This file is indexed.

/usr/share/racket/pkgs/swindle/misc.rkt is in racket-common 6.3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
;;; Written by Eli Barzilay: Maze is Life!  (eli@barzilay.org)

;;> A lot of miscellaneous functionality that is needed for Swindle, or
;;> useful by itself.

#lang s-exp swindle/base

(require mzlib/list)   (provide (all-from mzlib/list))
(require mzlib/etc)    (provide (all-from mzlib/etc))
(require mzlib/string) (provide (all-from mzlib/string))

;; these are needed to make regexp-case work in scheme/base too
(require (rename scheme/base base-else else) (rename scheme/base base-=> =>))

;; ----------------------------------------------------------------------------
;;>>... Convenient syntax definitions

;;>> (define* ...)
;;>   Like `define', except that the defined identifier is automatically
;;>   `provide'd.  Doesn't provide the identifier if outside of a module
;;>   context.
(provide define*)
(define-syntax (define* stx)
  (syntax-case stx ()
    [(_ x . xs)
     (memq (syntax-local-context) '(module module-begin))
     (let ([name (let loop ([x #'x])
                   (syntax-case x () [(x . xs) (loop #'x)] [_ x]))])
       (if name
         #`(begin (provide #,name) (define x . xs))
         #`(define x . xs)))]
    [(_ x . xs) #`(define x . xs)]))
;;>> (make-provide-syntax orig-def-syntax provide-def-syntax)
;;>   Creates `provide-def-syntax' as a syntax that is the same as
;;>   `orig-def-syntax' together with an automatic `provide' form for the
;;>   defined symbol, which should be either the first argument or the first
;;>   identifier in a list (it does not work for recursive nesting).  The
;;>   `provide' form is added only if the form appears at a module
;;>   top-level.  The convention when this is used is to use a "*" suffix
;;>   for the second identifier.
(provide make-provide-syntax)
(define-syntax make-provide-syntax
  (syntax-rules ()
    [(_ form form*)
     (define-syntax (form* stx)
       (syntax-case stx ()
         [(_ (id . as) . r)
          (memq (syntax-local-context) '(module module-begin))
          #'(begin (provide id) (form (id . as) . r))]
         [(_ id . r)
          (memq (syntax-local-context) '(module module-begin))
          #'(begin (provide id) (form id . r))]
         [(_ . r) #'(form . r)]))]))
;;>> (define-syntax* ...)
;;>   Defined as the auto-provide form of `define-syntax'.
(provide define-syntax*)
(make-provide-syntax define-syntax define-syntax*)

;;>> (defsyntax ...)
;;>> (defsyntax* ...)
;;>> (letsyntax (local-syntaxes ...) ...)
;;>   These are just shorthands for `define-syntax', `define-syntax*', and
;;>   `let-syntax'.  This naming scheme is consistent with other definitions
;;>   in this module (and the rest of Swindle).
(define-syntax* defsyntax
  (syntax-rules () [(_ . args) (define-syntax . args)]))
(make-provide-syntax defsyntax defsyntax*) (provide defsyntax*)
(define-syntax* letsyntax
  (syntax-rules () [(_ . args) (let-syntax . args)]))

;;>> (defsubst name body)
;;>> (defsubst* name body)
;;>> (letsubst ([name body] ...) letbody ...)
;;>   These are convenient ways of defining simple pattern transformer
;;>   syntaxes (simple meaning they're much like inlined functions).  In
;;>   each of these forms, the `name' can be either a `(name arg ...)' which
;;>   will define a simple macro or an identifier which will define a
;;>   symbol-macro.  For example:
;;>     => (defsubst (my-if cond then else)
;;>          (if (and cond (not (eq? 0 cond))) then else))
;;>     => (my-if 1 (echo 2) (echo 3))
;;>     2
;;>     => (my-if 0 (echo 2) (echo 3))
;;>     3
;;>     => (define x (list 1 2 3))
;;>     => (defsubst car-x (car x))
;;>     => car-x
;;>     1
;;>     => (set! car-x 11)
;;>     => x
;;>     (11 2 3)
;;>   Actually, if a `(name arg ...)' is used, then the body can have more
;;>   pattern/expansions following -- but since this form translates to a
;;>   usage of `syntax-rules', the `name' identifier should normally be `_'
;;>   in subsequent patterns.  For example:
;;>     => (defsubst (my-if cond then else)
;;>                    (if (and cond (not (eq? 0 cond))) then else)
;;>                  (_ cond then)
;;>                    (and cond (not (eq? 0 cond)) then))
;;>     => (my-if 0 1)
;;>     #f
;;>   Finally, note that since these are just patterns that get handled by
;;>   syntax-rules, all the usual pattern stuff applies, like using `...'.

(defsyntax defsubst-process
  (syntax-rules ()
    [(_ name (acc ...)) (define-syntax name (syntax-rules () acc ...))]
    [(_ name (acc ...) n+a subst . more)
     (defsubst-process name (acc ... (n+a subst)) . more)]))
(defsyntax* defsubst
  (syntax-rules ()
    [(_ (name . args) subst)
     (define-syntax name
       (syntax-rules () [(name . args) subst]))]
    [(_ (name . args) subst . more)
     (defsubst-process name () (name . args) subst . more)]
    [(_ name subst)
     (define-syntax (name stx)
       (syntax-case stx () ; syntax-rules won't handle identifier expansion
         ;; doesn't matter here, but see `letsubst' for an explanation on `___'
         [(___ . args) (syntax/loc stx (subst . args))]
         [___          (syntax/loc stx subst)]))]))
(make-provide-syntax defsubst defsubst*) (provide defsubst*)

;; a let version of the above
(defsyntax* (letsubst stx)
  (syntax-case stx ()
    [(_ ([name body] ...) letbody ...)
     (quasisyntax/loc stx
       (let-syntax
           #,(map
              (lambda (name body)
                ;; use `___' in the following, if we use `name', then it would
                ;; not be possible to make an X subst that expand to something
                ;; with the previous X, so (let ([x 1]) (letsubst ([x x]) x))
                ;; will loop forever instead of returning 1.
                (syntax-case name ()
                  [(name . args)
                   (quasisyntax/loc body
                     (name (syntax-rules () [(___ . args) #,body])))]
                  [name (identifier? #'name)
                   (quasisyntax/loc body
                     (name
                      (lambda (stx)
                        (syntax-case stx ()
                          [(___ . args) (syntax/loc stx (#,body . args))]
                          [___          (syntax/loc stx #,body)]))))]))
              (syntax-e #'(name ...)) (syntax-e #'(body ...)))
         letbody ...))]))

;;>> (defmacro name body)
;;>> (defmacro* name body)
;;>> (letmacro ([name body] ...) letbody ...)
;;>   These are just like Racket's define-macro (from mzlib/defmacro) with
;;>   two major extensions:
;;>   * If `name' is a simple identifier then a symbol-macro is defined (as
;;>     with `defsubst' above).
;;>   * A `letmacro' form for local macros is provided.

(require (for-syntax (submod compatibility/defmacro dmhelp)))
(provide defmacro letmacro)
(define-syntaxes (defmacro letmacro)
  (let ()
    (define (syntax-null? x)
      (or (null? x) (and (syntax? x) (null? (syntax-e x)))))
    (define (syntax-pair? x)
      (or (pair? x) (and (syntax? x) (pair? (syntax-e x)))))
    (define (syntax-car x)   (if (pair? x) (car x) (car (syntax-e x))))
    (define (syntax-cdr x)   (if (pair? x) (cdr x) (cdr (syntax-e x))))
    (define (check-args stx name args)
      (unless (identifier? name)
        (raise-syntax-error
         #f "expected an identifier for the macro name" stx name))
      (let loop ([args args])
        (cond [(syntax-null? args) 'ok]
              [(identifier? args) 'ok]
              [(syntax-pair? args)
               (unless (identifier? (syntax-car args))
                 (raise-syntax-error
                  #f "expected an identifier for a macro argument"
                  stx (syntax-car args)))
               (loop (syntax-cdr args))]
              [else
               (raise-syntax-error
                #f "not a valid argument sequence after the macro name"
                stx)])))
    (values
     (lambda (stx) ; defmacro
       (syntax-case stx ()
         [(_ (name . args) body0 body ...)
          (begin
            (check-args stx #'name #'args)
            #'(define-syntax name
                (let ([p (lambda args body0 body ...)])
                  (lambda (stx)
                    (let ([l (syntax->list stx)])
                      (unless (and l (procedure-arity-includes?
                                      p (sub1 (length l))))
                        (raise-syntax-error #f "bad form" stx))
                      (let ([ht (make-hash-table)])
                        (datum->syntax-object
                         stx
                         (dm-subst
                          ht (apply p (cdr (dm-syntax->datum stx ht))))
                         stx)))))))]
         [(_ name body) (identifier? #'name)
          #'(define-syntax name
              (lambda (stx)
                (syntax-case stx ()
                  [(_ . xs) (quasisyntax/loc stx
                              (#,(datum->syntax-object stx body stx) . xs))]
                  [_ (datum->syntax-object stx body stx)])))]))
     (lambda (stx) ; letmacro
       (syntax-case stx ()
         [(_ ([name body] ...) letbody ...)
          (quasisyntax/loc stx
            (let-syntax
                #,(map
                   (lambda (name body)
                     (if (identifier? name)
                       (quasisyntax/loc body
                         (#,name
                          (lambda (stx)
                            (syntax-case stx ()
                              [(_1 . xs)
                               (quasisyntax/loc stx
                                 (#,(datum->syntax-object stx body stx)
                                  . xs))]
                              [_1 (datum->syntax-object stx #,body stx)]))))
                       (syntax-case name ()
                         [(name . args)
                          (begin
                            (check-args stx #'name #'args)
                            (quasisyntax/loc body
                              (name
                               (let ([p (lambda args #,body)])
                                 (lambda (stx)
                                   (let ([l (syntax->list stx)])
                                     (unless
                                         (and l (procedure-arity-includes?
                                                 p (sub1 (length l))))
                                       (raise-syntax-error #f "bad form" stx))
                                     (let ([ht (make-hash-table)])
                                       (datum->syntax-object
                                        stx
                                        (dm-subst
                                         ht (apply p (cdr (dm-syntax->datum
                                                           stx ht))))
                                        stx))))))))])))
                   (syntax-e #'(name ...)) (syntax-e #'(body ...)))
              letbody ...))])))))
(make-provide-syntax defmacro defmacro*) (provide defmacro*)

;; ----------------------------------------------------------------------------
;;>>... Controlling syntax

