/usr/share/racket/pkgs/swindle/extra.rkt is in racket-common 6.3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 | #lang s-exp swindle/turbo
;;> This module defines some additional useful functionality which requires
;;> Swindle.
(require swindle/clos)
;;; ---------------------------------------------------------------------------
;;; A convenient `defstruct'
;; This makes it possible to create Racket structs using Swindle's `make' and
;; keyword arguments.
(define struct-to-slot-names (make-hash-table))
(hash-table-put! struct-to-slot-names <struct> '())
(add-method initialize (method ([s <struct>] initargs) ???))
(define (struct-type->class* stype maker slots)
(let* ([this (struct-type->class stype)]
[superslots (let ([s (class-direct-supers this)])
(and (pair? s) (null? (cdr s))
(hash-table-get
struct-to-slot-names (car s) (thunk #f))))])
(when superslots
(when (some (lambda (x) (memq x superslots)) slots)
(error 'defstruct "cannot redefine slot names"))
(let ([allslots (append superslots slots)])
(hash-table-put! struct-to-slot-names this slots)
(add-method allocate-instance
(let ([???s (build-list (length allslots) (lambda _ ???))])
(method ([class = this] initargs) (maker . ???s))))
(add-method initialize
(let ([none "-"]
[keys (build-list
(length slots)
(lambda (n) (list (symbol-append ': (nth slots n)) n)))]
[setter! (5th (call-with-values
(thunk (struct-type-info stype))
list))])
(method ([obj this] initargs)
(for-each (lambda (k)
(let ([v (getarg initargs (1st k) none)])
(unless (eq? none v)
(setter! obj (2nd k) v))))
keys)
(call-next-method))))))
this))
;;>> (defstruct <struct-name> ([super]) slot ...)
;;> This is just a Swindle-style syntax for one of
;;> (define-struct struct-name (slot ...) (make-inspector))
;;> (define-struct (struct-name super) (slot ...) (make-inspector))
;;> with an additional binding of <struct-name> to the Swindle class that
;;> is computed by `struct-type->class'. The `(make-inspector)' is needed
;;> to make this a struct that we can access information on. Note that in
;;> method specifiers, the `struct:foo' which is defined by
;;> `define-struct' can be used just like `<foo>'. What all this means is
;;> that you can use Racket structs if you just want Swindle's generic
;;> functions, but use built in structs that are more efficient since they
;;> are part of the implementation. For example:
;;>
;;> => (defstruct <foo> () x y)
;;> => <foo>
;;> #<primitive-class:foo>
;;> => (defmethod (bar [x <foo>]) (foo-x x))
;;> => (bar (make-foo 1 2))
;;> 1
;;> => (defmethod (bar [x struct:foo]) (foo-x x))
;;> => (bar (make-foo 3 4))
;;> 3
;;> => (generic-methods bar)
;;> (#<method:bar:foo>)
;;> => (defstruct <foo2> (foo) z)
;;> => (bar (make-foo2 10 11 12))
;;> 10
;;>
;;> To make things even easier, the super-struct can be written using a
;;> "<...>" syntax which will be stripped, and appropriate methods are
;;> added to `allocate-instance' and `initialize' so structs can be built
;;> using keywords:
;;>
;;> => (defstruct <foo3> (<foo>) z)
;;> => (foo-x (make <foo3> :z 3 :y 2 :x 1))
;;> 1
;;> => (foo3-z (make <foo3> :z 3 :y 2 :x 2))
;;> 3
;;>
;;> The `<struct-name>' identifier *must* be of this form -- enclosed in
;;> "<>"s. This restriction is due to the fact that defining a Racket
;;> struct `foo', makes `foo' bound as a syntax object to something that
;;> cannot be used in any other way.
(defsyntax* (defstruct stx)
(define <>-re #rx"^<(.*)>$")
(define (<>-id? id)
(and (identifier? id)
(regexp-match? <>-re (symbol->string (syntax-e id)))))
(define (doit name super slots)
(let* ([str (regexp-replace <>-re (symbol->string (syntax-e name)) "\\1")]
[name-sans-<> (datum->syntax-object name (string->symbol str) name)]
[struct:name (datum->syntax-object
name (string->symbol (concat "struct:" str)) name)]
[make-struct (datum->syntax-object
name (string->symbol (concat "make-" str)) name)]
[super (and super (datum->syntax-object
super (string->symbol
(regexp-replace
<>-re (symbol->string (syntax-e super))
"\\1"))
super))])
(quasisyntax/loc stx
(begin
(define-struct #,(if super #`(#,name-sans-<> #,super) name-sans-<>)
#,slots (make-inspector))
(define #,name
(struct-type->class* #,struct:name #,make-struct '#,slots))))))
(syntax-case stx ()
[(_ name (s) slot ...) (<>-id? #'name) (doit #'name #'s #'(slot ...))]
[(_ name ( ) slot ...) (<>-id? #'name) (doit #'name #f #'(slot ...))]
[(_ name more ...) (not (<>-id? #'name))
(raise-syntax-error #f "requires a name that looks like \"<...>\""
stx #'name)]))
;;; ---------------------------------------------------------------------------
;;; Convenient macros
(defsyntax process-with-slots
(syntax-rules ()
[(_ obj () (bind ...) body ...)
