   `make-generic-combination' for details about method combinations.
(define* compute-apply-methods
  (make-generic-function 'compute-apply-methods))

;;; The next thing to do is bootstrap generic functions.

(define generic-invocation-generics
  (list compute-apply-generic compute-methods
        compute-method-more-specific? compute-apply-methods))

;;; This is used to signal whenever all method caches are to be reset - so when
;;; a method is added to generic-invocation-generics, this is set to some value
;;; which is not eq? to the current one.
(define *generic-app-cache-tag* #t)

;;>> (add-method generic method)
;;>   This generic function is called to add a method to a generic function
;;>   object.  This is an other change from the original Tiny CLOS where it
;;>   was a normal function.
(define* (add-method generic method)
  ;; add singleton specializer value (if any) to the corresponding hash table
  ;; in singletons-list.
  (define (add-to-singletons-list specs tables)
    (cond
     [(null? specs) null]
     [(%singleton? (car specs))
      (let ([ht (or (car tables)
                    (make-hash-table 'weak))])
        (hash-table-put! ht (singleton-value (car specs)) #t)
        (cons ht (add-to-singletons-list (cdr specs) (cdr tables))))]
     [else
      (cons (car tables)
            (add-to-singletons-list (cdr specs) (cdr tables)))]))
  (define (n-falses n)
    (let loop ([n n] [r '()]) (if (zero? n) r (loop (sub1 n) (cons #f r)))))
  (let ([tables    (%generic-singletons-list generic)]
        [specs     (%method-specializers method)]
        [qualifier (%method-qualifier method)])
    ;; make sure that tables always contain enough hash tables (or #f's)
    (cond [(eq? tables ???)
           (set! tables (n-falses (length specs)))]
          [(< (length tables) (length specs))
           (set! tables (append
                         tables
                         (n-falses (- (length specs) (length tables)))))])
    (set! tables (add-to-singletons-list specs tables))
    (%set-generic-singletons-list! generic tables)
    (if (memq generic generic-invocation-generics)
      ;; reset all caches by changing the value of *generic-app-cache-tag*
      (set! *generic-app-cache-tag* (list #f))
      ;; reset this generic app-cache
      (%set-generic-app-cache! generic ???))
    (%set-generic-methods!
     generic
     (cons method
           (filter (lambda (m)
                     (not (and (every eq? (method-specializers m) specs)
                               (eq? (%method-qualifier m) qualifier))))
                   (%generic-methods generic))))
    (set-instance-proc! generic (compute-apply-generic generic))))

;;; Adding a method calls COMPUTE-APPLY-GENERIC, the result of which calls the
;;; other generics in the generic invocation protocol.  Two, related, problems
;;; come up.  A chicken and egg problem and a infinite regress problem.
;;; In order to add our first method to COMPUTE-APPLY-GENERIC, we need
;;; something sitting there, so it can be called.  The first definition below
;;; does that.
;;; Then, the second definition solves both the infinite regress and the not
;;; having enough of the protocol around to build itself problem the same way:
;;; it special cases invocation of generics in the invocation protocol.

(set-instance-proc! compute-apply-generic
  (lambda (generic)
    ((%method-procedure (car (%generic-methods generic))) '() generic)))

(add-method compute-apply-generic
  (make-method (list <generic>)
    (named-lambda method:compute-apply-generic (call-next-method generic)
      #| The code below is the original, then comes the optimized version below
      ;; see the definition of the <generic> class above.
      (lambda args
        (if (and (memq generic generic-invocation-generics)    ;* Ground case
                 (memq (car args) generic-invocation-generics))
          (apply (%method-procedure (last (%generic-methods generic))) #f args)
          ((compute-apply-methods generic)
           (compute-methods generic args) . args)))
      |#
      ;; This function converts the list of arguments to a list of keys to look
      ;; for in the cache - use the argument's class except when there is a
      ;; corresponding singleton with the same value at the same position.
      (define (get-keys args tables)
        (let loop ([args args] [tables tables] [ks '()])
          (if (or (null? tables) (null? args))
            (reverse ks)
            (loop (cdr args) (cdr tables)
                  (cons (if (and (car tables)
                                 (hash-table-get
                                  (car tables) (car args) false-func))
                          (car args)
                          (class-of (car args)))
                        ks)))))
      ;; This is the main function that brings the correct value from the
      ;; cache, or generates one and store it if there is no entry, or the
      ;; cache was reset.  Finally, it is applied to the arguments as usual.
      ;; NOTE: This code is delicate! Handle with extreme care!
      (lambda args
        (let ([app-cache (%generic-app-cache generic)]
              [arity     (%generic-arity generic)]
              [keys      (get-keys args (%generic-singletons-list generic))]
              [ground?   (and ;* Ground case
                          (memq generic generic-invocation-generics)
                          (pair? args)
                          (memq (car args) generic-invocation-generics))])
          ;; This function creates the cached closure -- the assumption is that
          ;; `keys' contain a specification that will identify all calls that
          ;; will have this exact same list.
          (define (compute-callable)
            (let ([c (if ground?
                       (let ([m (%method-procedure
                                 (last (%generic-methods generic)))])
                         (lambda args (apply m #f args)))
                       (compute-apply-methods
                        generic (compute-methods generic args)))])
              (hash-table-put! (cdr app-cache) keys c)
              c))
          (when (cond [(not arity) #f]
                      [(integer? arity) (not (= (length args) arity))]
                      [else (< (length args) (arity-at-least-value arity))])
            (let ([least (and (arity-at-least? arity)
                              (arity-at-least-value arity))])
              (raise* make-exn:fail:contract:arity
                      "generic ~a: expects ~a~e argument~a, given ~e~a"
                      (%generic-name generic)
                      (if least "at least " "") (or least arity)
                      (if (= 1 (or least arity)) "" "s") (length args)
                      (if (null? args) "" (format ": ~e" args)))))
          (when (or (eq? app-cache ???)
                    (not (eq? (car app-cache) *generic-app-cache-tag*)))
            (set! app-cache (cons *generic-app-cache-tag*
                                  (make-hash-table 'weak 'equal)))
            (%set-generic-app-cache! generic app-cache))
          ((hash-table-get (cdr app-cache) keys compute-callable)
           . args))))))

(add-method compute-methods
  (make-method (list <generic>)
    (named-lambda method:compute-methods (call-next-method generic args)
      (let ([more-specific? (compute-method-more-specific? generic)])
        (sort (filter
               (lambda (m)
                 ;; Note that every only goes as far as the shortest list
                 (every instance-of? args (%method-specializers m)))
               (%generic-methods generic))
              (lambda (m1 m2) (more-specific? m1 m2 args)))))))