;;>> (define-syntax-parameter name default)
;;>> (define-syntax-parameter* name default)
;;>   Creates a `syntax parameter'.  Syntax parameters are things that you
;;>   can use just like normal parameters, but they are syntax transformers,
;;>   and the information they store can be used by other syntax
;;>   transformers.  The purpose of having them around is to parameterize
;;>   the way syntax transformation is used -- so they should be used as
;;>   global option changes, not for frequent side effect: they change their
;;>   value at syntax expansion time.  Note that using it stores the literal
;;>   syntax that is passed to them -- there is no way to evaluate the given
;;>   argument, for example, if some parameter expects a boolean -- then
;;>   `(not #t)' will not work!  The syntax parameter itself is invoked
;;>   wither with no arguments to retrieve its value, or with an argument to
;;>   set it.  Retrieving or setting the value in this way is meaningful
;;>   only in an interactive context since using it in a function just
;;>   expands to the current value:
;;>     => (define-syntax-parameter -foo- 1)
;;>     => (-foo-)
;;>     1
;;>     => (define (foo) (-foo-))
;;>     => (-foo- 2)
;;>     => (-foo-)
;;>     2
;;>     => (foo)
;;>     1
(defsyntax* define-syntax-parameter
  (syntax-rules ()
    [(_ name default)
     (define-syntax name
       (let ([p (make-parameter #'default)])
         (lambda stx
           (if (null? stx)
             (p) ; when the value is used in other transformers
             (syntax-case (car stx) ()
               [(_ new) (begin (p #'new) #'(void))]
               [(_)     (p)])))))]))
(make-provide-syntax define-syntax-parameter define-syntax-parameter*)
(provide define-syntax-parameter*)

;; ----------------------------------------------------------------------------
;;>>... Setters and more list accessors

;;>> (set-caar! place x)
;;>> (set-cadr! place x)
;;>> (set-cdar! place x)
;;>> (set-cddr! place x)
;;>> (set-caaar! place x)
;;>> (set-caadr! place x)
;;>> (set-cadar! place x)
;;>> (set-caddr! place x)
;;>> (set-cdaar! place x)
;;>> (set-cdadr! place x)
;;>> (set-cddar! place x)
;;>> (set-cdddr! place x)
;;>> (set-caaaar! place x)
;;>> (set-caaadr! place x)
;;>> (set-caadar! place x)
;;>> (set-caaddr! place x)
;;>> (set-cadaar! place x)
;;>> (set-cadadr! place x)
;;>> (set-caddar! place x)
;;>> (set-cadddr! place x)
;;>> (set-cdaaar! place x)
;;>> (set-cdaadr! place x)
;;>> (set-cdadar! place x)
;;>> (set-cdaddr! place x)
;;>> (set-cddaar! place x)
;;>> (set-cddadr! place x)
;;>> (set-cdddar! place x)
;;>> (set-cddddr! place x)
;;>   These are all defined so it is possible to use `setf!' from "setf.rkt"
;;>   with these standard and library-provided functions.
#|
(define* set-caar!   (lambda (p v) (set-car! (car p) v)))
(define* set-cadr!   (lambda (p v) (set-car! (cdr p) v)))
(define* set-cdar!   (lambda (p v) (set-cdr! (car p) v)))
(define* set-cddr!   (lambda (p v) (set-cdr! (cdr p) v)))
(define* set-caaar!  (lambda (p v) (set-car! (caar p) v)))
(define* set-caadr!  (lambda (p v) (set-car! (cadr p) v)))
(define* set-cadar!  (lambda (p v) (set-car! (cdar p) v)))
(define* set-caddr!  (lambda (p v) (set-car! (cddr p) v)))
(define* set-cdaar!  (lambda (p v) (set-cdr! (caar p) v)))
(define* set-cdadr!  (lambda (p v) (set-cdr! (cadr p) v)))
(define* set-cddar!  (lambda (p v) (set-cdr! (cdar p) v)))
(define* set-cdddr!  (lambda (p v) (set-cdr! (cddr p) v)))
(define* set-caaaar! (lambda (p v) (set-car! (caaar p) v)))
(define* set-caaadr! (lambda (p v) (set-car! (caadr p) v)))
(define* set-caadar! (lambda (p v) (set-car! (cadar p) v)))
(define* set-caaddr! (lambda (p v) (set-car! (caddr p) v)))
(define* set-cadaar! (lambda (p v) (set-car! (cdaar p) v)))
(define* set-cadadr! (lambda (p v) (set-car! (cdadr p) v)))
(define* set-caddar! (lambda (p v) (set-car! (cddar p) v)))
(define* set-cadddr! (lambda (p v) (set-car! (cdddr p) v)))
(define* set-cdaaar! (lambda (p v) (set-cdr! (caaar p) v)))
(define* set-cdaadr! (lambda (p v) (set-cdr! (caadr p) v)))
(define* set-cdadar! (lambda (p v) (set-cdr! (cadar p) v)))
(define* set-cdaddr! (lambda (p v) (set-cdr! (caddr p) v)))
(define* set-cddaar! (lambda (p v) (set-cdr! (cdaar p) v)))
(define* set-cddadr! (lambda (p v) (set-cdr! (cdadr p) v)))
(define* set-cdddar! (lambda (p v) (set-cdr! (cddar p) v)))
(define* set-cddddr! (lambda (p v) (set-cdr! (cdddr p) v)))
|#

;;>> (1st list)
;;>> (2nd list)
;;>> (3rd list)
;;>> (4th list)
;;>> (5th list)
;;>> (6th list)
;;>> (7th list)
;;>> (8th list)
;;>   Quick list accessors -- no checking is done, which makes these
;;>   slightly faster than the bindings provided by mzlib/list.
(define* 1st car)
(define* 2nd cadr)
(define* 3rd caddr)
(define* 4th cadddr)
(define* 5th (lambda (x) (car (cddddr x))))
(define* 6th (lambda (x) (cadr (cddddr x))))
(define* 7th (lambda (x) (caddr (cddddr x))))
(define* 8th (lambda (x) (cadddr (cddddr x))))

;;>> (set-1st! list x)
;;>> (set-2nd! list x)
;;>> (set-3rd! list x)
;;>> (set-4th! list x)
;;>> (set-5th! list x)
;;>> (set-6th! list x)
;;>> (set-7th! list x)
;;>> (set-8th! list x)
;;>   Setter functions for the above.
#|
(define* set-1st! set-car!)
(define* set-2nd! set-cadr!)
(define* set-3rd! set-caddr!)
(define* set-4th! set-cadddr!)
(define* set-5th! (lambda (p v) (set-car! (cddddr p) v)))
(define* set-6th! (lambda (p v) (set-car! (cdr (cddddr p)) v)))
(define* set-7th! (lambda (p v) (set-car! (cddr (cddddr p)) v)))
(define* set-8th! (lambda (p v) (set-car! (cdddr (cddddr p)) v)))
|#

;;>> (head pair)
;;>> (tail pair)
;;>> (set-head! pair x)
;;>> (set-tail! pair x)
;;>   Synonyms for `first', `rest', `set-first!', `set-rest!'.
(define* head first)
(define* tail rest)
;(define* set-head! set-first!)
;(define* set-tail! set-rest!)

;;>> (set-second! list x)
;;>> (set-third! list x)
;;>> (set-fourth! list x)
;;>> (set-fifth! list x)
;;>> (set-sixth! list x)
;;>> (set-seventh! list x)
;;>> (set-eighth! list x)
;;>   Defined to allow `setf!' with these mzlib/list functions.  Note that
;;>   there is no error checking (unlike the accessor functions which are
;;>   provided by mzlib/list).
#|
(define* set-second!  set-2nd!)
(define* set-third!   set-3rd!)
(define* set-fourth!  set-4th!)
(define* set-fifth!   set-5th!)
(define* set-sixth!   set-6th!)
(define* set-seventh! set-7th!)
(define* set-eighth!  set-8th!)
|#

;;>> (nth list n)
;;>> (nthcdr list n)
;;>   Functions for pulling out the nth element and the nth tail of a list.
;;>   Note the argument order which is unlike the one in CL.
(define* nth list-ref)
(define* (nthcdr l n)
  (if (zero? n) l (nthcdr (cdr l) (- n 1))))

;;>> (list-set! list n x)
;;>> (set-nth! list n x)
;;>   A function to set the nth element of a list, also provided as
;;>   `set-nth!' to allow using `setf!' with `nth'.
#|
(define* (list-set! lst index new)
  (set-car! (nthcdr lst index) new))
(define* set-nth! list-set!)
|#

;;>> (set-list-ref! list n x)
;;>> (set-vector-ref! vector n x)
;;>> (set-string-ref! string n x)
;;>   These are defined as `list-set!', `vector-set!', and `string-set!', so
;;>   the accessors can be used with `setf!'.
; (define* set-list-ref!   list-set!)
(define* set-vector-ref! vector-set!)
(define* set-string-ref! string-set!)

;;>> (last list)
;;>> (set-last! list x)
;;>   Accessing a list's last element, and modifying it.
(define* (last l)
  (car (last-pair l)))
#|
(define* (set-last! l x)
  (set-car! (last-pair l) x))
|#

;;>> (set-unbox! box x)
;;>   Allow using `setf!' with `unbox'.  Note: this is an alias for
;;>   `set-box!' which is an inconsistent name with other Scheme `set-foo!'
;;>   functions -- the result is that you can also do `(setf! (box foo) x)'
;;>   and bogusly get the same effect.
(define* set-unbox! set-box!)