(letsubst (bind ...) body ...)]
[(_ obj ((id slot) slots ...) (bind ...) body ...)
(process-with-slots
obj (slots ...) (bind ... (id (slot-ref obj slot))) body ...)]
[(_ obj (id slots ...) (bind ...) body ...)
(process-with-slots
obj (slots ...) (bind ... (id (slot-ref obj 'id))) body ...)]))
;;>> (with-slots obj (slot ...) body ...)
;;> Evaluate the body in an environment where each `slot' is defined as a
;;> symbol-macro that accesses the corresponding slot value of `obj'.
;;> Each `slot' is either an identifier `id' which makes it stand for
;;> `(slot-ref obj 'id)', or `(id slot)' which makes `id' stand for
;;> `(slot-ref obj slot)'.
(defsubst* (with-slots obj (slot ...) body0 body ...)
(process-with-slots obj (slot ...) () body0 body ...))
(defsyntax process-with-accessors
(syntax-rules ()
[(_ obj () (bind ...) body ...)
(letsubst (bind ...) body ...)]
[(_ obj ((id acc) accs ...) (bind ...) body ...)
(process-with-accessors
obj (accs ...) (bind ... (id (acc obj))) body ...)]
[(_ obj (id accs ...) (bind ...) body ...)
(process-with-accessors
obj (accs ...) (bind ... (id (id obj))) body ...)]))
;;>> (with-accessors obj (accessor ...) body ...)
;;> Evaluate the body in an environment where each `accessor' is defined
;;> as a symbol-macro that accesses `obj'. Each `accessor' is either an
;;> identifier `id' which makes it stand for `(id obj)', or
;;> `(id accessor)' which makes `id' stand for `(accessor obj);.
(defsubst* (with-accessors obj (acc ...) body0 body ...)
(process-with-accessors obj (acc ...) () body0 body ...))
;;; ---------------------------------------------------------------------------
;;; An "as" conversion operator.
;;>> (as class obj)
;;> Converts `obj' to an instance of `class'. This is a convenient
;;> generic wrapper around Scheme conversion functions (functions that
;;> look like `foo->bar'), but can be used for other classes too.
(defgeneric* as (class object))
(defmethod (as [c <class>] [x <top>])
(if (instance-of? x c)
x
(error 'as "can't convert ~e -> ~e; given: ~e." (class-of x) c x)))
;;>> (add-as-method from-class to-class op ...)
;;> Adds a method to `as' that will use the function `op' to convert
;;> instances of `from-class' to instances of `to-class'. More operators
;;> can be used which will make this use their composition. This is used
;;> to initialize `as' with the standard Scheme conversion functions.
(define* (add-as-method from to . op)
(let ([op (apply compose op)])
(add-method as (method ([c = to] [x from]) (op x)))))
;; Add Scheme primitives.
(for-each
(lambda (args)
(apply (lambda (from to . ops)
(add-as-method from to . ops)
(let ([from* (cond [(eq? from <string>) <immutable-string>]
[(eq? from <bytes>) <immutable-bytes>]
[else #f])])
(when from* (add-as-method from* to . ops))))
args))
`((,<immutable-string> ,<string> ,string-copy)
(,<string> ,<immutable-string> ,string->immutable-string)
(,<string> ,<symbol> ,string->symbol)
(,<symbol> ,<string> ,symbol->string)
(,<string> ,<keyword> ,string->keyword)
(,<keyword> ,<string> ,keyword->string)
(,<exact> ,<inexact> ,exact->inexact)
(,<inexact> ,<exact> ,inexact->exact)
(,<number> ,<string> ,number->string)
(,<string> ,<number> ,string->number)
(,<char> ,<string> ,string)
(,<char> ,<integer> ,char->integer)
(,<integer> ,<char> ,integer->char)
(,<string> ,<list> ,string->list)
(,<list> ,<string> ,list->string)
(,<vector> ,<list> ,vector->list)
(,<list> ,<vector> ,list->vector)
(,<number> ,<integer> ,inexact->exact ,round)
(,<rational> ,<integer> ,inexact->exact ,round)
(,<struct> ,<vector> ,struct->vector)
(,<string> ,<regexp> ,regexp)
(,<regexp> ,<string> ,object-name)
(,<immutable-bytes> ,<bytes> ,bytes-copy)
(,<bytes> ,<immutable-bytes> ,bytes->immutable-bytes)
(,<bytes> ,<list> ,bytes->list)
(,<list> ,<bytes> ,list->bytes)
(,<bytes> ,<byte-regexp> ,byte-regexp)
(,<byte-regexp> ,<bytes> ,object-name)
(,<string> ,<bytes> ,string->bytes/utf-8)
(,<bytes> ,<string> ,bytes->string/utf-8)
(,<string> ,<path> ,string->path)
(,<path> ,<string> ,path->string)
(,<bytes> ,<path> ,bytes->path)
(,<path> ,<bytes> ,path->bytes)
;; Some weird combinations
(,<symbol> ,<number> ,string->number ,symbol->string)
(,<number> ,<symbol> ,string->symbol ,number->string)
(,<struct> ,<list> ,vector->list ,struct->vector)
(,<bytes> ,<number> ,string->number ,bytes->string/utf-8)
(,<number> ,<bytes> ,string->bytes/utf-8 ,number->string)
))
;;; ---------------------------------------------------------------------------
;;; Recursive equality.