(add-method compute-method-more-specific?
  (make-method (list <generic>)
    (named-lambda method:compute-method-more-specific?
                  (call-next-method generic)
      (lambda (m1 m2 args)
        (let loop ([specls1 (%method-specializers m1)]
                   [specls2 (%method-specializers m2)]
                   [args    args])
          (cond [(and (null? specls1) (null? specls2))
                 (if (eq? (%method-qualifier m1) (%method-qualifier m2))
                   (error 'generic
                          "two methods are equally specific in ~e" generic)
                   #f)]
                ;; some methods in this file have less specializers than
                ;; others, for things like args -- so remove this, leave the
                ;; args check but treat the missing as if it's <top>
                ;; ((or (null? specls1) (null? specls2))
                ;;  (error 'generic
                ;;         "two methods have different number of ~
                ;;          specializers in ~e" generic))
                [(null? args) ; shouldn't happen
                 (error 'generic
                        "fewer arguments than specializers for ~e" generic)]
                [(null? specls1) ; see above -> treat this like <top>
                 (if (eq? <top> (car specls2))
                   (loop specls1 (cdr specls2) (cdr args))
                   #f)]
                [(null? specls2) ; see above -> treat this like <top>
                 (if (eq? <top> (car specls1))
                   (loop (cdr specls1) specls2 (cdr args))
                   #t)]
                [else (let ([c1 (car specls1)] [c2 (car specls2)])
                        (if (eq? c1 c2)
                          (loop (cdr specls1) (cdr specls2) (cdr args))
                          (more-specific? c1 c2 (car args))))]))))))

(add-method compute-apply-methods
  (make-method (list <generic>)
    (named-lambda method:compute-apply-methods
                  (call-next-method generic methods)
      (let ([primaries '()] [arounds '()] [befores '()] [afters '()]
            [combination (%generic-combination generic)])
        ;; *** Trick: this (and in <method> above) is the only code that is
        ;; supposed to ever apply a method procedure.  So, the closure that
        ;; will invoke `no-next-method' is named `*no-next-method*' so it is
        ;; identifiable.  The only way to break this would be to call the
        ;; method-procedure directly on an object with such a name.
        (define one-step
          (if combination
            (combination generic)
            (lambda (tail args)
              (lambda newargs
                ;; tail is never null: (null? (cdr tail)) below, and the fact
                ;; that this function is applied on the primaries which are
                ;; never null
                (let ([args (if (null? newargs) args newargs)])
                  ((cdar tail)
                   (if (null? (cdr tail))
                     (named-lambda *no-next-method* args
                       (no-next-method generic (caar tail) . args))
                     (one-step (cdr tail) args))
                   . args))))))
        (define ((apply-before/after-method args) method)
          ((cdr method)
           (named-lambda *no-next-method* args
             (no-next-method generic (car method) . args))
           . args))
        (define ((call-before-primary-after args) . newargs)
          ;; could supply newargs below, but change before calling befores
          (let ([args (if (null? newargs) args newargs)])
            (for-each (apply-before/after-method args) befores)
            (begin0 ((one-step primaries args))
              (for-each (apply-before/after-method args) afters))))
        (define (one-around-step tail args)
          (if (null? tail)
            (call-before-primary-after args)
            (lambda newargs
              (let ([args (if (null? newargs) args newargs)])
                ((cdar tail) (one-around-step (cdr tail) args) . args)))))
        ;; first sort by qualifier and pull out method-procedures
        (let loop ([ms methods])
          (unless (null? ms)
            (letsubst ([(push! p)
                        (set! p (cons (cons (car ms)
                                            (%method-procedure (car ms)))
                                      p))])
              (case (%method-qualifier (car ms))
                [(:primary) (push! primaries)]
                [(:around)  (push! arounds)]
                [(:before)  (push! befores)]
                [(:after)   (push! afters)]
                ;; ignore other qualifiers
                ;; [else (error 'compute-apply-methods
                ;;              "a method ~e has an unexpected qualifier `~e'"
                ;;              (car methods)
                ;;              (%method-qualifier (car methods)))]
                )
            (loop (cdr ms)))))
        (set! primaries (reverse primaries))
        (set! arounds   (reverse arounds))
        (set! befores   (reverse befores))
        ;; no reverse for afters
        (cond [(null? primaries)
               (lambda args (no-applicable-method generic . args))]
              ;; optimize common case of only primaries
              [(and (null? befores) (null? afters) (null? arounds))
               ;; args is initialized to () since if it is a generic of no
               ;; arguments then it will always stay so, otherwise, the first
               ;; call will have the real arguments anyway
               (one-step primaries '())]
              [else (one-around-step arounds '())])))))

;;>> (((make-generic-combination keys...) generic) tail args)
;;>   This function can be used to construct simple method combinations that
;;>   can be used with the `combination' slot of generic functions.  The
;;>   combination itself is a function that gets a generic and returns a
;;>   function that gets a list of method/procedure pairs (for optimization
;;>   the method-procedures are pre taken) and the arguments and performs
;;>   the call -- but this is only interesting if there's any need to
;;>   implement a method combination directly, otherwise, the
;;>   `make-generic-combination' interface should allow enough freedom.
;;>   Note that when a method combination is used, `around', `before', and
;;>   `after' are called around the primary call as usual, but the primaries
;;>   are never called with a valid `call-next-method' argument.
;;>
;;>   The keyword arguments that can be taken determine the behavior of this
;;>   combination.  Overall, it is roughly like a customizable version of a
;;>   fold operation on the method calls.
;;>   * :init
;;>     - The initial value for this computation.  Defaults to null.
;;>   * :combine
;;>     - A function to be called on a method call result and the old value,
;;>       and produces a new value.  The default is `cons', which with an
;;>       initial null value will collect the results into a reversed list.
;;>   * :process-methods
;;>     - A function that can be called on the initial list of
;;>       method/procedure pairs to change it -- for example, it can be
;;>       reversed to apply the methods from the least specific to the most
;;>       specific.  No default.
;;>   * :process-result
;;>     - A function that can be called on the final resulting value to
;;>       produce the actual return value.  For example, it can reverse back
;;>       a list of accumulated values.  No default.
;;>   * :control
;;>     - If this parameter is specified, then the `:combine' argument is
;;>       ignored.  The value given to `:control' should be a function of
;;>       four arguments:
;;>       1. a `loop' function that should be called on some new value and
;;>          some new tail;
;;>       2. a `val' argument that gets the current accumulated value;
;;>       3. a `this' thunk that can be called to apply the current method
;;>          and return its result;
;;>       4. a `tail' value that holds the rest of the method/procedure list
;;>          which can be sent to `loop'.
;;>       It should be clear now, that a `:control' argument can have a lot
;;>       of control on the computation, it can abort, change arbitrary
;;>       values and skip calling methods.  Note that if it won't call
;;>       `loop' with an empty list, then a `:process-result' function will
;;>       not be used as well.  See the pre-defined combinations in the
;;>       source code to see examples of using this function.
(define* (make-generic-combination
          &key [init '()] [combine cons]
               process-methods process-result control)
  (lambda (generic)
    (lambda (tail dummy-args)
      (let ([tail (if process-methods (process-methods tail) tail)])
        (lambda args
          (let loop ([res init] [tail tail])
            ;; see *no-next-method* trick above
            (let ([*no-next-method*
                   (lambda args (no-next-method generic (caar tail) . args))])
              (if (null? tail)
                (if process-result (process-result res) res)
                (if control
                  (control loop res
                           (lambda () ((cdar tail) *no-next-method* . args))
                           (cdr tail))
                  (loop (combine ((cdar tail) *no-next-method* . args) res)
                        (cdr tail)))))))))))