;;>> (set-hash-table-get! table key [default] value)
;;>   This is defined to be able to `setf!' into a `hash-table-get'
;;>   accessor.  The form that `setf!' assembles always puts the new value
;;>   last, but it is still useful to have a default thunk which results in
;;>   an optional argument in an unusual place (and this argument is ignored
;;>   by this, which is why it is defined as a macro).  For example:
;;>     => (define t (make-hash-table))
;;>     => (inc! (hash-table-get t 'foo))
;;>     hash-table-get: no value found for key: foo
;;>     => (inc! (hash-table-get t 'foo (thunk 0)))
;;>     => (hash-table-get t 'foo)
;;>     1
(defsubst*
  (set-hash-table-get! table key value) (hash-table-put! table key value)
  (_ table key thunk value)             (hash-table-put! table key value))

;; ----------------------------------------------------------------------------
;;>>... Utilities

;;>> (eprintf fmt-string args ...)
;;>   Same as `printf' but it uses `current-error-port'.
(define* (eprintf . args)
  (apply fprintf (current-error-port) args))

;;>> concat
;;>   A shorter alias for `string-append'.
(define* concat string-append)

;;>> (symbol-append sym ...)
;;>   Self explanatory.
(define* (symbol-append . symbols)
  (string->symbol (apply string-append (map symbol->string symbols))))

;;>> (maptree func tree)
;;>   Applies given function to a tree made of cons cells, and return the
;;>   results tree with the same shape.
(define* (maptree f x)
  (let loop ([x x])
    (cond [(list? x) (map loop x)]
          [(pair? x) (cons (loop (car x)) (loop (cdr x)))]
          [else (f x)])))

;;>> (map! func list ...)
;;>   Same as `map' -- but destructively modifies the first list to hold the
;;>   results of applying the function.  Assumes all lists have the same
;;>   length.
#|
(define* (map! f l . rest)
  (if (null? rest)
    (let loop ([xs l])
      (if (null? xs) l (begin (set-car! xs (f (car xs))) (loop (cdr xs)))))
    (let loop ([xs l] [ls rest])
      (if (null? xs) l (begin (set-car! xs (apply f (car xs) (map car ls)))
                              (loop (cdr xs) (map cdr ls)))))))
|#

;;>> (maptree! func tree)
;;>   Same as `maptree' -- but destructively modifies the list to hold the
;;>   results of applying the function.
#|
(define* (maptree! f x)
  (if (pair? x)
    (begin (let loop ([x x])
             (defsubst (do-part get set)
               (let ([y (get x)])
                 (cond [(pair? y) (loop y)]
                       [(not (null? y)) (set x (f y))])))
             (do-part car set-car!)
             (do-part cdr set-cdr!))
           x)
    (f x))) ; can't be destructive here
|#

;;>> (mappend func list ...)
;;>> (mappend! func list ...)
;;>   Common idiom for doing a `(map func list ...)' and appending the
;;>   results.  `mappend!' uses `append!'.
(define* (mappend f . ls)
  (apply append (apply map f ls)))
#|
(define* (mappend! f . ls)
  (apply append! (apply map f ls)))
|#

;;>> (mapply func list-of-lists)
;;>   Apply the given `func' on every list in `list-of-lists' and return the
;;>   results list.
(define* (mapply f ls)
  (map (lambda (args) (apply f args)) ls))

;;>> (negate predicate?)
;;>   Returns a negated predicate function.
(define* (negate pred?)
  (lambda x (not (pred? . x))))

;;>> (position-of x list)
;;>   Finds `x' in `list' and returns its index.
(define* (position-of x lst)
  (let loop ([i 0] [l lst])
    (cond [(null? l) #f]
          [(eq? x (car l)) i]
          [else (loop (add1 i) (cdr l))])))

;;>> (find-if predicate? list)
;;>   Find and return an element of `list' which satisfies `predicate?', or
;;>   #f if none found.
(define* (find-if pred? l)
  (let loop ([l l])
    (cond [(null? l) #f]
          [(pred? (car l)) (car l)]
          [else (loop (cdr l))])))

;;>> (some predicate? list ...)
;;>> (every predicate? list ...)
;;>   Similar to Racket's `ormap' and `andmap', except that when multiple
;;>   lists are given, the check stops as soon as the shortest list ends.

(define* (some pred? l . rest)          ; taken from slib/comlist.scm,
  (cond [(null? rest)                   ; modified to check only up to the
         (let mapf ([l l])              ; length of the shortest list.
           (and (not (null? l))
                (or (pred? (car l)) (mapf (cdr l)))))]
        [else (let mapf ([l l] [rest rest])
                (and (not (or (null? l) (memq '() rest)))
                     (or (apply pred? (car l) (map car rest))
                         (mapf (cdr l) (map cdr rest)))))]))

(define* (every pred? l . rest)         ; taken from slib/comlist.scm
  (cond [(null? rest)                   ; modified to check only up to the
         (let mapf ([l l])              ; length of the shortest list.
           (or (null? l)
               (and (pred? (car l)) (mapf (cdr l)))))]
        [else (let mapf ([l l] [rest rest])
                (or (null? l) (if (memq '() rest) #t #f)
                    (and (apply pred? (car l) (map car rest))
                         (mapf (cdr l) (map cdr rest)))))]))

;;>> (with-output-to-string thunk)
;;>   Run `thunk' collecting generated output into a string.
(define* (with-output-to-string thunk)
  (let ([str (open-output-string)])
    (parameterize ([current-output-port str]) (thunk))
    (get-output-string str)))

;;>> (1+ x)
;;>> (1- x)
;;>   Synonyms for `add1' and `sub1'.
(define* 1+ add1)
(define* 1- sub1)

;; ----------------------------------------------------------------------------
;;>>... Multi-dimensional hash-tables
;; Using lists of `eq?' keys, based on Racket's hash tables (MzScheme doesn't
;; have custom hashes).  Use weak hash-tables so no space is redundantly
;; wasted.

;;>> (make-l-hash-table)
;;>> (l-hash-table-get table keys [failure-thunk])
;;>> (l-hash-table-put! table keys value)
;;>> (set-l-hash-table-get! table key [default] value)
;;>   These functions are similar to Racket's hash-table functions, except
;;>   that they work with a list of keys (compared with `eq?').  If it was
;;>   possible to use a custom equality hash-table, then then would use
;;>   something like
;;>     (lambda (x y) (and (= (length x) (length y)) (andmap eq? x y))).
;;>   The implementation uses a hash-table of hash-tables, all of them weak,
;;>   since it is supposed to be used for memoization.
;;>
;;>   `set-l-hash-table-get!' is defined to work with `setf!'.

;; Internal values, used below.
(define *nothing* (list "*"))
(define (return-nothing) *nothing*)

(defsubst l-hash-vector-length 10)

(define* (make-l-hash-table)
  (make-vector (add1 l-hash-vector-length) *nothing*))

(define* (l-hash-table-get table keys . thunk)
  (let ([len (length keys)])
    (let loop ([obj (vector-ref table (min len l-hash-vector-length))]
               [keys (if (< len l-hash-vector-length) keys (cons len keys))])
      (cond [(eq? obj *nothing*)
             (if (null? thunk)
               (error 'l-hash-table-get "no value found.") ((car thunk)))]
            [(null? keys) obj]
            [(not (hash-table? obj))
             (error 'l-hash-table-get "got to a premature value.")]
            [else (loop (hash-table-get obj (car keys) return-nothing)
                        (cdr keys))]))))

(define* (l-hash-table-put! table keys value)
  (let* ([len (length keys)]
         [obj (vector-ref table (min len l-hash-vector-length))])
    (when (eq? obj *nothing*)
      (set! obj (if (zero? len) value (make-hash-table 'weak)))
      (vector-set! table (min len l-hash-vector-length) obj))
    (unless (zero? len)
      (let loop ([obj obj]
                 [keys (if (< len l-hash-vector-length) keys (cons len keys))])
        (cond [(not (hash-table? obj))
               (error 'l-hash-table-put! "got to a premature value.")]
              [(null? (cdr keys)) (hash-table-put! obj (car keys) value)]
              [else (let ([value (hash-table-get
                                  obj (car keys) return-nothing)])
                      (when (eq? value *nothing*)
                        (set! value (make-hash-table 'weak))
                        (hash-table-put! obj (car keys) value))
                      (loop value (cdr keys)))])))))

(defsubst*
  (set-l-hash-table-get! table key value) (l-hash-table-put! table key value)
  (_ table key thunk value)               (l-hash-table-put! table key value))

;; Simple memoization.

;;>> (memoize func)
;;>   Return a memoized version of `func'.  Note that if `func' is
;;>   recursive, it should be arranged for it to call the memoized version
;;>   rather then call itself directly.
(define* (memoize f)
  (let ([table (make-l-hash-table)])
    (lambda args
      (l-hash-table-get
       table args
       (thunk
         (let ([r (apply f args)]) (l-hash-table-put! table args r) r))))))

;;>> (memoize! func-name)
;;>   Changes the given function binding to a memoized version.
(defsubst* (memoize! f) (set! f (memoize f)))

;; ---------------------------------------------------------------------------
;;>>... Generic iteration and list comprehension
;; Idea originated in a post on c.l.s by Based on Phil Bewig (July 2002), but
;; went light years beyond that.

;;>> (collect [dir] (var base expr) clause ...)
;;>   Sophisticated iteration syntax.  The iteration is specified by the
;;>   given clauses, where `var' serves as an accumulator variable that
;;>   collects a value beginning with `base' and continuing with `expr' --
;;>   similar to a single binding in a `do' form with a variable, an initial
;;>   value and an update expression.  But there are much more iteration
;;>   options than a `do' form: this form supports a generic
;;>   list-comprehension and related constructs.  Forms that use this
;;>   construct are:
;;>

;;>> (loop-for clause ...)
;;>   Use when no value collection is needed, and the default for
;;>   expressions is to do them instead of using them as a filter.
;;>   Implemented as:
;;>     (collect => (acc (void) acc) do clause ...)
(defsubst* (loop-for clause ...)
  (collect => (acc (void) acc) do clause ...))
;;>

;;>> (list-of expr clause ...)
;;>   Implemented as:
;;>     (reverse! (collect (acc '() (cons expr acc)) clause ...))
(defsubst* (list-of expr clause ...)
  (reverse (collect (acc '() (cons expr acc)) clause ...)))
;;>

;;>> (sum-of expr clause ...)
;;>   Implemented as:
;;>     (collect (acc 0 (+ expr acc)) clause ...)
(defsubst* (sum-of expr clause ...)
  (collect (acc 0 (+ expr acc)) clause ...))
;;>

;;>> (product-of expr clause ...)
;;>   Implemented as:
;;>     (collect (acc 1 (* expr acc)) clause ...)
(defsubst* (product-of expr clause ...)
  (collect (acc 1 (* expr acc)) clause ...))
;;>

;;>> (count-of clause ...)
;;>   Only count matching cases, implemented as:
;;>     (sum-of 1 clause ...)
(defsubst* (count-of clause ...)
  (sum-of 1 clause ...))
;;>