;;>> (equals? x y)
;;> A generic that compares `x' and `y'. It has an around method that
;;> will stop and return `#t' if the two arguments are `equal?'. It is
;;> intended for user-defined comparison between any instances.
(defgeneric* equals? (x y))
(defaroundmethod (equals? [x <top>] [y <top>])
;; check this first in all cases
(or (equal? x y) (call-next-method)))
(defmethod (equals? [x <top>] [y <top>])
;; the default is false - the around method returns #t if they're equal?
#f)
;;>> (add-equals?-method class pred?)
;;> Adds a method to `equals?' that will use the given `pred?' predicate
;;> to compare instances of `class'.
(define* (add-equals?-method class pred?)
(add-method equals? (method ([x class] [y class]) (pred? x y))))
;;>> (class+slots-equals? x y)
;;> This is a predicate function (not a generic function) that will
;;> succeed if `x' and `y' are instances of the same class, and all of
;;> their corresponding slots are `equals?'. This is useful as a quick
;;> default for comparing simple classes (but be careful and avoid
;;> circularity problems).
(define* (class+slots-equals? x y)
(let ([xc (class-of x)] [yc (class-of y)])
(and (eq? xc yc)
(every (lambda (s)
(equals? (slot-ref x (car s)) (slot-ref y (car s))))
(class-slots xc)))))
;;>> (make-equals?-compare-class+slots class)
;;> Make `class' use `class+slots-equals?' for comparison with `equals?'.
(define* (make-equals?-compare-class+slots class)
(add-equals?-method class class+slots-equals?))
;;; ---------------------------------------------------------------------------
;;; Generic addition for multiple types.
;;>> (add x ...)
;;> A generic addition operation, initialized for some Scheme types
;;> (numbers (+), lists (append), strings (string-append), symbols
;;> (symbol-append), procedures (compose), and vectors). It dispatches
;;> only on the first argument.
(defgeneric* add (x . more))
;;>> (add-add-method class op)
;;> Add a method to `add' that will use `op' to add objects of class
;;> `class'.
(define* (add-add-method c op)
;; dispatch on first argument
(add-method add (method ([x c] . more) (apply op x more))))
(add-add-method <number> +)
(add-add-method <list> append)
(add-add-method <string> string-append)
(add-add-method <symbol> symbol-append)
(add-add-method <procedure> compose)
(defmethod (add [v <vector>] . more)
;; long but better than vectors->lists->append->vectors
(let* ([len (apply + (map vector-length (cons v more)))]
[vec (make-vector len)])
(let loop ([i 0] [v v] [vs more])
(dotimes [j (vector-length v)]
(set! (vector-ref vec (+ i j)) (vector-ref v j)))
(unless (null? vs) (loop (+ i (vector-length v)) (car vs) (cdr vs))))
vec))
;;; ---------------------------------------------------------------------------
;;; Generic len for multiple types.
;;>> (len x)
;;> A generic length operation, initialized for some Scheme types (lists
;;> (length), strings (string-length), vectors (vector-length)).
(defgeneric* len (x))
;;>> (add-len-method class op)
;;> Add a method to `len' that will use `op' to measure objects length for
;;> instances of `class'.
(define* (add-len-method c op)
(add-method len (method ([x c]) (op x))))
(add-len-method <list> length)
(add-len-method <string> string-length)
(add-len-method <vector> vector-length)
;;; ---------------------------------------------------------------------------
;;; Generic ref for multiple types.
;;>> (ref x indexes...)
;;> A generic reference operation, initialized for some Scheme types and
;;> instances. Methods are predefined for lists, vectors, strings,
;;> objects, hash-tables, boxes, promises, parameters, and namespaces.
(defgeneric* ref (x . indexes))
;;>> (add-ref-method class op)
;;> Add a method to `ref' that will use `op' to reference objects of class
;;> `class'.
(define* (add-ref-method c op)
(add-method ref (method ([x c] . indexes) (op x . indexes))))
(add-ref-method <list> list-ref)
(add-ref-method <vector> vector-ref)
(add-ref-method <string> string-ref)
(add-ref-method <object> slot-ref)
(add-ref-method <hash-table> hash-table-get)
(add-ref-method <box> unbox)
(add-ref-method <promise> force)
(defmethod (ref [p <parameter>] . _) (p))
(defmethod (ref [n <namespace>] . args)
(parameterize ([current-namespace n])
(apply namespace-variable-value args)))
;;; ---------------------------------------------------------------------------
;;; Generic set-ref! for multiple types.
;;>> (put! x v indexes)
;;> A generic setter operation, initialized for some Scheme types and
;;> instances. The new value comes first so it is possible to add methods
;;> to specialize on it. Methods are predefined for lists, vectors,
;;> strings, objects, hash-tables, boxes, parameters, and namespaces.