;;>> generic-+-combination
;;>> generic-list-combination
;;>> generic-min-combination
;;>> generic-max-combination
;;>> generic-append-combination
;;>> generic-append!-combination
;;>> generic-begin-combination
;;>> generic-and-combination
;;>> generic-or-combination
;;>   These are all functions that can be used as a `combination' value for
;;>   a generic function.  They work in the same way as the standard method
;;>   combinations of CL.  Most of them do the obvious thing based on some
;;>   function to combine the result.  The `begin' combination simply
;;>   executes all methods one by one and returns the last value, the `and'
;;>   and `or' combinations will call them one by one until a false or true
;;>   result is returned.  The source of these can be used as templates for
;;>   defining more combinations.
(define* generic-+-combination
  (make-generic-combination :init 0 :combine +))
(define* generic-list-combination
  (make-generic-combination :process-result reverse))
(define* generic-min-combination
  (make-generic-combination :process-result (lambda (r) (apply min r))))
(define* generic-max-combination
  (make-generic-combination :process-result (lambda (r) (apply max r))))
(define* generic-append-combination
  (make-generic-combination
   :process-result (lambda (r) (apply append (reverse r)))))
(define* generic-append!-combination
  (make-generic-combination
   :process-result (lambda (r) (apply append (reverse r)))))
(define* generic-begin-combination
  (make-generic-combination :init #f :combine (lambda (x y) x)))
(define* generic-and-combination
  (make-generic-combination
   :init #t
   :control (lambda (loop val this tail) (and val (loop (this) tail)))))
(define* generic-or-combination
  (make-generic-combination
   :init #f
   :control (lambda (loop val this tail) (or (this) (loop #f tail)))))

;;>>...
;;> *** More class functionality
;;> (In the following, a `class' can be a class, a singleton specifier, or a
;;> struct type.)

;; optimized helper
(defsubst (%struct->class c)
  (if (struct-type? c) (struct-type->class c) c))

;;>> (subclass? class1 class2)
;;>   Is `class1' a subclass of `class2'?
(define* (subclass? c1 c2)
  (if (%singleton? c1)
    (if (%singleton? c2)
      (eq? (singleton-value c1) (singleton-value c2))
      (instance-of? (singleton-value c1) (%struct->class c2)))
    (memq (%struct->class c2) (%class-cpl (%struct->class c1)))))

;;>> (instance-of? x class)
;;>   Checks if `x' is an instance of `class' (or one of its subclasses).
(define* (instance-of? x c)
  ;; efficiency: many cases use <top> (all untyped arguments)
  (or (eq? c <top>)
      (if (%singleton? c)
        ;; efficiency: similar to `subclass?' above
        (eq? (singleton-value c) x)
        (memq (%struct->class c) (%class-cpl (%struct->class (class-of x)))))))

;;>> (class? x)
;;>   Determines whether `x' is a class.
(define* (class? x) (instance-of? x <class>))
(defsubst (%class? x) (instance-of? x <class>))

;;>> (specializer? x)
;;>   Determines whether `x' is a class, a singleton, or a struct-type.
(define* (specializer? x) (or (class? x) (%singleton? x) (struct-type? x)))

;;>> (more-specific? class1 class2 x)
;;>   Is `class1' more specific than `class2' for the given value?
(define* (more-specific? c1 c2 arg)
  (if (%singleton? c1)
    (and (eq? (singleton-value c1) arg)
         (not (and (%singleton? c2) (eq? (singleton-value c1) arg))))
    (let ([cc1 (memq (%struct->class c1) (%class-cpl (class-of arg)))])
      (and cc1 (memq (%struct->class c2) (cdr cc1))))))

(add-method initialize
  (make-method (list <top>)
    (named-lambda method:initialize (call-next-method object initargs)
      (error 'initialize "can't initialize an instance of ~e"
             (class-of object)))))

(add-method initialize
  (make-method (list <object>)
    (named-lambda method:initialize (call-next-method object initargs)
      (let* ([class (class-of object)]
             [field-initializers (%class-field-initializers class)])
        (for-each (lambda (init) (init . initargs))
                  (%class-initializers class))
        (let loop ([n 0] [inits field-initializers])
          (when (pair? inits)
            (%instance-set! object n ((car inits) . initargs))
            (loop (+ n 1) (cdr inits))))))))

(add-method initialize
  (make-method (list <class>)
    (named-lambda method:initialize (call-next-method class initargs)
      (call-next-method)
      (%set-class-direct-supers!
       class
       (let ([default (*default-object-class*)]
             [supers (getarg initargs :direct-supers)])
         ;; check valid supers, and always have an object class
         (cond
          [(not default) supers] ; check disabled
          [(or (not supers) (null? supers)) (list default)]
          [(not (list? supers)) (error 'class "bad superclasses: ~e" supers)]
          [else (let ([c (find-if
                          (lambda (c)
                            (not (and (%class? c) (subclass? c default))))
                          supers)])
                  (if c
                    (error 'class "cannot inherit from a ~a, ~e"
                           (if (%class? c) "non-object class" "non-class") c)
                    supers))])))
      (%set-class-direct-slots!
       class
       (let ([autoinitargs (getarg initargs :autoinitargs)])
         (map (lambda (s)
                (if (pair? s)
                  (if (or (not autoinitargs)
                          (getarg (cdr s) :initarg)
                          (not (symbol? (car s))))
                    s
                    (list* (car s) :initarg (string->symbol
                                             (string-append
                                              ":" (symbol->string (car s))))
                           (cdr s)))
                  (list s)))
              (getarg initargs :direct-slots '()))))
      (%set-class-cpl!   class (compute-cpl   class))
      (%set-class-slots! class (compute-slots class))
      (%set-class-name!  class (or (getarg initargs :name) '-anonymous-))
      (let* ([nfields 0]
             [field-initializers '()]
             ;; allocator: give me an initializer function, get a slot number
             [allocator (lambda (init)
                          (let ([f nfields])
                            (set! nfields (+ nfields 1))
                            (set! field-initializers
                                  (cons init field-initializers))
                            f))]
             [getters-n-setters (map (lambda (slot)
                                       (cons (car slot)
                                             (compute-getter-and-setter
                                              class slot allocator)))
                                     (%class-slots class))])
        (%set-class-nfields! class nfields)
        (%set-class-field-initializers! class (reverse field-initializers))
        (%set-class-getters-n-setters! class getters-n-setters))
      (%set-class-initializers!
       class (reverse
              (mappend
               (lambda (c)
                 (if (instance-of? c <class>) (%class-initializers c) '()))
               (cdr (%class-cpl class)))))
      (%set-class-valid-initargs! ; for sanity checks
       class (getarg initargs :valid-initargs
                     (thunk (mappend (lambda (slot)
                                       (getargs (cdr slot) :initarg))
                                     (%class-slots class))))))))