;;>   Each clause is either:
;;>   * (v <- ...):     a binding generator clause;
;;>   * (v <- ... and v <- ...): parallel generator clauses;
;;>   * (v is is-expr): bind `v' to the result of `is-expr';
;;>   * while expr:     a `while' keyword followed by an expression will
;;>                     abort the whole loop if that expression evaluates to
;;>                     #f;
;;>   * until expr:     an `until' keyword followed by an expression will
;;>                     abort the whole loop if that expression evaluates to
;;>                     a non-#f value;
;;>   * when ...:       filter by the following expressions -- if an
;;>                     expression evaluates to #f, stop processing this
;;>                     iteration (default for all macros except for
;;>                     `loop-for');
;;>   * unless ...:     filter by the negation of the following expressions;
;;>   * do ...:         execute the following expressions, used for side
;;>                     effects (default for the `loop-for' macro);
;;>   * expr:           expression is used according to the current mode set
;;>                     by a `when', `unless', or `do', keyword that
;;>                     precedes it.
;;>   The effect of this form is to iterate each generator variable
;;>   according to generating `<-' clauses (see below for these) and
;;>   parallel clauses, and evaluate the `expr' with each combination, which
;;>   composes a result out of iteration-bound values and an accumulated
;;>   result.  Generation is done in a nested fashion, where the rightmost
;;>   generator spin fastest.  Parallel generators (specified with an infix
;;>   `and') make all iterations happen simultaneously, ending as soon as
;;>   the first one ends.  An `is' clause is used for binding arbitrary
;;>   variables, a `do' clause is used to execute code for general
;;>   side-effects, and other clauses are used to filter results before
;;>   continuing down the clause list.  Each clause can use variables bound
;;>   by previous clauses, and the `expr' can use all bound variables as
;;>   well as the given accumulator variable.
;;>
;;>   An optional first token can be used to specify the direction which is
;;>   used to accumulate the result.  It can be one of these two tokens:
;;>   `<=': A "backward" collection, the default (similar to `foldl');
;;>   `=>': A "forward" collection (similar to `foldr').
;;>   The default "backward" direction works by generating an accumulator
;;>   carrying loop, as in this code (this code is for demonstration, not
;;>   what `collect' creates):
;;>     (let loop ([x foo] [acc '()])
;;>       (if (done? x) acc (loop (next x) (cons (value x) acc))))
;;>   which is a common Scheme idiom for such operations.  The problem is
;;>   that this accumulation happens in reverse -- requiring reversing the
;;>   final result (which is done by the `list-of' macro).  A "forward"
;;>   direction does a naive recursive loop:
;;>     (let loop ([x foo])
;;>       (if (done? x) '() (cons (value x) (loop (next x)))))
;;>   collecting values in the correct order, but the problem is that it
;;>   keeps a computation context which makes memory consumption
;;>   inefficient.  The default style is usually preferred, since reversing
;;>   a list is a cheap operation, but it is not possible when infinite
;;>   lists (streams) are used since it is impossible to reverse them.  In
;;>   these cases, the "forward" style should be used, but the `expr' must
;;>   take care not to evaluate the iteration "variable" immediately, using
;;>   `delay' or a similar mechanism (this "variable" is not bound to a
;;>   value but substituted with an expression (a symbol macro)).  For
;;>   example, here's a quick lazy list usage:
;;>     => (defsubst (lcons x y) (delay (cons x y)))
;;>     => (define (lcar s) (car (force s)))
;;>     => (define (lcdr s) (cdr (force s)))
;;>     => (define x (collect (_ '() (lcons x _)) (x <- 0 ..)))
;;>     ; loops indefinitely
;;>     => (define x (collect => (_ '() (lcons x _)) (x <- 0 ..)))
;;>     => (lcar (lcdr (lcdr x)))
;;>     2
;;>   Note that the `loop-for' macro uses a "forward" direction, but this is
;;>   only because it is slightly faster since it doesn't require an extra
;;>   binding.
;;>   [The direction can be changed for a single part by using a "<-!"
;;>   keyword instead of "<-", but this is an experimental feature since I
;;>   don't know if it's actually useful for anything.  Do not try to mix
;;>   this with the `while' and `until' keywords which are implemented
;;>   differently based on the direction.]
;;>

(defsyntax* (collect stx)
  (define (split id stxs)
    (let loop ([stxs '()] [stxss '()]
               [l (if (syntax? stxs) (syntax->list stxs) stxs)])
      (cond [(null? l) (reverse (cons (reverse stxs) stxss))]
            [(and (identifier? (car l)) (module-identifier=? id (car l)))
             (loop '() (cons (reverse stxs) stxss) (cdr l))]
            [else (loop (cons (car l) stxs) stxss (cdr l))])))
  (define (gen-loop generate add-aux! &optional hacked)
    (with-syntax ([generate generate]
                  [(cur step done? value)
                   (generate-temporaries '(cur step done? value))])
      (add-aux! #'((cur step done? value) (apply values generate)))
      (with-syntax ([value #'(if value (value cur) cur)])
        (with-syntax ([value (if hacked
                               #`(let ([r value]) (set! #,hacked r) r)
                               #'value)])
          #'(cur cur (step cur) (and done? (done? cur)) value)))))
  (define (gen var args add-aux! hack-var! &optional seq?)
    (define (hack!) (when (and seq? hack-var!) (hack-var! var)))
    (define (gen1 arg) (if seq? arg (gen-loop arg add-aux!)))
    (with-syntax ([v var])
      (syntax-case args (then until while .. ..<)
;;>   Generator forms are one of the following ("..", "then", "until",
;;>   "while" are literal tokens), see below for what values are generated:
;;>   * (v <- sequence):
;;>     iterate `v' on values from `sequence';
        [(arg)            (gen1 #'(collect-iterator arg))]
;;>   * (v <- 1st [2nd] .. [last]):
;;>     iterate on an enumerated range, including last element of range;
        [(a b ..  z)      (gen1 #'(collect-numerator a b  z        ))]
        [(a b ..   )      (gen1 #'(collect-numerator a b  #f       ))]
        [(a   ..  z)      (gen1 #'(collect-numerator a #f z        ))]
        [(a   ..   )      (gen1 #'(collect-numerator a #f #f       ))]
;;>   * (v <- 1st [2nd] ..< last):
;;>     iterate on an enumerated range, excluding last element of range;
        [(a b ..< z)      (gen1 #'(collect-numerator a b  z  '<    ))]
        [(a   ..< z)      (gen1 #'(collect-numerator a #f z  '<    ))]
;;>   * (v <- 1st [2nd] .. while last):
;;>     iterate on an enumerated range, excluding last element of range;
        [(a b .. while z) (gen1 #'(collect-numerator a b  z  'while))]
        [(a   .. while z) (gen1 #'(collect-numerator a #f z  'while))]
;;>   * (v <- 1st [2nd] .. until last):
;;>     iterate on an enumerated range, excluding last element of range;
        [(a b .. until z) (gen1 #'(collect-numerator a b  z  'until))]
        [(a   .. until z) (gen1 #'(collect-numerator a #f z  'until))]
;;>   * (v <- x then next-e [{while|until} cond-e]):
;;>     start with the `x' expression, continue with the `next-e' expression
;;>     (which can use `v'), do this while/until `cond-e' is true if a
;;>     condition is given;
        [(arg then next) (hack!)
         (if seq? ; making seq? => convert to composable funcs
           #'(list arg (lambda (v) next) #f #f)
           #'(v arg next #f v))]
        [(arg then next while cond) (hack!)
         (if seq?
           #'(list arg (lambda (v) next) (lambda (v) (not cond)) #f)
           #'(v arg next (not cond) v))]
        [(arg then next until cond) (hack!)
         (if seq?
           #'(list arg (lambda (v) next) (lambda (v) cond) #f)
           #'(v arg next cond v))]
;;>   * (v <- x {while|until} cond-e):
;;>     repeat using the `x' expression while/until `cond-e' is true;
        [(arg while cond) (hack!)
         (if seq?
           #'(list #f #f #f (lambda (_) (if cond arg collect-final)))
           #'(v #f #f #f (begin (set! v arg) (if cond v collect-final))))]
        [(arg until cond) (hack!)
         (if seq?
           #'(list #f #f #f (lambda (_) (if cond collect-final arg)))
           #'(v #f #f #f (begin (set! v arg) (if cond collect-final v))))]
;;>   * (v <- func arg ...):
;;>     applies `func' to `arg ...', the result is expected to be some
;;>     "iterator value" which is used to do the iteration -- iteration
;;>     values are created by `collect-iterator' and `collect-numerator',
;;>     see below for their description and return values.
;;>   * (v <- gen1 <- gen2 <- ...):
;;>     generator clauses can have multiple parts specified by more `<-'s,
;;>     all of them will run sequentially;
        [(f x ...)
         (let ([argss (split #'<- args)])
           (if (= 1 (length argss))
             (gen1 #'(f x ...))
             (let ([hacked #f])
               (with-syntax
                   ([(gen ...)
                     (map (lambda (as)
                            (gen var as add-aux!
                                 (lambda (v) (set! hacked v) (hack-var! v))
                                 #t))
                          argss)])
                 (gen-loop #'(sequential-generators gen ...)
                           add-aux! hacked)))))])))
  (define-values (acc base0 expr clauses fwd?)
    (syntax-case stx (<= =>)
      [(_ <= (acc base expr) clause ...)
       (values #'acc #'base #'expr #'(clause ...) #f)]
      [(_ => (acc base expr) clause ...)
       (values #'acc #'base #'expr #'(clause ...) #t)]
      [(_ (acc base expr) clause ...)
       (values #'acc #'base #'expr #'(clause ...) #f)]))
  (define need-break? #f)
  (define loop-body
    (let c-loop ([base base0] [clauses clauses] [mode 'when] [rev? #f])
      (syntax-case clauses (<- <-! is do when unless while until)
        [() (if (if rev? (not fwd?) fwd?)
              #`(letsubst ([#,acc #,base]) #,expr)
              expr)]
        [((var <-! arg ...) rest ...)
         (c-loop base #'((var <- arg ...) rest ...) mode 'rev!)]
        [((var <- arg ...) rest ...)
;;>   * (v1 <- gen1 ... and v2 <- gen2 ...):
;;>     finally, an infix `and' specifies parallel generators, binding
;;>     several variables.
         (let ([rev? (if (eq? 'rev! rev?) #t #f)]
               [gens (split #'and #'(var <- arg ...))]
               [loop-id (car (generate-temporaries '(loop)))]
               [aux '()] [hacked-vars '()])
           (for-each
            (lambda (g)
              (syntax-case g (<-)
                [(var <- arg ...) (identifier? #'var) #f]
                [_ (raise-syntax-error
                    #f "expected a generator clause" stx g)]))
            gens)
           (with-syntax ([((var <- arg ...) ...) gens])
             ;; Hack needed: generator variables are defined later in the loop
             ;; just before their code, after the place where the expression
             ;; appear in setup code.  This is usually not a problem since
             ;; functions are applied the same, but when using expression
             ;; iteration (`then') in a sequential range which is in
             ;; simultaneous iteration where real expressions are turned to
             ;; functions (which are define before variables the might
             ;; reference).  This could be eliminated, restricting expressions
             ;; from referencing variables that are bound in parallel, but this
             ;; is usually the power of using expression (which can be claimed
             ;; redundant).  The hack is doing this:
             ;;  (let ([x #f] ...)
             ;;    ... (let ([x (let ([r value]) (set! x r) r)])))
             ;; The problem is that the extra junk makes it run twice slower,
             ;; so do this only for bindings that has the above scenario
             ;; (parallel of sequential of expression generators).  To test it,
             ;; do this:
             ;;  (list-of (list c x y)
             ;;    (c <- 1 .. 5 and x <- 1 <- 'x then y
             ;;                 and y <- 1 <- 'y then x))
             ;; but this always works:
             ;;  (list-of (list c x y)
             ;;    (c <- 1 .. 5 and x <- 'x then y and y <- 'y then x))
             (with-syntax ([((cur fst next done? value) ...)
                            (map (lambda (v as)
                                   (gen v as
                                        (lambda (a) (set! aux (cons a aux)))
                                        (lambda (v)
                                          (set! hacked-vars
                                                (cons v hacked-vars)))))
                                 (syntax->list #'(var ...))
                                 (syntax->list #'((arg ...) ...)))]
                           [loop loop-id]
                           [(aux ...) (reverse aux)] [acc acc] [base base])
               (with-syntax
                   ([body
                     (let* ([fwd? (if rev? (not fwd?) fwd?)]
                            [return (if fwd? #'base #'acc)]
                            [body (if fwd?
                                    (c-loop #`(#,loop-id next ...)
                                            #'(rest ...) mode rev?)
                                    #`(loop next ...
                                            #,(c-loop #'acc #'(rest ...)
                                                      mode rev?)))])
                       #`(let-values (aux ...)
                           (let loop ([cur fst] ...
                                      #,@(if fwd? #'() #'((acc base))))
                             (if (or done? ...)
                               #,return
                               #,(let vloop ([vars (syntax->list #'(var ...))]
                                             [values (syntax->list
                                                      #'(value ...))])
                                   (if (null? vars)
                                     body
                                     #`(let ([#,(car vars) #,(car values)])
                                         (if (eq? #,(car vars) collect-final)
                                           #,return
                                           #,(vloop (cdr vars)
                                                    (cdr values))))))))))])
                 (if (null? hacked-vars)
                   #'body
                   (with-syntax ([(var ...) (reverse hacked-vars)])
                     #'(let ([var #f] ...) body)))))))]
        [((var is is-expr) rest ...)
         #`(let ([var is-expr]) #,(c-loop base #'(rest ...) mode rev?))]
        [(while cond rest ...)
         #`(if cond
             #,(c-loop base #'(rest ...) mode rev?)
             #,(if (if rev? (not fwd?) fwd?)
                 base0 (begin (set! need-break? #t) #`(break #,base))))]
        [(until cond rest ...)
         #`(if cond
             #,(if (if rev? (not fwd?) fwd?)
                 base0 (begin (set! need-break? #t) #`(break #,base)))
             #,(c-loop base #'(rest ...) mode rev?))]
        [(do     rest ...) (c-loop base #'(rest ...) 'do     rev?)]
        [(when   rest ...) (c-loop base #'(rest ...) 'when   rev?)]
        [(unless rest ...) (c-loop base #'(rest ...) 'unless rev?)]
        [(expr rest ...)
         (with-syntax ([cont (c-loop base #'(rest ...) mode rev?)])
           (case mode
             [(when)   #`(if expr cont #,base)]
             [(unless) #`(if expr #,base cont)]
             [(do)     #`(begin expr cont)]))])))
  (if need-break?
    #`(let/ec break #,loop-body) loop-body))
;;>