(defgeneric* put! (x v . indexes))
;;>> (add-put!-method class op)
;;> Add a method to `put!' that will use `op' to change objects of class
;;> `class'.
(define* (add-put!-method c op)
(add-method put! (method ([x c] v . indexes) (op x v . indexes))))
;;>> (set-ref! x indexes... v)
;;> This syntax will just translate to `(put! x v indexes...)'. It makes
;;> it possible to make `(set! (ref ...) ...)' work with `put!'.
(defsyntax* (set-ref! stx)
(syntax-case stx ()
[(_ x i ...)
(let* ([ris (reverse (syntax->list #'(i ...)))]
[idxs (reverse (cdr ris))]
[val (car ris)])
(quasisyntax/loc stx
(put! x #,val #,@(datum->syntax-object #'(i ...) idxs #'(i ...)))))]))
(define (put!-arg typename args)
(if (or (null? args) (pair? (cdr args)))
(if (null? args)
(error 'put! "got no index for a ~a argument" typename)
(error 'put! "got more than one index for a ~a argument ~e"
typename args))
(car args)))
#|
(defmethod (put! [l <list>] x . i_)
(list-set! l (put!-arg '<list> i_) x))
|#
(defmethod (put! [v <vector>] x . i_)
(vector-set! v (put!-arg '<vector> i_) x))
(defmethod (put! [s <string>] [c <char>] . i_)
(string-set! s (put!-arg '<string> i_) c))
(defmethod (put! [o <object>] x . s_)
(slot-set! o (put!-arg '<object> s_) x))
(defmethod (put! [h <hash-table>] x . k_)
(if (null? k_)
(error 'put! "got no index for a <hash-table> argument")
(hash-table-put! h (car k_) x)))
(add-put!-method <box> set-unbox!)
(defmethod (put! [p <parameter>] x . _)
(if (null? _)
(p x)
(error 'put! "got extraneous indexes for a <parameter> argument")))
(defmethod (put! [n <namespace>] x . v_)
(if (null? v_)
(error 'put! "got no index for a <namespace> argument")
(parameterize ([current-namespace n])
(apply namespace-set-variable-value! (car v_) x
(if (null? (cdr v_)) '() (list (cadr v_)))))))
;;; ---------------------------------------------------------------------------
;;>>... Generic-based printing mechanism
;;>> *print-level*
;;>> *print-length*
;;> These parameters control how many levels deep a nested data object
;;> will print, and how many elements are printed at each level. `#f'
;;> means no limit. The effect is similar to the corresponding globals in
;;> Lisp. Only affects printing of container objects (like lists, vectors
;;> and structures).
(define* *print-level* (make-parameter 6))
(define* *print-length* (make-parameter 20))
;; grab the builtin write/display handlers
(define-values (mz:write mz:display)
(let ([p (open-output-bytes)])
(values (port-write-handler p) (port-display-handler p))))
;;>> (print-object obj esc? port)
;;> Prints `obj' on `port' using the above parameters -- the effect of
;;> `esc?' being true is to use a `write'-like printout rather than a
;;> `display'-like printout when it is false. Primitive Scheme values are
;;> printed normally, Swindle objects are printed using the un-`read'-able
;;> "#<...>" sequence unless a method that handles them is defined. For
;;> this printout, objects with a `name' slot are printed using that name
;;> (and their class's name).
;;>
;;> Warning: this is the method used for user-interaction output, errors
;;> etc. Make sure you only define reliable methods for it.
(defgeneric* print-object (object esc? port))
(defmethod (print-object o esc? port)
(mz:display "#" port)
(mz:display (class-name (class-of o)) port))
(defmethod (print-object [o <builtin>] esc? port)
((if esc? mz:write mz:display) o port))
(define printer:too-deep "#?#")
(define printer:too-long "...")
;; use a single implementation for both pairs and mpairs, punctuation
;; shorthands for pairs only
(defmethod (print-object [o <pair>] esc? port)
(let ([punct (and (pair? (cdr o)) (null? (cddr o))
(assq (car o)
'([quote "'"] [quasiquote "`"] [unquote ","]
[unquote-splicing ",@"]
[syntax "#'"] [quasisyntax "#`"] [unsyntax "#,"]
[unsyntax-splicing "#,@"])))])
(if punct
(begin (mz:display (cadr punct) port) (print-object (cadr o) esc? port))
(print-pair o esc? port "(" ")" pair? car cdr))))
(defmethod (print-object [o <mutable-pair>] esc? port)
(print-pair o esc? port "{" "}" mpair? mcar mcdr))
(define (print-pair p esc? port open close pair? car cdr)
(define level (*print-level*))
(if (eq? level 0)
(mz:display printer:too-deep port)
(begin
(mz:display open port)
(if (eq? (*print-length*) 0)
(mz:display printer:too-long port)
(parameterize ([*print-level* (and level (sub1 level))])
(print-object (car p) esc? port)
(do ([p (cdr p) (if (pair? p) (cdr p) '())]
[n (sub1 (or (*print-length*) 0)) (sub1 n)])
[(or (null? p)
(and (zero? n)
(begin (mz:display " " port)
(mz:display printer:too-long port)
#t)))]
(if (pair? p)
(begin (mz:display " " port) (print-object (car p) esc? port))
(begin (mz:display " . " port) (print-object p esc? port))))))
(mz:display close port))))
(defmethod (print-object [o <vector>] esc? port)
(define level (*print-level*))
(cond [(eq? level 0) (mz:display printer:too-deep port)]
[(zero? (vector-length o)) (mz:display "#()" port)]
[else (mz:display "#(" port)
(if (eq? (*print-length*) 0)
(mz:display printer:too-long port)
(parameterize ([*print-level* (and level (sub1 level))])
(print-object (vector-ref o 0) esc? port)
(let ([len (if (*print-length*)
(min (vector-length o) (*print-length*))
(vector-length o))])
(do ([i 1 (add1 i)]) [(>= i len)]
(mz:display " " port)
(print-object (vector-ref o i) esc? port))
(when (< len (vector-length o))
(mz:display " " port)
(mz:display printer:too-long port)))))
(mz:display ")" port)]))
;;>> (name-sans-<> name)
;;> Given a string or symbol for name, return a string where the outermost
;;> set of angle brackets have been stripped if they are present. This is
;;> handy if you are writing your own print-object methods.