(add-method initialize
  (make-method (list <generic>)
    (named-lambda method:initialize (call-next-method generic initargs)
      (call-next-method)
      (%set-generic-methods! generic '())
      (%set-generic-arity!   generic (getarg initargs :arity #f))
      (%set-generic-name!    generic (or (getarg initargs :name) '-anonymous-))
      (%set-generic-combination! generic (getarg initargs :combination))
      (set-instance-proc!    generic
                             (lambda args
                               (raise* make-exn:fail:contract
                                       "~s: no methods added yet"
                                       (%generic-name generic)))))))

(add-method initialize
  (make-method (list <method>)
    (named-lambda method:initialize (call-next-method method initargs)
      (call-next-method)
      (%set-method-specializers! method
                                 (map (lambda (c) (%struct->class c))
                                      (getarg initargs :specializers)))
      (%set-method-procedure!    method (getarg initargs :procedure))
      (%set-method-qualifier!    method (or (getarg initargs :qualifier)
                                            :primary))
      (%set-method-name!         method (or (getarg initargs :name)
                                            '-anonymous-))
      (set-instance-proc!        method (compute-apply-method method)))))

(add-method allocate-instance
  (make-method (list <class>)
    (named-lambda method:allocate-instance (call-next-method class initargs)
      (%allocate-instance class (length (%class-field-initializers class))))))

(add-method allocate-instance
  (make-method (list <entity-class>)
    (named-lambda method:allocate-instance (call-next-method class initargs)
      (%allocate-entity class (length (%class-field-initializers class))))))

(add-method compute-cpl
  (make-method (list <class>)
    (named-lambda method:compute-cpl (call-next-method class)
      (compute-std-cpl class %class-direct-supers))))

(add-method compute-slots
  (make-method (list <class>)
    (named-lambda method:compute-slots (call-next-method class)
      (let ([all-slots   (map %class-direct-slots (%class-cpl class))]
            [final-slots #f])
        (let collect ([to-process (apply append all-slots)]
                      [result '()])
          (if (null? to-process)
            (set! final-slots result)
            (let* ([name   (caar to-process)]
                   [others '()]
                   [remaining-to-process
                    (filter (lambda (o)
                              (if (eq? (car o) name)
                                (begin (set! others (cons (cdr o) others)) #f)
                                #t))
                            to-process)])
              (collect remaining-to-process
                       (cons (cons name (apply append (reverse others)))
                             result)))))
        ;; Sort the slots by order of appearance in cpl, makes them stay in the
        ;; same index, allowing optimizations for single-inheritance
        (let collect ([to-process (apply append (reverse all-slots))]
                      [result '()])
          (cond [(null? to-process) (reverse result)]
                [(assq (caar to-process) result)
                 (collect (cdr to-process) result)]
                [else (collect (cdr to-process)
                               (cons (assq (caar to-process) final-slots)
                                     result))]))))))

(add-method compute-getter-and-setter
  (make-method (list <class>)
    (letrec ([nothing "nothing"]
             [l-getarg
              ;; apply getarg on a list of names until get a value
              (lambda (args initargs)
                ;; give priority to first initargs
                (if (null? initargs)
                  nothing
                  (let ([x (getarg args (car initargs) nothing)])
                    (if (eq? x nothing) (l-getarg args (cdr initargs)) x))))])
      (named-lambda method:compute-getter-and-setter
                    (call-next-method class slot allocator)
        (let ([initargs    (getargs (cdr slot) :initarg)]
              [initializer (getarg (cdr slot) :initializer)]
              [initvalue   (getarg (cdr slot) :initvalue ???)]
              [type        (getarg (cdr slot) :type #f)]
              [allocation  (getarg (cdr slot) :allocation :instance)]
              [lock        (getarg (cdr slot) :lock #f)])
          (define init
            (if initializer
              (if (eq? 0 (procedure-arity initializer))
                (lambda args (initializer)) initializer)
              (lambda args initvalue)))
          (define (init-slot . args)
            (let ([result (l-getarg args initargs)])
              (when (eq? result nothing)
                (set! result (apply init args)))
              (when (and type (not (eq? result ???))
                         (not (instance-of? result type)))
                (error 'class
                       "bad initial value type for slot ~e in ~e (~e not a ~e)"
                       (car slot) class result type))
              result))
          (when (and type (not (specializer? type)))
            (error 'class "bad type specifier for ~e: ~e" (car slot) type))
          (case allocation
            [(:instance)
             (let* ([f (allocator init-slot)]
                    [g+s (mcons (lambda (o) (%instance-ref o f))
                                (if (and type (not (eq? <top> type)))
                                  (lambda (o n)
                                    (if (instance-of? n type)
                                      (%instance-set! o f n)
                                      (raise* make-exn:fail:contract
                                              "slot-set!: wrong type for slot ~
                                               `~.s' in ~e (~e not in ~e)"
                                              (car slot) class n type)))
                                  (lambda (o n) (%instance-set! o f n))))])
               (when lock
                 (make-setter-locked! g+s lock
                   (lambda ()
                     (raise* make-exn:fail:contract
                             "slot-set!: slot `~.s' in ~.s is locked"
                             (car slot) (%class-name class)))))
               g+s)]
            [(:class)
             (unless (null? initargs)
               (let ([setter #f])
                 (%set-class-initializers!
                  class
                  (cons (lambda args
                          (let ([result (l-getarg args initargs)])
                            ;; cache the setter
                            (unless setter
                              (set! setter
                                    (mcdr (cdr (assq (car slot)
                                                     (%class-getters-n-setters
                                                      class))))))
                            (unless (eq? result nothing)
                              (setter #f result))))
                        (%class-initializers class)))))
             (if (and (assq (car slot) (%class-direct-slots class))
                      (getarg (cdr (assq (car slot)
                                         (%class-direct-slots class)))
                              :allocation #f))
               ;; the slot was declared as :class here
               (let* ([cell (init)] ; default value - no arguments
                      [g+s (mcons (lambda (o) cell)
                                  (lambda (o n)
                                    (if (and type (not (instance-of? n type)))
                                      (raise*
                                       make-exn:fail:contract
                                       "slot-set!: wrong type for shared slot ~
                                        `~.s' in ~e (~e not in ~e)"
                                       (car slot) class n type)
                                      (set! cell n))))])
                 (when lock
                   (make-setter-locked! (car slot) g+s lock
                     (lambda ()
                       (raise* make-exn:fail:contract
                               "slot-set!: slot `~.s' in ~.s is locked"
                               (car slot) (%class-name class)))))
                 g+s)
               ;; the slot was inherited as :class - fetch its getters/setters
               (let loop ([cpl (cdr (%class-cpl class))])
                 (cond [(assq (car slot) (%class-getters-n-setters (car cpl)))
                        => cdr]
                       [else (loop (cdr cpl))])))]
            [else
             (error 'class
                    "allocation for `~.s' must be :class or :instance, got ~e"
                    (car slot) allocation)]))))))