(define (sequential-generators gen . rest)
  (let-values ([(new) #f] [(fst step done? value) (values . gen)])
    (define (next!)
      (and (pair? rest)
           (begin (set! gen   (car rest)) (set! rest  (cdr rest))
                  (set! fst   (1st gen))  (set! step  (2nd gen))
                  (set! done? (3rd gen))  (set! value (4th gen))
                  #t)))
    (list fst
          (lambda (x)
            (let ([r (step (if new (begin0 new (set! new #f)) x))])
              (if (and done? (done? r)) (if (next!) fst collect-final) r)))
          (lambda (x)
            (and (null? rest)
                 (or (eq? x collect-final) (and done? (done? x)))))
          (lambda (x)
            (let ([r (if value (value x) x)])
              (if (eq? r collect-final)
                (let* ([n? (next!)] [r (and n? (if value (value fst) fst))])
                  (set! new fst)
                  (if (or (not n?) (done? fst)) collect-final r))
                r))))))

(define (function->iterator f &optional done? include-last?)
  (define arity
    (cond [(procedure-arity-includes? f 0) 0]
          [(procedure-arity-includes? f 1) 1]
          [else (error 'function->iterator
                       "don't know how to iterate over function ~e" f)]))
  (when (and done? include-last?)
    (set! done?
          (let ([d? done?])
            (lambda (x) (when (d? x) (set! f (lambda _ collect-final))) #f))))
  (when (eq? 1 arity) (set! f (function-iterator f collect-final)))
  (list (void) void #f
        (if done?
          (lambda (_)
            (let ([x (f)])
              (if (or (eq? x collect-final) (done? x)) collect-final x)))
          (lambda (_) (f)))))

;;>   Iteration is possible on one of the following sequence values:
(define* (collect-iterator seq)
  (define (out-of-range r) (lambda (x) (<= r x)))
  (cond
;;>   * list: iterate over the list's element;
   [(list? seq) (list seq cdr null? car)]
;;>   * vector: iterate over the vector's elements;
   [(vector? seq) (list 0 add1 (out-of-range (vector-length seq))
                        (lambda (i) (vector-ref seq i)))]
;;>   * string: iterate over characters in the string;
   [(string? seq) (list 0 add1 (out-of-range (string-length seq))
                        (lambda (i) (string-ref seq i)))]
;;>   * integer n: iterate on values from 0 to n-1;
   [(integer? seq) (list 0 add1 (out-of-range seq) #f)]
;;>   * procedure f:
   [(procedure? seq)
;;>     - if f accepts zero arguments, begin with (f) and iterate by
;;>       re-applying (f) over and over, so the only way to end this
;;>       iteration is by returning `collect-final' (see below);
;;>     - otherwise, if f accepts one argument, it is taken as a generator
;;>       function: it is passed a one-argument procedure `yield' which can
;;>       be used to suspend its execution returning the given value, and it
;;>       will be continued when more values are required (see
;;>       `function-iterator' below);
    (function->iterator seq)]
;;>   * hash-table: iterate over key-value pairs -- this is done with a
;;>     generator function:
;;>       (lambda (yield)
;;>         (hash-table-for-each seq (lambda (k v) (yield (cons k v)))))
   [(hash-table? seq)
    (collect-iterator (lambda (yield)
                        (hash-table-for-each
                         seq (lambda (k v) (yield (cons k v))))))]
;;>   * other values: repeated infinitely.
   [else (list seq identity #f #f)]))
;;>   Note that iteration over non-lists is done efficiently, iterating over
;;>   a vector `v' is better than iterating over `(vector->list v)'.
;;>

;;>   Enumeration is used whenever a ".." token is used to specify a range.
;;>   There are different enumeration types based on different input types,
;;>   and all are modified by the token used:
;;>   * "..": a normal inclusive range;
;;>   * "..<": a range that does not include the last element;
;;>   * ".. while": a range that continues while a predicate is true;
;;>   * ".. until": a range that continues until a predicate is true.
;;>   The "..<" token extends to predicates in the expected way: the element
;;>   that satisfies the predicate is the last one and it is not included in
;;>   the enumeration -- unlike "..".
;;>   These are the possible types that can be used with an enumeration:
(define* (collect-numerator from second to &optional flag)
  (define (check-type pred? &optional not-to)
    (and (pred? from) (or (not second) (pred? second))
         (or not-to (not to) (pred? to))))
  (define (to->pred)
    (and to (let ([to (if (and (procedure? to)
                               (procedure-arity-includes? to 1))
                        to (lambda (x) (equal? x to)))])
              (if (eq? 'while flag) (negate to) to))))
  (when (and (memq flag '(while until))
             (not (and (procedure? to) (procedure-arity-includes? to 1))))
    (set! to (lambda (x) (equal? x to))))
;;>   * num1 [num2] .. [num3]: go from num1 to num3 in num3 in num2-num1
;;>     steps, if num2 is not given then use +1/-1 steps, if num3 is not
;;>     given don't stop;
;;>   * num1 [num2] .. pred: go from num1 by num2-num1 steps (defaults to
;;>     1), up to the number that satisfies the given predicate;
  (cond [(check-type number?)
         (let* ([step
                 (cond [second (- second from)]
                       [(and (number? to) (> from to)) -1]
                       [else 1])]
                [gt?
                 (case flag
                   [(#f) (if (positive? step) > <)]
                   [(<)  (if (positive? step) >= <=)]
                   [else (error 'collect-numerator "internal error")])])
           (list from
                 (lambda (x) (+ x step))
                 (if (number? to) (lambda (x) (gt? x to)) #f)
                 #f))]
;;>   * char1 [char2] .. [char3/pred]: the same as with numbers, but on
;;>     character ranges;
        [(check-type char? #t)
         (let ([numerator (collect-numerator
                           (char->integer from)
                           (and second (char->integer second))
                           (cond [(char? to) (char->integer to)]
                                 [(and (procedure? to)
                                       (procedure-arity-includes? to 1))
                                  (compose to integer->char)]
                                 [else to])
                           flag)])
           (list (1st numerator) (2nd numerator) (3rd numerator)
                 integer->char))]
;;>   * func .. [pred/x]: use `func' the same way as in an iterator above,
;;>     use `pred' to identify the last element, if `pred' is omitted repeat
;;>     indefinitely;
        [(and (procedure? from) (not second))
         (let ([to (to->pred)])
           (function->iterator from to (and (not flag) to)))]
;;>   * fst [next] .. [pred]: start with `fst', continue by repeated
;;>     applications of the `next' function on it, and use `pred' to
;;>     identify the last element, if `pred' is omitted repeat indefinitely,
;;>     if `next' is omitted repeat `fst', and if both `fst' and `next' are
;;>     numbers or characters then use their difference for stepping.  (Note
;;>     that to repeat a function value you should use `identity' as for
;;>     `next' or the function will be used as described above.)
        [else
         (cond [(and (number? from) (number? second))
                (let ([d (- second from)]) (set! second (lambda (x) (+ x d))))]
               [(not second) (set! second identity)]
               [(not (and (procedure? second)
                          (procedure-arity-includes? second 1)))
                (error 'collect-numerator
                       "don't know how to enumerate ~e ~e .. ~e"
                       from second to)])
         (if (not to)
           (list from second #f #f)
           (let ([to (to->pred)])
             (if (or flag (not to))
               (list from second to #f)
               (let ([almost-done? (to from)] [done? #f])
                 (list from (lambda (x)
                              (if almost-done?
                                (set! done? #t)
                                (let ([next (second x)])
                                  (when (to next) (set! almost-done? #t))
                                  next)))
                       (lambda (_) done?) #f)))))]))
;;>