(define <>-re #rx"^<(.*)>$")
(define* (name-sans-<> name)
(cond [(string? name) (regexp-replace <>-re name "\\1")]
[(symbol? name) (regexp-replace <>-re (symbol->string name) "\\1")]
[(eq? ??? name) "???"]
[else name]))
;; Take care of all <object>s with a `name' slot
(defmethod (print-object (o <object>) esc? port)
(let* ([c (class-of o)]
[cc (class-of c)]
[(name x) (name-sans-<> (slot-ref x 'name))])
(if (and (assq 'name (class-slots c)) (assq 'name (class-slots cc)))
(begin (mz:display "#<" port)
(mz:display (name c) port)
(mz:display ":" port)
(mz:display (name o) port)
(mz:display ">" port))
(call-next-method))))
;;>> (print-object-with-slots obj esc? port)
;;> This is a printer function that can be used for classes where the
;;> desired output shows slot values. Note that it is a simple function,
;;> which should be embedded in a method that is to be added to
;;> `print-object'.
(define* (print-object-with-slots o esc? port)
(define level (*print-level*))
(if (eq? level 0)
(mz:display printer:too-deep port)
(let ([class (class-of o)])
(mz:display "#<" port)
(mz:display (name-sans-<> (class-name class)) port)
(mz:display ":" port)
(parameterize ([*print-level* (and level (sub1 level))])
(do ([s (class-slots class) (cdr s)]
[n (or (*print-length*) -1) (sub1 n)])
[(or (null? s)
(and (zero? n)
(begin (mz:display " " port)
(mz:display printer:too-long port))))]
(let ([val (slot-ref o (caar s))])
(if (eq? ??? val)
(set! n (add1 n))
(begin (mz:display " " port)
(mz:display (caar s) port)
(mz:display "=" port)
(print-object val esc? port))))))
(mz:display ">" port))))
;; Add a hook to make <class> so it will initialize a printer if given
(defmethod :after (initialize [c <class>] initargs)
(let ([printer (or (getarg initargs :printer)
(and (getarg initargs :auto) #t))])
(when printer
(when (eq? #t printer) (set! printer print-object-with-slots))
(add-method print-object
(method ([x c] esc? port) (printer x esc? port))))))
;;>> (display-object obj [port])
;;>> (write-object obj [port])
;;> Used to display and write an object using `print-object'. Used as the
;;> corresponding output handler functions.
(define* (display-object obj &optional [port (current-output-port)])
(print-object obj #f port))
(define* (write-object obj &optional [port (current-output-port)])
(print-object obj #t port))
;;>> (object->string obj [esc? = #t])
;;> Convert the given `obj' to a string using its printed form.
(define* (object->string obj &optional [esc? #t])
(with-output-to-string
(thunk (print-object obj esc? (current-output-port)))))
;; Hack these to echo
(*echo-display-handler* display-object)
(*echo-write-handler* write-object)
;;>> (install-swindle-printer)
;;> In Racket, output is configurable on a per-port basis. Use this
;;> function to install Swindle's `display-object' and `write-object' on
;;> the current output and error ports whenever they are changed
;;> (`swindle' does that on startup). This makes it possible to see
;;> Swindle values in errors, when using `printf' etc.
(define* (install-swindle-printer)
(global-port-print-handler write-object)
(port-display-handler (current-output-port) display-object)
(port-display-handler (current-error-port) display-object)
(port-write-handler (current-output-port) write-object)
(port-write-handler (current-error-port) write-object))
;;; ---------------------------------------------------------------------------
;;>>... Simple matching
;;>> match-failure
;;> The result for a matcher function application that failed. You can
;;> return this value from a matcher function in a <matcher> so the next
;;> matching one will get invoked.