;;; Use the previous function when populating this generic.
(add-method compute-apply-method
  (make-method (list <method>) method:compute-apply-method))

(add-method no-next-method
  (make-method (list <generic> <method>)
    (lambda (call-next-method generic method . args)
      (raise* make-exn:fail:contract
              (concat "~s: no applicable next method to call"
                      (case (%method-qualifier method)
                        [(:before) " in a `before' method"]
                        [(:after)  " in an `after' method"]
                        [else ""])
                      " with arguments: ~e")
              (%generic-name generic) args))))
(add-method no-next-method
  (make-method (list (singleton #f) <method>)
    (lambda (call-next-method generic method . args)
      (raise* make-exn:fail:contract
              (concat "~s: no applicable next method in a direct method call"
                      " with arguments: ~e")
              (%method-name method) args))))

(add-method no-applicable-method
  (make-method (list <generic>)
    (lambda (call-next-method generic . args)
      (raise* make-exn:fail:contract
              "~s: no applicable primary methods for arguments ~e, of types ~e"
              (%generic-name generic) args (map class-of args)))))

;;; ---------------------------------------------------------------------------
;;; Customization variables

;;>>... Swindle Customization Parameters

;;>> *default-method-class*
;;>> *default-generic-class*
;;>> *default-class-class*
;;>> *default-entityclass-class*
;;>   These parameters specify default classes for the many constructor
;;>   macros in `clos'.
(define* *default-method-class*      (make-parameter <method>))
(define* *default-generic-class*     (make-parameter <generic>))
(define* *default-class-class*       (make-parameter <class>))
(define* *default-entityclass-class* (make-parameter <entity-class>))

;; an automatic superclass for all classes -- turned off for the builtins below
;;>> *default-object-class*
;;>   This parameter contains a value which is automatically made a
;;>   superclass for all classes.  Defaults to `<object>'.
(define* *default-object-class* (make-parameter #f))

;;>> *make-safely*
;;>   Setting this parameter to #t will make Swindle perform sanity checks
;;>   on given initargs for creating an object.  This will make things
;;>   easier for debugging, but also slower.  Defaults to `#f'.  Note that
;;>   the sanity checks are done in `initialize'.
;; This could be in `make', but `defclass' will call that with no slots to make
;; the object and then call `initialize' with all arguments to actually create
;; the class.
(define* *make-safely* (make-parameter #f))

(define (check-initargs class initargs)
  ;; sanity check - verify sensible keywords given
  (let ([valid-initargs (%class-valid-initargs class)])
    (or (not valid-initargs)
        (let loop ([args initargs])
          (cond [(null? args) #t]
                [(not (and (pair? args) (pair? (cdr args))))
                 (error 'make "error in initargs for ~e; arg list not balanced"
                        class)]
                [(not (symbol? (car args)))
                 (error 'make "error in initargs for ~e; ~e is not a keyword"
                        class (car args))]
                [(not (memq (car args) valid-initargs))
                 (error 'make "error in initargs for ~e; unknown keyword: ~e"
                        class (car args))]
                [else (loop (cddr args))])))))

;;; ---------------------------------------------------------------------------
;;; Make `make' a generic function

;;>>... Creating Instances

;;; Now everything works, both generic functions and classes, so we can turn on
;;; the real MAKE.
;;; ELI: This is turned into a generic function - do this carefully - first
;;; create the generic function and the method instances, then change make.

;;>> (make class initargs ...)
;;>   Create an instance of `class', which can be any Swindle class (except
;;>   for some special top-level classes and built-in classes).
;;>
;;>   See the `Object Initialization Protocol' below for a description of
;;>   generic functions that are involved in creating a Swindle object.
(let ([m (make-method (list <class>)
           (named-lambda method:make (call-next-method class . initargs)
             (let ([instance (allocate-instance class initargs)])
               (when (*make-safely*) (check-initargs class initargs))
               (initialize instance initargs)
               instance)))]
      [g (make-generic-function 'make)])
  (add-method g m)
  (set! make g))

;; The clean concept behind this is due to Joe Marshall.

;;>> (rec-make (name class arg ...) ...)
;;>   This is similar to:
;;>
;;>     (letrec ([name (make class arg ...)] ...)
;;>       (values name ...))
;;>
;;>   except that the names are first bound to allocated instances with no
;;>   initargs, and then they are initialized with all these bindings.  This
;;>   is useful for situations where creating some instances needs other
;;>   instances as values.  One sample usage is the way `defclass' makes the
;;>   class binding available for slot specifications like `:type'.  Note
;;>   that this is a special form, which invokes `allocate-instance' and
;;>   `initialize' directly, so specializing `make' on some input will not
;;>   change the way `rec-make' works.
(defsubst* (rec-make (name class arg ...) ...)
  (let ([name (allocate-instance class (list arg ...))] ...)
    (when (*make-safely*) (check-initargs class (list arg ...)) ...)
    (initialize name (list arg ...)) ...
    (values name ...)))

;;; ---------------------------------------------------------------------------
;;; Make `add-method' a generic function

;;; Use this to compute a name for the method.  specs is a list of classes or
;;; class-names (in case of unnamed-methods in clos.rkt).
(define (compute-method-name specs generic-name)
  (define (spec-string spec)
    (cond [(%singleton? spec) (format "{~.s}" (singleton-value spec))]
          [(%class? spec)     (symbol->string
                               (%class-name (%struct->class spec)))]
          [else               "???"]))
  (string->symbol
   (apply string-append
          (symbol->string generic-name) ":"
          (if (null? specs)
            '("()")
            (cons (spec-string (car specs))
                  (map (lambda (c) (string-append "," (spec-string c)))
                       (cdr specs)))))))

(let ([old-add-method add-method])
  (set! add-method (make <generic> :name 'add-method :arity 2))
  (old-add-method add-method
    (make-method (list <generic> <method>)
      (named-lambda method:add-method (call-next-method generic method)
        (let ([method-arity (method-arity method)]
              [generic-arity (%generic-arity generic)])
          (cond
           [(not generic-arity)
            (%set-generic-arity! generic method-arity)]
           ;; note: equal? works on arity-at-least structs
           [(not (equal? generic-arity method-arity))
            (error 'add-method
                   "wrong arity for `~.s', expects ~a; given a method with ~a"
                   (%generic-name generic)
                   (if (integer? generic-arity)
                     generic-arity
                     (format "at-least-~a"
                             (arity-at-least-value generic-arity)))
                   (if (integer? method-arity)
                     method-arity
                     (format "at-least-~a"
                             (arity-at-least-value method-arity))))])
          ;; set a name for the method if none (when attached to a generic)
          (let ([n (%method-name method)])
            (unless (and n (not (eq? n '-anonymous-)))
              (%set-method-name!
               method
               (let* ([psym (object-name (%method-procedure method))]
                      [pstr (and psym (symbol->string psym))])
                 (if (or (not pstr) (regexp-match? #rx":[0-9]*:[0-9]*$" pstr))
                   (compute-method-name (%method-specializers method)
                                        (%generic-name generic))
                   psym)))))
          (old-add-method generic method))))))