;;>   Here is a long list of examples for clarification, all using
;;>   `list-of', but the generalization should be obvious:
;;>     => (list-of x [x <- '(1 2 3)])
;;>     (1 2 3)
;;>     => (list-of (list x y) [x <- '(1 2 3)] [y <- 1 .. 2])
;;>     ((1 1) (1 2) (2 1) (2 2) (3 1) (3 2))
;;>     => (list-of (format "~a~a~a" x y z)
;;>                 [x <- '(1 2)] [y <- #(a b)] [z <- "xy"])
;;>     ("1ax" "1ay" "1bx" "1by" "2ax" "2ay" "2bx" "2by")
;;>     => (list-of (+ x y) [x <- '(1 2 3)] [y <- 20 40 .. 100])
;;>     (21 41 61 81 101 22 42 62 82 102 23 43 63 83 103)
;;>     => (list-of (+ x y) [x <- '(1 2 3) and y <- 20 40 .. 100])
;;>     (21 42 63)
;;>     => (list-of y [x <- 0 .. and y <- '(a b c d e f g h i)] (even? x))
;;>     (a c e g i)
;;>     => (list-of y [x <- 0 .. and y <- '(a b c d e f g h i)]
;;>          when (even? x) do (echo y))
;;>     a
;;>     c
;;>     e
;;>     g
;;>     i
;;>     (a c e g i)
;;>     => (list-of (list x y) [x <- 3 and y <- 'x])
;;>     ((0 x) (1 x) (2 x))
;;>     => (list-of (list x y) [x <- 3 and y <- 'x ..])
;;>     ((0 x) (1 x) (2 x))
;;>     => (list-of (list x y) [x <- #\0 .. and y <- '(a b c d)])
;;>     ((#\0 a) (#\1 b) (#\2 c) (#\3 d))
;;>     => (list-of x [x <- '(1 2 3) then (cdr x) until (null? x)])
;;>     ((1 2 3) (2 3) (3))
;;>     => (list-of (list x y)
;;>          [x <- '(1 2 3) then (cdr y) until (null? x) and
;;>           y <- '(10 20 30) then (cdr x) until (null? y)])
;;>     (((1 2 3) (10 20 30)) ((20 30) (2 3)) ((3) (30)))
;;>     => (list-of x [x <- (lambda (yield) 42)])
;;>     ()
;;>     => (list-of x [x <- (lambda (yield) (yield 42))])
;;>     (42)
;;>     => (list-of x [x <- (lambda (yield) (yield (yield 42)))])
;;>     (42 42)
;;>     => (list-of x [x <- (lambda (yield)
;;>                           (for-each (lambda (x) (echo x) (yield x))
;;>                                     '(3 2 1 0)))])
;;>     3
;;>     2
;;>     1
;;>     0
;;>     (3 2 1 0)
;;>     => (list-of x [x <- (lambda (yield)
;;>                           (for-each (lambda (x) (echo x) (yield (/ x)))
;;>                                     '(3 2 1 0)))])
;;>     3
;;>     2
;;>     1
;;>     0
;;>     /: division by zero
;;>     => (list-of x
;;>          [c <- 3 and
;;>           x <- (lambda (yield)
;;>                  (for-each (lambda (x) (echo x) (yield (/ x)))
;;>                            '(3 2 1 0)))])
;;>     3
;;>     2
;;>     1
;;>     (1/3 1/2 1)
;;>     => (define h (make-hash-table))
;;>     => (set! (hash-table-get h 'x) 1
;;>              (hash-table-get h 'y) 2
;;>              (hash-table-get h 'z) 3)
;;>     => (list-of x [x <- h])
;;>     ((y . 2) (z . 3) (x . 1))
;;>     => (list-of x [x <- 4 <- 4 .. 0 <- '(1 2 3)])
;;>     (0 1 2 3 4 3 2 1 0 1 2 3)
;;>     => (list-of (list x y)
;;>          [x <- 1 .. 3 <- '(a b c) and
;;>           y <- (lambda (y) (y 'x) (y 'y)) <- "abcd"])
;;>     ((1 x) (2 y) (3 #\a) (a #\b) (b #\c) (c #\d))
;;>
;;>   Note that parallel iteration is useful both for enumerating results,
;;>   and for walking over a finite prefix of an infinite iteration.
;;>
;;>   The following is an extensive list of various ranges:
;;>     => (list-of x [x <- 0 .. 6])
;;>     (0 1 2 3 4 5 6)
;;>     => (list-of x [x <- 0 ..< 6])
;;>     (0 1 2 3 4 5)
;;>     => (list-of x [x <- 0 .. -6])
;;>     (0 -1 -2 -3 -4 -5 -6)
;;>     => (list-of x [x <- 0 ..< -6])
;;>     (0 -1 -2 -3 -4 -5)
;;>     => (list-of x [x <- 0 2 .. 6])
;;>     (0 2 4 6)
;;>     => (list-of x [x <- 0 2 ..< 6])
;;>     (0 2 4)
;;>     => (list-of x [x <- 0 -2 ..< -6])
;;>     (0 -2 -4)
;;>     => (list-of x [x <- #\a .. #\g])
;;>     (#\a #\b #\c #\d #\e #\f #\g)
;;>     => (list-of x [x <- #\a ..< #\g])
;;>     (#\a #\b #\c #\d #\e #\f)
;;>     => (list-of x [x <- #\a #\c .. #\g])
;;>     (#\a #\c #\e #\g)
;;>     => (list-of x [x <- #\a #\c ..< #\g])
;;>     (#\a #\c #\e)
;;>     => (list-of x [x <- #\g #\e ..< #\a])
;;>     (#\g #\e #\c)
;;>     => (list-of x [x <- 6 5 .. zero?])
;;>     (6 5 4 3 2 1 0)
;;>     => (list-of x [x <- 6 5 ..< zero?])
;;>     (6 5 4 3 2 1)
;;>     => (list-of x [x <- 6 5 .. until zero?])
;;>     (6 5 4 3 2 1)
;;>     => (list-of x [x <- 6 5 .. while positive?])
;;>     (6 5 4 3 2 1)
;;>     => (list-of x [x <- '(1 2 3) cdr .. null?])
;;>     ((1 2 3) (2 3) (3) ())
;;>     => (list-of x [x <- '(1 2 3) cdr ..< null?])
;;>     ((1 2 3) (2 3) (3))
;;>     => (list-of x [x <- '(1 2 3) cdr .. until null?])
;;>     ((1 2 3) (2 3) (3))
;;>     => (list-of x [x <- '(1 2 3) cdr .. while pair?])
;;>     ((1 2 3) (2 3) (3))
;;>     => (list-of x [x <- #\a #\d .. while char-alphabetic?])
;;>     (#\a #\d #\g #\j #\m #\p #\s #\v #\y)
;;>     => (list-of x [x <- #\a #\d .. char-alphabetic?])
;;>     (#\a)
;;>     => (list-of x [x <- #\a #\d ..< char-alphabetic?])
;;>     ()
;;>     => (list-of x [x <- 0 1 .. positive?])
;;>     (0 1)
;;>     => (list-of x [x <- 1 2 .. positive?])
;;>     (1)
;;>     => (list-of x [x <- 1 2 ..< positive?])
;;>     ()
;;>     => (list-of x [x <- '(a b c) ..< pair?])
;;>     ()
;;>     => (list-of x [x <- '(a b c) .. pair?])
;;>     ((a b c))
;;>     => (list-of x [x <- '(a b c) cdr .. pair?])
;;>     ((a b c))
;;>     => (list-of x [x <- read-line .. eof-object?])
;;>     ...list of remaining input lines, including #<eof>...
;;>     => (list-of x [x <- read-line ..< eof-object?])
;;>     ...list of remaining input lines, excluding #<eof>...
;;>     => (list-of x [x <- read-line ..< eof])
;;>     ...the same...
;;>

;;>> collect-final
;;>   This value can be used to terminate iterations: when it is returned as
;;>   the iteration value (not the state), the iteration will terminate
;;>   without using it.
(define* collect-final (list "*"))

;;>> (function-iterator f [final-value])
;;>   `f' is expected to be a function that can accept a single input value.
;;>   It is applied on a `yield' function that can be used to return a value
;;>   at any point.  The return value is a function of no argument, which
;;>   returns on every application values that were passed to `yield'.  When
;;>   `f' terminates, the final result of the iterated return value depends
;;>   on the optional argument -- if none was supplied, the actual return
;;>   value is returned, if a thunk was supplied it is applied for a return
;;>   value, and if any other value was given it is returned.  After
;;>   termination, calling the iterated function again results in an error.
;;>   (The supplied `yield' function returns its supplied value to the
;;>   calling context when resumed.)
;;>     => (define (foo yield) (yield 1) (yield 2) (yield 3))
;;>     => (define bar (function-iterator foo))
;;>     => (list (bar) (bar) (bar))
;;>     (1 2 3)
;;>     => (bar)
;;>     3
;;>     => (bar)
;;>     function-iterator: iterated function #<procedure:foo> exhausted.
;;>     => (define bar (function-iterator foo 'done))
;;>     => (list (bar) (bar) (bar) (bar))
;;>     (1 2 3 done)
;;>     => (bar)
;;>     function-iterator: iterated function #<procedure:foo> exhausted.
;;>     => (define bar (function-iterator foo (thunk (error 'foo "done"))))
;;>     => (list (bar) (bar) (bar))
;;>     (1 2 3)
;;>     => (bar)
;;>     foo: done
(define* (function-iterator f . finally)
  (define ret #f)
  (define (done)
    (set! cnt (thunk (error 'function-iterator
                            "iterated function ~e exhausted." f))))
  (define cnt
    (cond [(null? finally) (thunk (let ([r (f yield)]) (done) (ret r)))]
          [(and (procedure? (car finally))
                (procedure-arity-includes? (car finally) 0))
           (thunk (f yield) (done) (ret ((car finally))))]
          [else (thunk (f yield) (done) (ret (car finally)))]))
  (define (yield v) (let/cc k (set! cnt (thunk (k v))) (ret v)))
  (thunk (let/cc ret1 (set! ret ret1) (cnt))))

;;>> (collect-iterator sequence)
;;>> (collect-numerator from second to [flag])
;;>   These functions are used to construct iterations.  `collect-iterator'
;;>   is the function used to create iteration over a sequence object and it
;;>   is used by `(x <- sequence)' forms of `collect'.  `collect-numerator'
;;>   create range iterations specified with `(x <- from second to)' forms,
;;>   where unspecified values are passed as `#f', and the flag argument is
;;>   a `<', `while', or `until' symbol for ranges specified with "..<",
;;>   ".. while" and ".. until".  These functions are available for
;;>   implementing new iteration constructs, for example:
;;>     => (define (in-values producer)
;;>          (collect-iterator (call-with-values producer list)))
;;>     => (list-of x [x <- in-values (thunk (values 1 2 3))])
;;>     (1 2 3)
;;>   The return value that specifies an iteration is a list of four items:
;;>   1. the initial state value;
;;>   2. a `step' function that gets a state and returns the next one;
;;>   3. a predicate for the end state (#f for none);
;;>   4. a function that computes a value from the state variable.
;;>   But usually the functions are more convenient.
;;>
;;>   Finally, remember that you can return `collect-final' as the value to
;;>   terminate any iteration.