(define* match-failure "failure")
;;>> (matching? matcher value)
;;> The `matcher' argument is a value of any type, which is matched
;;> against the given `value'. For most values matching means being equal
;;> (using `equals?') to, but there are some exceptions: class objects
;;> are tested with `instance-of?', functions are used as predicates,
;;> literals are used with equals?, pairs are compared recursively and
;;> regexps are used with regexp-match.
(define* (matching? matcher value)
(cond [(class? matcher) (instance-of? value matcher)]
[(function? matcher) (matcher value)]
[(pair? matcher) (and (pair? value)
(matching? (car matcher) (car value))
(matching? (cdr matcher) (cdr value)))]
;; handle regexps - the code below relies on returning this result
[(regexp? matcher) (and (string? value)
(regexp-match matcher value))]
[else (equals? matcher value)]))
;;>> (let/match pattern value body ...)
;;> Match the `value' against the given `pattern', and evaluate the body
;;> on a success. It is an error for the match to fail. Variables that
;;> get bound in the matching process can be used in the body.
;;>
;;> The pattern specification has a complex syntax as follows:
;;> - simple values (not symbols) are compared with `matching?' above;
;;> - :x keywords are also used as literal values;
;;> - * is a wildcard that always succeeds;
;;> - ??? matches the `???' value;
;;> - (lambda ...) use the resulting closure value (for predicates);
;;> - (quote ...) use the contents as a simple value;
;;> - (quasiquote ...) same;
;;> - (V := P) assign the variable V to the value matched by P;
;;> - V for a variable name V that was not part of the
;;> pattern so far, this matches anything and binds V
;;> to the value -- the same as (V := *);
;;> - (! E) evaluate E, use the result as a literal value;
;;> - (!! E) evaluate E, continue matching only if it is true;
;;> - (V when E) same as (and V (!! E));
;;> - (and P ...) combine the matchers with and, can bind any
;;> variables in all parts;
;;> - (or P ...) combine the matchers with or, bound variables are
;;> only from the successful form;
;;> - (if A B C) same as (or (and A B) C);
;;> - (F => P) continue matching P with (F x) (where is x is the
;;> current matched object);
;;> - (V :: P ...) same as (and (! V) P...), useful for class forms
;;> like (<class> :: (foo => f) ...);
;;> - (make <class> ...) if the value is an instance of <class>, then
;;> continue by the `...' part which is a list of
;;> slot names and patterns -- a slot name is either
;;> :foo or 'foo, and the pattern will be matched
;;> against the contents of that slot in the original
;;> <class> instance;
;;> - ??? matches the unspecified value (`???' in tiny-clos)
;;> - (regexp R) convert R to a regexp and use that to match
;;> strings;
;;> - (regexp R P ...) like the above, but continue matching the result
;;> with `(P ...)' so it can bind variables to the
;;> result (something like `(regexp "a(x?)b" x y)'
;;> will bind `x' to the `regexp-match' result, and
;;> `y' to a match of the sub-regexp part);
;;> - (...) other lists - match the elements of a list
;;> recursively (can use a dot suffix for a "rest"
;;> arguments).
;;>
;;> Note that variable names match anything and bind the name to the result,
;;> except when the name was already seen -- where the previously bound
;;> value is used, allowing patterns where some parts should match the same
;;> value. (A name was `seen' if it was previously used in the pattern
;;> except on different branches of an `or' pattern.)
(defsyntax (make-matcher-form stx)
(define (re r)
;; Note: this inserts the _literal_ regexp in the code if it is a string.
(cond [(regexp? (syntax-e r)) r]
[(string? (syntax-e r)) (regexp (syntax-e r))]
[else #`(regexp #,r)]))
(define (loop x pattern vs body)
;; body always a delayed function that expects bindings
(syntax-case pattern (* ??? := ! !! when and or if => ::
make regexp quote quasiquote lambda)
[* ; wildcard
(body vs)]
[??? ; matches ???
#`(if (matching? ??? #,x) #,(body vs) match-failure)]
[(v := p) ; assign the variable V to the value matched by P
#`(let ([v #,x]) #,(loop #'v #'p (cons #'v vs) body))]
[v ; (V := *) if V is a symbol that was not already used
(and (identifier? #'v) (not (syntax-keyword? #'v))
(not (ormap (lambda (u) (bound-identifier=? #'v u)) vs)))
(loop x #'(v := *) vs body)]
[(! e) ; evaluate E and use it as a simple value
#`(if (matching? e x) #,(body vs) match-failure)]
[(!! e) ; evaluate E and succeed only if it is true
#`(if e #,(body vs) match-failure)]
[(p when e) ; => (and P (!! E))
#`(_ x (and p (!! e)) #,(body vs))]
;; and/or
[(and) (body vs)]
[(or) #'match-failure]
[(and p) (loop x #'p vs body)]
[(or p) (loop x #'p vs body)]
[(and p1 p2 ...) (loop x #'p1 vs
(lambda (vs) (loop x #'(and p2 ...) vs body)))]
[(or p1 p2 ...) #`(let ([tmp #,(loop x #'p1 vs body)])
(if (eq? tmp match-failure)
#,(loop x #'(or p2 ...) vs body)
tmp))]
[(if a b c) ; => (or (and A B) C)
(loop x #'(or (and a b) c) vs body)]
[(f => p) ; continue matching P with (F x)
#`(let ([v (f #,x)]) #,(loop #'v #'p vs body))]
[(v :: . p) ; => (and (! V) P ...), eg (<foo> :: (foo => f) ...)