;;; Optimized frequently used accessors:
;;; This is possible because of the ordering of the slots in compute-slots,
;;; works only for single-inheritance.  Note that there is no type checking -
;;; it is unsafe, but makes things around 5-6 times faster!
(set! %class-direct-slots        (%slot-getter <class>   'direct-slots))
(set! %class-direct-supers       (%slot-getter <class>   'direct-supers))
(set! %class-slots               (%slot-getter <class>   'slots))
(set! %class-nfields             (%slot-getter <class>   'nfields))
(set! %class-field-initializers  (%slot-getter <class>   'field-initializers))
(set! %class-getters-n-setters   (%slot-getter <class>   'getters-n-setters))
(set! %class-cpl                 (%slot-getter <class>   'cpl))
(set! %class-name                (%slot-getter <class>   'name))
(set! %class-initializers        (%slot-getter <class>   'initializers))
(set! %class-valid-initargs      (%slot-getter <class>   'valid-initargs))
(set! %generic-methods           (%slot-getter <generic> 'methods))
(set! %generic-arity             (%slot-getter <generic> 'arity))
(set! %generic-name              (%slot-getter <generic> 'name))
(set! %generic-combination       (%slot-getter <generic> 'combination))
(set! %method-specializers       (%slot-getter <method>  'specializers))
(set! %method-procedure          (%slot-getter <method>  'procedure))
(set! %method-qualifier          (%slot-getter <method>  'qualifier))
(set! %method-name               (%slot-getter <method>  'name))
(set! %set-class-direct-slots!   (%slot-setter <class>   'direct-slots))
(set! %set-class-direct-supers!  (%slot-setter <class>   'direct-supers))
(set! %set-class-slots!          (%slot-setter <class>   'slots))
(set! %set-class-nfields!        (%slot-setter <class>   'nfields))
(set! %set-class-field-initializers!(%slot-setter <class> 'field-initializers))
(set! %set-class-getters-n-setters! (%slot-setter <class> 'getters-n-setters))
(set! %set-class-cpl!            (%slot-setter <class>   'cpl))
(set! %set-class-name!           (%slot-setter <class>   'name))
(set! %set-class-initializers!   (%slot-setter <class>   'initializers))
(set! %set-class-valid-initargs! (%slot-setter <class>   'valid-initargs))
(set! %set-generic-methods!      (%slot-setter <generic> 'methods))
(set! %set-generic-arity!        (%slot-setter <generic> 'arity))
(set! %set-generic-name!         (%slot-setter <generic> 'name))
(set! %set-generic-combination!  (%slot-setter <generic> 'combination))
(set! %set-method-specializers!  (%slot-setter <method>  'specializers))
(set! %set-method-procedure!     (%slot-setter <method>  'procedure))
(set! %set-method-qualifier!     (%slot-setter <method>  'qualifier))
(set! %set-method-name!          (%slot-setter <method>  'name))
;; Optimize these internal ones as well.
(set! %generic-app-cache         (%slot-getter <generic> 'app-cache))
(set! %generic-singletons-list   (%slot-getter <generic> 'singletons-list))
(set! %set-generic-app-cache!    (%slot-setter <generic> 'app-cache))
(set! %set-generic-singletons-list! (%slot-setter <generic> 'singletons-list))

;;; ---------------------------------------------------------------------------
;;; Built-in classes.

;;>>... Built-in Classes

;;>> <primitive-class>
;;>   The class of all built-on classes.
(define* <primitive-class>
  (make <class> :direct-supers (list <class>)
                :direct-slots  '()
                :name          '<primitive-class>
                ;; needed so structs can turn to classes even if *make-safely*
                :valid-initargs #f))
;; Normally, can't allocate these.
(add-method allocate-instance
  (make-method (list <primitive-class>)
    (named-lambda method:allocate-instance (call-next-method class initargs)
      (error 'allocate-instance "can't instantiate a primitive class ~e"
             class))))