;; ----------------------------------------------------------------------------
;;>>... Convenient printing

;;>> *echo-display-handler* [h]
;;>> *echo-write-handler*   [h]
;;>   Currently, Racket's I/O can be customized only on a per port basis.
;;>   This means that installing the object printing generic later will
;;>   change only the standard ports, and for new ports a handleres should
;;>   always be installed.  This means that `echos' will not work with
;;>   objects since it uses a new port -- so use these parameters to allow
;;>   to change them later to the Swindle printer.
(define* *echo-display-handler* (make-parameter display))
(define* *echo-write-handler* (make-parameter write))

;;>> (echo arg ...)
;;>   This is a handy printout utility that offers an alternative approach
;;>   to `printf'-like output (it's a syntax, but it can be used as a
;;>   regular function too, see below).  When applied, it simply prints its
;;>   arguments one by one, using certain keywords to control its behavior:
;;>   * :>e     - output on the current-error-port;
;;>   * :>o     - output on the current-output-port (default);
;;>   * :>s     - accumulate output in a string which is the return value
;;>               (string output sets `:n-' as default (unless
;;>               pre-specified));
;;>   * :> p    - output on the given port `p', or a string if `#f';
;;>   * :>> o   - use `o', a procedure that gets a value and a port, as the
;;>               output handler (the procedure can take one value and
;;>               display it on the current output port);
;;>   * :d      - use `display' output (default);
;;>   * :w      - use `write' output;
;;>   * :d1 :w1 - change to a `display' or `write' output just for the next
;;>               argument;
;;>   * :s-     - no spaces between arguments;
;;>   * :s+     - add spaces between arguments (default);
;;>   * :n-     - do not print a final newline;
;;>   * :n+     - terminate the output with a newline (default);
;;>   * :n      - output a newline now;
;;>   * : or :: - avoid a space at this point;
;;>   * :\{     - begin a list construct (see below).
;;>   Keywords that require additional argument are ignored if no argument
;;>   is given.
;;>
;;>   Recursive processing of a list begins with a `:\{' and ends with a
;;>   `:\}' (which can be simpler if `read-curly-brace-as-paren' is off).
;;>   Inside a list context, values are inspected and any lists cause
;;>   iteration for all elements.  In each iteration, all non-list arguments
;;>   are treated normally, but lists are dissected and a single element is
;;>   printed in each step, terminating when the shortest list ends (and
;;>   repeating a last `dotted' element of a list):
;;>     => (define abc '(a b c))
;;>     => (echo :\{ "X" abc :\})
;;>     X a X b X c
;;>     => (echo :\{ "X" abc '(1 2 3 4) :\})
;;>     X a 1 X b 2 X c 3
;;>     => (echo :\{ "X" abc '(1 . 2) :\})
;;>     X a 1 X b 2 X c 2
;;>   Inside a list context, the `:^' keyword can be used to stop this
;;>   iteration if it is the last:
;;>     => (echo :s- :\{ abc :^ ", " :\})
;;>     a, b, c
;;>   Nesting of lists is also simple, following these simple rules, by
;;>   nesting the `:\{' ... `:\}' construct:
;;>     => (echo :s- :\{ "<" :\{ '((1 2) (3 4 5) 6 ()) :^ "," :\} ">"
;;>                      :^ "-" :\})
;;>     <1,2>-<3,4,5>-<6>-<>
;;>   Note that this example is similar to the CL `format':
;;>     (format t "~{<~{~a~^,~}>~^-~}" '((1 2) (3 4 5) 6 ()))
;;>   except that `echo' treats a dotted element (a non-list in this case)
;;>   as repeating as needed.
;;>
;;>   There are two additional special keywords that are needed only in
;;>   uncommon situations:
;;>   * :k-  - turn off keyword processing
;;>   * :k+  - turn keyword processing on
;;>   Usually, when `echo' is used, it is processed by a macro that detects
;;>   all keywords, even if there is a locally bound variable with a keyword
;;>   name.  This means that keywords are only ones that are syntactically
;;>   so, not expressions that evaluate to keywords.  The two cases where
;;>   this matters are -- when `echo' is used for its value (using it as a
;;>   value, not in a head position) no processing is done so all keywords
;;>   will just get printed; and when `echo' is used in a context where a
;;>   variable has a keyword name and you want to use its value (which not a
;;>   great idea anyway, so there is no way around it).  The first case is
;;>   probably more common, so the variable `echo:' is bound to a special
;;>   value that will force treating the next value as a keyword (if it
;;>   evaluates to one) -- it can also be used to turn keyword processing on
;;>   (which means that all keyword values will have an effect).  Here is a
;;>   likely examples where `echo:' should be used:
;;>     => (define (echo-values vals)
;;>          (apply echo "The given values are:" echo: :w vals))
;;>     => (echo-values '("a" "b" "c"))
;;>     The given values are: "a" "b" "c"
;;>     => (echo-values '(:a :b :c))
;;>     The given values are: :a :b :c
;;>   And here are some tricky examples:
;;>     => (echo :>s 2)
;;>     "2"
;;>     => (define e echo)                 ; `e' is the real `echo' function
;;>     => (e :>s 2)                       ; no processing done here
;;>     :>s 2
;;>     => (e echo: :>s 2)                 ; explicit key
;;>     "2"
;;>     => (e echo: :k+ :>s 2)             ; turn on keywords
;;>     "2"
;;>     => (let ([:>s 1]) (echo :>s 2))    ; `:>s' was processed by `echo'
;;>     "2"
;;>     => (let ([:>s 1]) (e :>s 2))       ; `:>s' was not processed
;;>     1 2
;;>     => (let ([:>s 1]) (e echo: :>s 2)) ; `:>s' is not a keyword here!
;;>     1 2
;;>     => (let ([:>s 1]) (echo echo: :>s 2)) ; `echo:' not needed
;;>     "2"
;;>
;;>   Finally, it is possible to introduce new keywords to `echo'.  This is
;;>   done by calling it with the `:set-user' keyword, which expects a
;;>   keyword to attach a handler to, and the handler itself.  The handler
;;>   can be a simple value or a keyword that will be used instead:
;;>     => (echo :set-user :foo "foo")
;;>     => (echo 1 :foo 2)
;;>     1 foo 2
;;>     => (echo :set-user :foo :n)
;;>     => (echo 1 :foo 2)
;;>     1
;;>     2
;;>   The `:set-user' keyword can appear with other arguments, it has a
;;>   global effect in any case:
;;>     => (echo 1 :foo :set-user :foo "FOO" 2 :foo 3
;;>              :set-user :foo "bar" :foo 4)
;;>     1
;;>     2 FOO 3 bar 4
;;>     => (echo 1 :foo 2)
;;>     1 bar 2
;;>   If the handler is a function, then when this keyword is used, the
;;>   function is applied on arguments pulled from the remaining `echo'
;;>   arguments that follow (if the function can get any number of
;;>   arguments, then all remaining arguments are taken).  The function can
;;>   work in two ways: (1) when it is called, the `current-output-port'
;;>   will be the one that `echo' currently prints to, so it can just print
;;>   stuff; (2) if the function returns a list (or a single value which is
;;>   not `#f' or `void'), then these values will be used instead of the
;;>   taken arguments.  Some examples:
;;>     => (echo :set-user :foo (thunk "FOO") 1 :foo 2)
;;>     1 FOO 2
;;>     => (echo :set-user :add1 add1 1 :add1 2)
;;>     1 3
;;>     => (echo :set-user :+1 (lambda (n) (list n '+1= (add1 n))) :+1 2)
;;>     2 +1= 3
;;>     => (echo :set-user :<> (lambda args (append '("<") args '(">")))
;;>              :<> 1 2 3)
;;>     < 1 2 3 >
;;>   Care should be taken when user keywords are supposed to handle other
;;>   keywords -- the `echo:' tag will usually be among the arguments except
;;>   when `:k+' was used and an argument value was received.  This exposes
;;>   the keyword treatment hack and might change in the future.
;;>
;;>   To allow user handlers to change settings temporarily, there are
;;>   `:push' and `:pop' keywords that will save and restore the current
;;>   state (space and newline flags, output type and port etc).  For
;;>   example:
;;>     => (echo :set-user :@
;;>              (lambda (l)
;;>                (echo-quote
;;>                 list :push :s- :\{ "\"" l "\"" :^ ", " :\} :pop)))
;;>     => (echo 1 :@ '(2 3 4) 5)
;;>     1 "2", "3", "4" 5
;;>   The above example shows another helper tool -- the `echo-quote'
;;>   syntax: `(echo-quote head arg ...)' will transform into `(head ...)',
;;>   where keyword arguments are prefix with the `echo:' tag.  Without it,
;;>   things would look much worse.
;;>
;;>   In addition to `:set-user' there is an `:unset-user' keyword which
;;>   cancels a keyword handler.  Note that built-in keywords cannot be
;;>   overridden or unset.