(loop x #'(and (! v) . p) vs body)]
[(make class initarg+vals ...)
;; (make <class> :slotname p ...) - match on slots of the given class
#`(let ([obj #,x])
(if (instance-of? obj class)
#,(let loop1 ([av #'(initarg+vals ...)] [vs vs])
(syntax-case av (quote)
[(key p more ...) (syntax-keyword? #'key)
(let* ([s (symbol->string (syntax-e #'key))]
[s (datum->syntax-object
#'key
(string->symbol
(substring s 1 (string-length s)))
#'key)])
(loop #`(slot-ref obj '#,s) #'p vs
(lambda (vs) (loop1 #'(more ...) vs))))]
[('key p more ...)
(loop #'(slot-ref obj 'key) #'p vs
(lambda (vs) (loop1 #'(more ...) vs)))]
[() (body vs)]))
match-failure))]
[(regexp r) ; use R as a regexp (matching? handles it)
#`(if (matching? #,(re #'r) #,x) #,(body vs) match-failure)]
[(regexp r . p) ; => like the above, but match P... on result
#`(let ([m (matching? #,(re #'r) #,x)])
(if m #,(loop #'m #'p vs body) match-failure))]
;; literal lists
['v #`(if (matching? 'v #,x) #,(body vs) match-failure)]
[`v #`(if (matching? `v #,x) #,(body vs) match-failure)]
[(lambda as b ...)
#`(if (matching? (lambda as b ...) #,x) #,(body vs) match-failure)]
[(a . b) ; simple lists
#`(if (pair? #,x)
(let ([hd (car #,x)] [tl (cdr #,x)])
#,(loop #'hd #'a vs (lambda (vs) (loop #'tl #'b vs body))))
match-failure)]
;; other literals (null, keywords, non-symbols)
[() #`(if (null? #,x) #,(body vs) match-failure)]
[v #`(if (matching? v #,x) #,(body vs) match-failure)]))
(syntax-case stx ()
[(_ x pattern body) (loop #'x #'pattern '() (lambda (vs) #'body))]))
(defsubst* (let/match pattern value body ...)
(let* ([v value] [r (make-matcher-form v pattern (begin body ...))])
(if (eq? r match-failure)
(error 'let/match "value did not match pattern: ~e" v)
r)))
;;>> (matcher pattern body ...)
;;> This creates a matcher function, using the given `pattern' which will
;;> be matched with the list of given arguments on usage. If the given
;;> arguments fail to match on an application, an error will be raised.
(defsubst* (matcher pattern body ...)
(lambda args
(let ([r (make-matcher-form args pattern (begin body ...))])
(if (eq? r match-failure)
(error 'matcher "application values did not match pattern: ~e" v)
r))))
;; Matching similar to `cond'
;;>> (match x (pattern expr ...) ...)
;;> This is similar to a `cond' statement but each clause starts with a
;;> pattern, possibly binding variables for its body. It also handles
;;> `else' as a last clause.
(defsyntax match-internal
(syntax-rules (else)
[(_ x) (void)]
[(_ x (else body0 body ...)) (begin body0 body ...)]
[(_ x (pattern body0 body ...) clause ...)
(let ([m (make-matcher-form x pattern (begin body0 body ...))])
(if (eq? m match-failure) (match x clause ...) m))]))
(defsubst* (match x clause ...)
(let ([v x]) (match-internal v clause ...)))
;;>> <matcher>
;;> A class similar to a generic function, that holds matcher functions
;;> such as the ones created by the `matcher' macro. It has three slots:
;;> `name', `default' (either a default value or a function that is
;;> applied to the arguments to produce the default value), and `matchers'
;;> (a list of matcher functions).
(defentityclass* <matcher> (<generic>)
(name :initarg :name :initvalue '-anonymous-)
(default :initarg :default :initvalue #f)
(matchers :initarg :matchers :initvalue '()))
;; Set the entity's proc
(defmethod (initialize [matcher <matcher>] initargs)
(call-next-method)
(set-instance-proc!
matcher
(lambda args
(let loop ([matchers (slot-ref matcher 'matchers)])
(if (null? matchers)
(let ([default (slot-ref matcher 'default)])
(if (procedure? default)
(default . args)
(or default
(error (slot-ref matcher 'name) "no match found."))))
(let ([r (apply (car matchers) args)])
(if (eq? r match-failure)
(loop (cdr matchers))
r)))))))
;;; Add a matcher - normally at the end, with add-matcher0 at the beginning
(define (add-matcher matcher m)
(slot-set! matcher 'matchers
(append (slot-ref matcher 'matchers) (list m))))
(define (add-matcher0 matcher m)
(slot-set! matcher 'matchers
(cons m (slot-ref matcher 'matchers))))
(defsyntax (defmatcher-internal stx)
(syntax-case stx ()
[(_ adder name args body ...)
(with-syntax ([matcher-make (syntax/loc stx (matcher args body ...))])