;;>> <builtin>
;;>   The superclass of all built-in classes.
(define* <builtin>
  (make <class> :direct-supers (list <top>)
                :direct-slots  '()
                :name          '<builtin>))
(defsubst (defprimclass primclass) (defprimclass primclass <builtin>)
          (_ primclass supers ...) (define* primclass
                                     (make <primitive-class>
                                           :name          'primclass
                                           :direct-supers (list supers ...)
                                           :direct-slots  '())))
;;>> <sequence>
;;>> <mutable>
;;>> <immutable>
;;>> <pair>
;;>> <mutable-pair>
;;>> <mpair>
;;>> <immutable-pair>
;;>> <list>
;;>> <nonempty-list>
;;>> <null>
;;>> <vector>
;;>> <char>
;;>> <string-like>
;;>> <mutable-string-like>
;;>> <immutable-string-like>
;;>> <string>
;;>> <mutable-string>
;;>> <immutable-string>
;;>> <bytes>
;;>> <mutable-bytes>
;;>> <immutable-bytes>
;;>> <path>
;;>> <symbol>
;;>> <keyword>
;;>> <real-keyword>
;;>> <boolean>
;;>> <number>
;;>> <exact>
;;>> <inexact>
;;>> <complex>
;;>> <real>
;;>> <rational>
;;>> <integer>
;;>> <exact-complex>
;;>> <inexact-complex>
;;>> <exact-real>
;;>> <inexact-real>
;;>> <exact-rational>
;;>> <inexact-rational>
;;>> <exact-integer>
;;>> <inexact-integer>
;;>> <end-of-file>
;;>> <port>
;;>> <input-port>
;;>> <output-port>
;;>> <stream-port>
;;>> <input-stream-port>
;;>> <output-stream-port>
;;>> <void>
;;>> <box>
;;>> <weak-box>
;;>> <regexp>
;;>> <byte-regexp>
;;>> <parameter>
;;>> <promise>
;;>> <exn>
;;>> <exn:fail>
;;>> <exn:break>
;;>> <semaphore>
;;>> <hash-table>
;;>> <subprocess>
;;>> <thread>
;;>> <syntax>
;;>> <identifier-syntax>
;;>> <namespace>
;;>> <custodian>
;;>> <tcp-listener>
;;>> <security-guard>
;;>> <will-executor>
;;>> <struct-type>
;;>> <inspector>
;;>> <pseudo-random-generator>
;;>> <compiled-expression>
;;>> <unknown-primitive>
;;>   These classes represent built-in objects.  See the class hierarchy
;;>   below for a complete description of the relations between these
;;>   classes.
;;>> <struct>
;;>> <opaque-struct>
;;>   These are also classes for built-in objects, but they are classes for
;;>   Racket structs -- which can be used like Swindle classes since they
;;>   will get converted to appropriate Swindle subclasses of `<struct>'.
;;>   `<opaque-struct>' is a class of structs that are hidden -- see the
;;>   documentation for `struct-info' and the `skipped?' result.  Note that
;;>   structs can be used as long as they can be inspected -- otherwise, we
;;>   can't even know that they are structs with `struct?' (this means that
;;>   <opaque-struct> can only appear in the cpl of a struct class that
;;>   inherits from a struct which is not under the current inspector).
(defprimclass <sequence>)
(defprimclass <mutable>)
(defprimclass <immutable>)
(defprimclass <pair> <sequence>)
(defprimclass <mutable-pair> <pair> <mutable>)
(define* <mpair> <mutable-pair>) ; alias
(defprimclass <immutable-pair> <pair> <immutable>)
(defprimclass <list> <sequence>)
(defprimclass <nonempty-list> <pair> <list> <immutable>)
(defprimclass <null> <list>)
(defprimclass <vector> <sequence> <mutable>)
(defprimclass <char>)
(defprimclass <string-like> <sequence>)
(defprimclass <mutable-string-like> <string-like> <mutable>)
(defprimclass <immutable-string-like> <string-like> <immutable>)
(defprimclass <string> <string-like>)
(defprimclass <mutable-string> <string> <mutable-string-like>)
(defprimclass <immutable-string> <string> <immutable-string-like>)
(defprimclass <bytes> <string-like>)
(defprimclass <mutable-bytes> <bytes> <mutable-string-like>)
(defprimclass <immutable-bytes> <bytes> <immutable-string-like>)
(defprimclass <path> <immutable-string-like>)
(defprimclass <symbol>)
(defprimclass <keyword> <symbol>)
(defprimclass <real-keyword>)
(defprimclass <boolean>)
;; Have all possible number combinations in any case
(defprimclass <number>)
(defprimclass <exact> <number>)
(defprimclass <inexact> <number>)
(defprimclass <complex> <number>)
(defprimclass <real> <complex>)
(defprimclass <rational> <real>)
(defprimclass <integer> <rational>)
(defprimclass <exact-complex> <complex> <exact>)
(defprimclass <inexact-complex> <complex> <inexact>)
(defprimclass <exact-real> <real> <exact-complex>)
(defprimclass <inexact-real> <real> <inexact-complex>)
(defprimclass <exact-rational> <rational> <exact-real>)
(defprimclass <inexact-rational> <rational> <inexact-real>)
(defprimclass <exact-integer> <integer> <exact-rational>)
(defprimclass <inexact-integer> <integer> <inexact-rational>)
(defprimclass <end-of-file>)
(defprimclass <port>)
(defprimclass <input-port> <port>)
(defprimclass <output-port> <port>)
(defprimclass <stream-port> <port>)
;; Racket stuff
(defprimclass <input-stream-port> <input-port> <stream-port>)
(defprimclass <output-stream-port> <output-port> <stream-port>)
(defprimclass <void>)
(defprimclass <box> <mutable>)
(defprimclass <weak-box> <box>)
(defprimclass <regexp>)
(defprimclass <byte-regexp>)
(defprimclass <parameter>)
(defprimclass <promise>)
(defprimclass <exn>)
(defprimclass <exn:fail>  <exn>)
(defprimclass <exn:break> <exn>)
;; make these classes used when we see exn structs
(let ([set-exn-class
       (lambda (class make-exn . xs)
         (hash-table-put! struct-to-class-table
                          (let-values ([(e _)
                                        (struct-info
                                         (apply make-exn "foo"
                                                (current-continuation-marks)
                                                xs))])
                            e)
                          class))])
  (set-exn-class <exn> make-exn)
  (set-exn-class <exn:fail> make-exn:fail)
  (set-exn-class <exn:break> make-exn:break (let/ec e e)))
(defprimclass <semaphore>)
(defprimclass <hash-table>)
(defprimclass <subprocess>)
(defprimclass <thread>)
(defprimclass <syntax>)
(defprimclass <identifier-syntax> <syntax>)
(defprimclass <namespace>)
(defprimclass <custodian>)
(defprimclass <tcp-listener>)
(defprimclass <security-guard>)
(defprimclass <will-executor>)
(defprimclass <struct-type>)
(defprimclass <inspector>)
(defprimclass <pseudo-random-generator>)
(defprimclass <compiled-expression>)
(defprimclass <unknown-primitive>)
(defprimclass <struct>)
(defprimclass <opaque-struct> <struct>)
;;>> <procedure>
;;>   The class of all Scheme procedures.
(define* <procedure>
  (make <procedure-class> :name          '<procedure>
                          :direct-supers (list <builtin> <function>)
                          :direct-slots  '()))
;;>> <primitive-procedure>
;;>   The class of all primitive Racket procedures.
(define* <primitive-procedure>
  (make <procedure-class>
        :name          '<primitive-procedure>
        :direct-supers (list <procedure>)
        :direct-slots  '()))

(*default-object-class* <object>) ; turn auto-superclass back on

(set! class-of
      (lambda (x)
        ;; If all Schemes were IEEE compliant, the order of these wouldn't
        ;; matter?
        ;; ELI: changed the order so it fits better the expected results.
        (cond [(instance?    x) (instance-class x)]
              [(struct? x)
               (let-values ([(type _) (struct-info x)])
                 (if type (struct-type->class type) <opaque-struct>))]
              [(procedure?   x) (cond [(parameter? x) <parameter>]
                                      [(primitive? x) <primitive-procedure>]
                                      [else <procedure>])]
              [(string?      x) (if (immutable? x) <immutable-string> <string>)]
              [(pair?        x) (if (list? x) <nonempty-list> <immutable-pair>)]
              [(null?        x) <null>]
              [(symbol?      x) (if (keyword? x) <keyword> <symbol>)]
              [(number?      x)
               (if (exact? x)
                 (cond [(integer?  x) <exact-integer>]
                       [(rational? x) <exact-rational>]
                       [(real?     x) <exact-real>]
                       [(complex?  x) <exact-complex>]
                       [else <exact>]) ; should not happen
                 (cond [(integer?  x) <inexact-integer>]
                       [(rational? x) <inexact-rational>]
                       [(real?     x) <inexact-real>]
                       [(complex?  x) <inexact-complex>]
                       [else <inexact>]))] ; should not happen
              [(boolean?     x) <boolean>]
              [(char?        x) <char>]
              [(bytes?       x) (if (immutable? x) <immutable-bytes> <bytes>)]
              [(path?        x) <path>]
              [(vector?      x) <vector>]
              [(mpair?       x) <mutable-pair>]
              [(eof-object?  x) <end-of-file>]
              [(input-port?  x)
               (if (file-stream-port? x) <input-stream-port> <input-port>)]
              [(output-port? x)
               (if (file-stream-port? x) <output-stream-port> <output-port>)]
              [(void?           x) <void>]
              [(box?            x) <box>]
              [(weak-box?       x) <weak-box>]
              [(regexp?         x) <regexp>]
              [(byte-regexp?    x) <byte-regexp>]
              [(promise?        x) <promise>]
              [(real-keyword?   x) <real-keyword>]
              [(semaphore?      x) <semaphore>]
              [(hash-table?     x) <hash-table>]
              [(thread?         x) <thread>]
              [(subprocess?     x) <subprocess>]
              [(syntax?         x)
               (if (identifier? x) <identifier-syntax> <syntax>)]
              [(namespace?      x) <namespace>]
              [(custodian?      x) <custodian>]
              [(tcp-listener?   x) <tcp-listener>]
              [(security-guard? x) <security-guard>]
              [(will-executor?  x) <will-executor>]
              [(struct-type?    x) <struct-type>]
              [(inspector?      x) <inspector>]
              [(pseudo-random-generator? x) <pseudo-random-generator>]
              [(compiled-expression? x) <compiled-expression>]
              [else <unknown-primitive>])))

;;; ---------------------------------------------------------------------------
;;; Some useful predicates.