;;>> (echo-quote head arg ...) [h]
;;>   This macro will result in `(head arg ...)', where all keywords in the
;;>   argument list are preceded with the `echo:' tag.  It is a convenient
;;>   form to use for defining new echo keyword handlers.
(defsyntax* (echo-quote stx)
  (define (process args)
    (syntax-case args ()
      [() #'()]
      [(x . more) (with-syntax ([more (process #'more)])
                    (if (syntax-keyword? #'x)
                      ;; `datum' protects from using a local binding
                      #'(echo: (#%datum . x) . more) #'(x . more)))]
      [x #'x])) ; only in case of (echo ... . x)
  (syntax-case stx ()
    [(_ head . args) (quasisyntax/loc stx (head . #,(process #'args)))]))

(provide (rename echo-syntax echo))
(defsyntax (echo-syntax stx)
  (syntax-case stx ()
    [(_ . args) (syntax/loc stx (echo-quote echo . args))]
    [_ #'echo]))

;; A table for user-defined keywords
(define echo-user-table (make-hash-table))

;; Make an echo keyword handler for a given procedure.  The handler gets the
;; current list of arguments and returns the new list of arguments.
(define (make-echo-handler keyword proc)
  (let* ([arity (procedure-arity proc)]
         [at-least (and (arity-at-least? arity)
                        (arity-at-least-value arity))]
         [required (or at-least arity)])
    (unless (integer? required)
      (error 'echo "handler function for `~.s' has bad arity" keyword))
    (lambda (args)
      (if (< (length args) required)
        (error 'echo "user-keyword `~.s' didn't get enough arguments" keyword)
        (let*-values ([(proc-args rest-args)
                       (if at-least
                         (values args '())
                         (let loop ([rest args] [args '()] [n required])
                           (if (zero? n)
                             (values (reverse args) rest)
                             (loop (cdr rest) (cons (car rest) args)
                                   (sub1 n)))))]
                      [(result) (apply proc proc-args)])
          (cond [(list? result) (append result rest-args)]
                [(and result (not (void? result)))
                 (if (keyword? result)
                   (list* echo: result rest-args) (cons result rest-args))]
                [else rest-args]))))))

(define (echo . args)
  (define break: "break:")
  (define call:  "call:")
  (let ([printer (*echo-display-handler*)] [out (current-output-port)]
        [spaces? #t] [newline? 'x] [first? #t] [str? #f] [keys? #f]
        [states '()])
    (define (getarg) (begin0 (car args) (set! args (cdr args))))
    (define (push-state!)
      (set! states (cons (list printer out spaces? newline? first? str? keys?)
                         states)))
    (define (pop-state!)
      (if (null? states)
        (error 'echo "tried to restore a state, but none saved")
        (let ([s (car states)])
          (set! states (cdr states))
          (set!-values (printer out spaces? newline? first? str? keys?)
                       (apply values s)))))
    (define (set-out! arg)
      (set! out (or arg (open-output-string)))
      (set! str? (not arg))
      (unless (output-port? out)
        (error 'echo "expected an output-port or #f, given ~e" out)))
    (define (printer1! hparam)
      (unless (or (null? args) (eq? echo: (car args)))
        (let ([p (hparam)])
          (unless (eq? printer p)
            (let ([v (getarg)] [op printer])
              (set! printer p)
              (set! args (list* v echo: :>> op args)))))))
    (define (process-list)
      (define level 1)
      (define ((do-lists args))
        ;; this returns a thunk so the whole thing is not expanded in one shot
        (let loop ([args args] [cars '()] [cdrs '()] [last? '?])
          (if (null? args)
            (reverse
             (if last? cars (list* (do-lists (reverse cdrs)) call: cars)))
            (let* ([1st (car args)] [p? (pair? 1st)])
              (if (and last? (eq? 1st break:))
                (reverse cars)
                (if (null? 1st)
                  '()
                  (loop (cdr args)
                        (if (eq? 1st break:)
                          cars (cons (if p? (car 1st) 1st) cars))
                        (cons (if p? (cdr 1st) 1st) cdrs)
                        (if p?
                          (or (eq? last? #t) (null? (cdr 1st)))
                          last?))))))))
      (let loop ([l-args '()])
        (define (pop-key-tags)
          (when (and (pair? l-args) (eq? echo: (car l-args)))
            (set! l-args (cdr l-args)) (pop-key-tags)))
        (when (null? args)
          (error 'echo "found a `~.s' with no matching `~.s'" :\{ :\}))
        (let ([arg (getarg)])
          (define (next) (loop (cons arg l-args)))
          (cond
           [(eq? arg echo:) (set! keys? (or keys? 'just-one)) (next)]
           [(and keys? (keyword? arg))
            (unless (eq? keys? #t) (set! keys? #f))
            (case arg
              [(:\})
               (set! level (sub1 level))
               (if (zero? level)
                 (begin
                   (pop-key-tags)
                   (set! args (append ((do-lists (reverse l-args))) args)))
                 (next))]
              [(:\{)
               (set! level (add1 level)) (next)]
              [(:^)
               (when (eq? 1 level) (set! arg break:) (pop-key-tags))
               (next)]
              [else (next)])]
           [else (next)]))))
    (let loop ()
      (unless (null? args)
        (let ([arg (getarg)])
          (cond
           [(eq? arg call:) (set! args (append ((getarg)) args))]
           [(eq? arg echo:) (set! keys? (or keys? 'just-one))]
           [(and keys? (keyword? arg))
            (unless (eq? keys? #t) (set! keys? #f))
            (case arg
              [(:>e)    (set-out! (current-error-port))]
              [(:>o)    (set-out! (current-output-port))]
              [(:>s)    (set-out! #f)]
              [(:>)     (unless (or (null? args) (eq? echo: (car args)))
                          (set-out! (getarg)))]
              [(:>>)    (unless (or (null? args) (eq? echo: (car args)))
                          (let ([p (getarg)])
                            (set! printer (if (eq? 1 (procedure-arity p))
                                            (lambda (x _) (p x)) p))))]
              [(:d)     (set! printer (*echo-display-handler*))]
              [(:w)     (set! printer (*echo-write-handler*))]
              [(:d1)    (printer1! *echo-display-handler*)]
              [(:w1)    (printer1! *echo-write-handler*)]
              [(:s-)    (set! spaces? (and spaces? (not first?) 'just-one))]
              [(:s+)    (set! spaces? #t)]
              [(:n-)    (set! newline? #f)]
              [(:n+)    (set! newline? #t)]
              [(:n)     (newline out) (set! first? #t)]
              [(:: :)   (set! first? #t)]
              [(:push)  (push-state!)]
              [(:pop)   (pop-state!)]
              [(:\{)    (process-list)]
              [(:\} :^) (error 'echo "unexpected list keyword `~.s'" arg)]
              [(:k-)    (set! keys? #f)]
              [(:k+)    (set! keys? #t)]
              [(:set-user :unset-user)
               (let loop ([keyword echo:])
                 (if (null? args)
                   (error 'echo "expecting a keyword+handler after `~.s'" arg)
                   (let ([x (getarg)])
                     (cond
                      [(eq? keyword echo:) (loop x)]
                      [(not (keyword? keyword))
                       (error 'echo "got a `~.s' with a non-keyword `~.s'"
                              arg keyword)]
                      [(eq? arg :unset-user)
                       (hash-table-put! echo-user-table keyword #f)]
                      [(eq? x echo:) (loop keyword)]
                      [else (let ([handler (if (procedure? x)
                                             (make-echo-handler keyword x) x)])
                              (hash-table-put! echo-user-table keyword handler)
                              (when (and newline? (not (eq? #t newline))
                                         (null? args))
                                (set! newline? #f)))]))))]
              [else
               (let ([user (hash-table-get echo-user-table arg (thunk #f))])
                 (if user
                   (set! args
                         (cond [(procedure? user) (user args)]
                               [(keyword? user) (list* echo: user args)]
                               [else (cons user args)]))
                   (error 'echo "unknown keyword: `~.s'" arg)))])]
           [first?  (printer arg out) (set! first? #f)]
           [spaces? (display " " out) (printer arg out)
                    (unless (eq? spaces? #t) (set! spaces? #f))]
           [else (printer arg out)])
          (loop))))
    (when (and newline? (or (not str?) (eq? newline? #t))) (newline out))
    (when str? (get-output-string out))))

;;>> (echos arg ...)
;;>   Just uses `echo' with `:>s'.
(provide (rename echos-syntax echos))
(defsyntax (echos-syntax stx)
  (syntax-case stx ()
    [(_ . args) (syntax/loc stx (echo-syntax :>s . args))]
    [_ #'echos]))
(define (echos . args)
  (echo echo: :>s . args))

;;>> echo:
;;>   See the `echo' description for usage of this value.
(define* echo: "echo:")

;; ----------------------------------------------------------------------------
;; Simple macros

;;>> (named-lambda name args body ...)
;;>   Like `lambda', but the name is bound to itself in the body.
(defsubst* (named-lambda name args . body)
  (letrec ([name (lambda args . body)]) name))

;;>> (thunk body ...)
;;>   Returns a procedure of no arguments that will have the given body.
(defsubst* (thunk body ...) (lambda () body ...))

;;>> (while condition body ...)
;;>> (until condition body ...)
;;>   Simple looping constructs.
(defsubst* (while cond body ...)
  (let loop () (when cond (begin body ... (loop)))))
(defsubst* (until cond body ...)
  (while (not cond) body ...))

;;>> (dotimes (i n) body ...)
;;>   Loop `n' times, evaluating the body when `i' is bound to 0,1,...,n-1.
(defsubst* (dotimes [i n] body0 body ...)
  (let ([n* n])
    (let loop ([i 0])
      (when (< i n*) body0 body ... (loop (add1 i))))))

;;>> (dolist (x list) body ...)
;;>   Loop with `x' bound to elements of `list'.
(defsubst* (dolist [x lst] body0 body ...)
  (for-each (lambda (x) body0 body ...) lst))

;;>> (no-errors body ...)
;;>   Execute body, catching all errors and returning `#f' if one occurred.
(defsubst* (no-errors body ...)
  (with-handlers ([void (lambda (x) #f)]) body ...))
;;>> (no-errors* body ...)
;;>   Execute body, catching all errors and returnsthe exception if one
;;>   occured.
(defsubst* (no-errors* body ...)
  (with-handlers ([void identity]) body ...))

;;>> (regexp-case string clause ...)
;;>   Try to match the given `string' against several regexps.  Each clause
;;>   has one of the following forms:
;;>   * (re => function): if `string' matches `re', apply `function' on the
;;>     resulting list.
;;>   * ((re args ...) body ...): if `string' matches `re', bind the tail of
;;>     results (i.e, excluding the whole match result) to the given
;;>     arguments and evaluate the body.  The whole match result (the first
;;>     element of `regexp-match') is bound to `match'.
;;>   * (re body ...): if `string' matches `re', evaluate the body -- no
;;>     match results are available.
;;>   * (else body ...): should be the last clause which is evaluated if all
;;>     previous cases failed.
(defsyntax* (regexp-case stx)
  (define (do-clause c)
    (syntax-case c (else base-else => base-=>)
      [(else body ...) c]
      [(base-else body ...) #'(else body ...)]
      [(re => func) #'((regexp-match re s) => (lambda (r) (apply func r)))]
      [(re base-=> func) #'((regexp-match re s) => (lambda (r) (apply func r)))]
      [((re . args) body ...)
       #`((regexp-match re s) =>
          (lambda (r)
            (apply (lambda (#,(datum->syntax-object c 'match c) . args)
                     body ...)
                   r)))]
      [(re body ...) #'((regexp-match re s) body ...)]))
  (syntax-case stx ()
    [(_ str clause ...)
     #`(let ([s str])
         (cond #,@(map do-clause (syntax->list #'(clause ...)))))]))