(if (or
;; not enabled
(not (syntax-e
((syntax-local-value #'-defmethod-create-generics-))))
;; defined symbol or second module binding
(identifier-binding #'name)
;; local definition -- don't know which is first => no define
(eq? 'lexical (syntax-local-context)))
(syntax/loc stx (adder name matcher-make))
;; top-level or first module binding
(syntax/loc stx
(define name ; trick: try using exising generic
(let ([m (or (no-errors name) (make <matcher> :name 'name))])
(adder m matcher-make)
m)))))]))
;;>> (defmatcher (name pattern) body ...)
;;>> (defmatcher0 (name pattern) body ...)
;;> These macros define a matcher (if not defined yet), create a matcher
;;> function and add it to the matcher (either at the end (defmatcher) or
;;> at the beginning (defmatcher0)).
(defsyntax* (defmatcher stx)
(syntax-case stx ()
[(_ (name . args) body0 body ...) (identifier? #'name)
#'(defmatcher-internal add-matcher name args body0 body ...)]
[(_ name args body0 body ...) (identifier? #'name)
#'(defmatcher-internal add-matcher name args body0 body ...)]))
(defsyntax* (defmatcher0 stx)
(syntax-case stx ()
[(_ (name . args) body0 body ...) (identifier? #'name)
#'(defmatcher-internal add-matcher0 name args body0 body ...)]
[(_ name args body0 body ...) (identifier? #'name)
#'(defmatcher-internal add-matcher0 name args body0 body ...)]))
;;; ---------------------------------------------------------------------------
;;>>... An amb macro
;;> This is added just because it is too much fun to miss. To learn about
;;> `amb', look for it in the Help Desk, in the "Teach Yourself Scheme in
;;> Fixnum Days" on-line manual.
(define amb-fail (make-parameter #f))
(define (initialize-amb-fail)
(amb-fail (thunk (error 'amb "tree exhausted"))))
(initialize-amb-fail)
;;>> (amb expr ...)
;;> Execute forms in a nondeterministic way: each form is tried in
;;> sequence, and if one fails then evaluation continues with the next.
;;> `(amb)' fails immediately.
(defsubst* (amb expr ...)
(let ([prev-amb-fail (amb-fail)])
(let/ec sk
(let/cc fk
(amb-fail (thunk (amb-fail prev-amb-fail) (fk 'fail)))
(sk expr)) ...
(prev-amb-fail))))
;;>> (amb-assert cond)
;;> Asserts that `cond' is true, fails otherwise.
(define* (amb-assert bool) (unless bool ((amb-fail))))
;;>> (amb-collect expr)
;;> Evaluate expr, using amb-fail repeatedly until all options are
;;> exhausted and returns the list of all results.
(defsubst* (amb-collect e)
(let ([prev-amb-fail (amb-fail)]
[results '()])
(when (let/cc k
(amb-fail (thunk (k #f)))
(let ([v e]) (push! v results) (k #t)))
((amb-fail)))
(amb-fail prev-amb-fail)
(reverse results)))
;;; ---------------------------------------------------------------------------
;;>>... Very basic UI - works also in console mode
;;> The following defines some hacked UI functions that works using GRacket
;;> GUI if it is available, or the standard error and input ports otherwise.
;;> The check is done by looking for a GUI global binding.
;;>> *dialog-title*
;;> This parameter defines the title used for the hacked UI interface.
(define* *dialog-title* (make-parameter "Swindle Message"))
;;>> (message fmt-string arg ...)
;;> Like `printf' with a prefix title, or using a message dialog box.
(define* (message str . args)
(let ([msg (format str . args)])
(if (namespace-defined? 'message-box)
((namespace-variable-value 'message-box) (*dialog-title*) msg)
(echo :>e :s- "<<<" (*dialog-title*) ": " msg ">>>")))
(void))
(define (first-non-ws-char str idx)
(and (< idx (string-length str))
(let ([c (string-ref str idx)])
(if (memq c '(#\space #\tab #\newline))
(first-non-ws-char str (add1 idx))
c))))
(define (ui-question str args prompt positive-result msg-style
positive-char negative-char)
(let ([msg (apply format str args)])
(if (namespace-defined? 'message-box)
(eq? ((namespace-variable-value 'message-box)
(*dialog-title*) msg #f msg-style)
positive-result)
(begin (echo :>e :n- :s- (*dialog-title*) ">>> " msg " " prompt " ")
(let loop ()
(let ([inp (first-non-ws-char (read-line) 0)])
(cond [(char-ci=? inp positive-char) #t]
[(char-ci=? inp negative-char) #f]
[else (loop)])))))))
;;>> (ok/cancel? fmt-string arg ...)
;;>> (yes/no? fmt-string arg ...)
;;> These functions are similar to `message', but they are used to ask an
;;> "ok/cancel" or a "yes/no" question. They return a boolean.
(define* (ok/cancel? str . args)
(ui-question str args "Ok/Cancel" 'ok '(ok-cancel) #\o #\c))
(define* (yes/no? str . args)
(ui-question str args "Yes/No" 'yes '(yes-no) #\y #\n))
|