;;>> (builtin? x)
;;>> (function? x)
;;>> (generic? x)
;;>> (method? x)
;;>   Predicates for instances of <builtin>, <function>, <generic>, and
;;>   <method>.
(define* (builtin?  x) (instance-of? x <builtin>))
(define* (function? x) (instance-of? x <function>))
(define* (generic?  x) (instance-of? x <generic>))
(define* (method?   x) (instance-of? x <method>))

;;; ---------------------------------------------------------------------------
;;>>... Class Hierarchy
;;>
;;> In the following, every class's class is specified after a colon.  Also,
;;> some classes appear in more than once place due to multiple-inheritance.
;;>
;;>   <top> : <class>
;;>     <object> : <class>
;;>       <class> : <class>
;;>         <procedure-class> : <class>
;;>           <entity-class> : <class>
;;>         <primitive-class> : <class>
;;>       <generic> : <entity-class>
;;>       <method> : <entity-class>
;;>     <function> : <class>
;;>       <generic> : <entity-class>
;;>       <method> : <entity-class>
;;>       <procedure> : <procedure-class>
;;>         <primitive-procedure> : <procedure-class>
;;>     <builtin> : <class>
;;>       <sequence> : <primitive-class>
;;>         <pair> : <primitive-class>
;;>           <mutable-pair> : <primitive-class>
;;>           <mpair> : <primitive-class>  ; alias for <mutable-pair>
;;>           <immutable-pair> : <primitive-class>
;;>           <nonempty-list> : <primitive-class>
;;>         <list> : <primitive-class>
;;>           <nonempty-list> : <primitive-class>
;;>           <null> : <primitive-class>
;;>         <vector> : <primitive-class>
;;>         <string-like> : <primitive-class>
;;>           <string> : <primitive-class>
;;>             <mutable-string> : <primitive-class>
;;>             <immutable-string> : <primitive-class>
;;>           <bytes> : <primitive-class>
;;>             <mutable-bytes> : <primitive-class>
;;>             <immutable-bytes> : <primitive-class>
;;>           <path> : <primitive-class>
;;>       <mutable> : <primitive-class>
;;>         <mutable-pair> : <primitive-class>
;;>         <mpair> : <primitive-class>  ; alias for <mutable-pair>
;;>         <mutable-string-like> : <primitive-class>
;;>           <mutable-string> : <primitive-class>
;;>           <mutable-bytes> : <primitive-class>
;;>         <vector>
;;>         <box>
;;>       <immutable> : <primitive-class>
;;>         <list> : <primitive-class>
;;>         <pair> : <primitive-class>
;;>         <immutable-string-like> : <primitive-class>
;;>           <immutable-string> : <primitive-class>
;;>           <immutable-bytes> : <primitive-class>
;;>           <path> : <primitive-class>
;;>       <char> : <primitive-class>
;;>       <symbol> : <primitive-class>
;;>         <keyword> : <primitive-class>
;;>       <real-keyword> : <primitive-class>
;;>       <boolean> : <primitive-class>
;;>       <number> : <primitive-class>
;;>         <complex> : <primitive-class>
;;>           <exact-complex> : <primitive-class>
;;>           <inexact-complex> : <primitive-class>
;;>           <real> : <primitive-class>
;;>             <exact-real> : <primitive-class>
;;>             <inexact-real> : <primitive-class>
;;>             <rational> : <primitive-class>
;;>               <integer> : <primitive-class>
;;>               <exact-rational> : <primitive-class>
;;>               <inexact-rational> : <primitive-class>
;;>                 <exact-integer> : <primitive-class>
;;>                 <inexact-integer> : <primitive-class>
;;>         <exact> : <primitive-class>
;;>           <exact-complex> : <primitive-class>
;;>             <exact-real> : <primitive-class>
;;>               <exact-rational> : <primitive-class>
;;>                 <exact-integer> : <primitive-class>
;;>         <inexact> : <primitive-class>
;;>           <inexact-complex> : <primitive-class>
;;>             <inexact-real> : <primitive-class>
;;>               <inexact-rational> : <primitive-class>
;;>                 <inexact-integer> : <primitive-class>
;;>       <end-of-file> : <primitive-class>
;;>       <port> : <primitive-class>
;;>         <input-port> : <primitive-class>
;;>           <input-stream-port> : <primitive-class>
;;>         <output-port> : <primitive-class>
;;>           <output-stream-port> : <primitive-class>
;;>         <stream-port> : <primitive-class>
;;>           <input-stream-port> : <primitive-class>
;;>           <output-stream-port> : <primitive-class>
;;>       <void> : <primitive-class>
;;>       <box> : <primitive-class>
;;>         <weak-box> : <primitive-class>
;;>       <regexp> : <primitive-class>
;;>       <byte-regexp> : <primitive-class>
;;>       <parameter> : <primitive-class>
;;>       <promise> : <primitive-class>
;;>       <exn> : <primitive-class>
;;>         <exn:fail> : <primitive-class>
;;>         <exn:break> : <primitive-class>
;;>       <semaphore> : <primitive-class>
;;>       <hash-table> : <primitive-class>
;;>       <subprocess> : <primitive-class>
;;>       <thread> : <primitive-class>
;;>       <syntax> : <primitive-class>
;;>         <identifier-syntax> : <primitive-class>
;;>       <namespace> : <primitive-class>
;;>       <custodian> : <primitive-class>
;;>       <tcp-listener> : <primitive-class>
;;>       <security-guard> : <primitive-class>
;;>       <will-executor> : <primitive-class>
;;>       <inspector> : <primitive-class>
;;>       <pseudo-random-generator> : <primitive-class>
;;>       <compiled-expression> : <primitive-class>
;;>       <unknown-primitive> : <primitive-class>
;;>       <procedure> : <procedure-class>
;;>         <primitive-procedure> : <procedure-class>
;;>       <struct> : <primitive-class>
;;>         <opaque-struct> : <primitive-class>
;;>         ... struct type classes ...

;;>>... Object Initialization Protocol
;;> This is the initialization protocol.  All of these are generic
;;> functions (unlike the original Tiny CLOS).  See the individual
;;> descriptions above for more details.
;;>
;;>   make
;;>     allocate-instance
;;>     initialize
;;>   class initialization only:
;;>     compute-cpl
;;>     compute-slots
;;>     compute-getter-and-setter
;;>   method initialization only:
;;>     compute-apply-method
;;>   add-method
;;>     compute-apply-generic
;;>       compute-methods
;;>         compute-method-more-specific?
;;>       compute-apply-methods