This file is indexed.

/usr/share/racket/pkgs/swindle/base.rkt is in racket-common 6.3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
;;; Written by Eli Barzilay: Maze is Life!  (eli@barzilay.org)

;;> The `base' module defines some basic low-level syntactic extensions to
;;> Racket.  It can be used by itself to get these extensions.

#lang mzscheme

(provide (all-from-except mzscheme
          #%module-begin #%top #%app define let let* letrec lambda
          keyword? keyword->string string->keyword))

;;>> (#%module-begin ...)
;;>   `base' is a language module -- it redefines `#%module-begin' to load
;;>   itself for syntax definitions.
(provide (rename module-begin~ #%module-begin))
(define-syntax (module-begin~ stx)
  (let ([e (if (syntax? stx) (syntax-e stx) stx)])
    (if (pair? e)
      (datum->syntax-object
       (quote-syntax here)
       (list* (quote-syntax #%plain-module-begin)
              (datum->syntax-object
               stx (list (quote-syntax require-for-syntax) 'swindle/base))
              (cdr e))
       stx)
      (raise-syntax-error #f "bad syntax" stx)))
  ;; This doesn't work anymore (from 203.4)
  ;; (syntax-rules ()
  ;;   [(_ . body) (#%plain-module-begin
  ;;                (require-for-syntax swindle/base) . body)])
  )

;;>> (#%top . id)
;;>   This special syntax is redefined to make keywords (symbols whose names
;;>   begin with a ":") evaluate to themselves.
(provide (rename top~ #%top))
(define-syntax (top~ stx)
  (syntax-case stx ()
    [(_ . x)
     (let ([s (syntax-e #'x)])
       (if (and (symbol? s)
                (not (eq? s '||))
                (eq? #\: (string-ref (symbol->string s) 0)))
         (syntax/loc stx (#%datum . x))
         (syntax/loc stx (#%top . x))))]))

;;>> (#%app ...)
;;>   Redefined so it is possible to apply using dot notation: `(foo x . y)'
;;>   is the same as `(apply foo x y)'.  This is possible only when the last
;;>   (dotted) element is an identifier.
(provide (rename app~ #%app))
(define-syntax (app~ stx)
  (syntax-case stx ()
    [(_ x ...) (syntax/loc stx (#%app x ...))]
    [(_ . x)
     (let loop ([s (syntax-e #'x)] [r '()])
       (cond [(list? s) (syntax/loc stx (#%app . x))]
             [(pair? s) (loop (cdr s) (cons (car s) r))]
             [else (let ([e (and (syntax? s) (syntax-e s))])
                     (if (or (null? e) (pair? e))
                       (loop e r)
                       (quasisyntax/loc stx
                         (#%app apply . #,(reverse (cons s r))))))]))]))

;; these are defined as normal bindings so code that uses this module can use
;; them, but for the syntax level of this module we need them too.
(define-for-syntax (keyword*? x)
  (and (symbol? x) (not (eq? x '||))
       (eq? (string-ref (symbol->string x) 0) #\:)))
(define-for-syntax (syntax-keyword? x)
  (keyword*? (if (syntax? x) (syntax-e x) x)))

;;>> (define id-or-list ...)
;;>   The standard `define' form is modified so defining :keywords is
;;>   forbidden, and if a list is used instead of an identifier name for a
;;>   function then a curried function is defined.
;;>     => (define (((plus x) y) z) (+ x y z))
;;>     => plus
;;>     #<procedure:plus>
;;>     => (plus 5)
;;>     #<procedure:plus:1>
;;>     => ((plus 5) 6)
;;>     #<procedure:plus:2>
;;>     => (((plus 5) 6) 7)
;;>     18
;;>   Note the names of intermediate functions.
;;>
;;>   In addition, the following form can be used to define multiple values:
;;>     => (define (values a b) (values 1 2))
(provide (rename define~ define))
(define-syntax (define~ stx)
  ;; simple version
  ;; (syntax-case stx ()
  ;;   [(_ (name arg ...) body ...)
  ;;    #`(define~ name (lambda~ (arg ...) body ...))]
  ;;   [(_ name body ...) #'(define name body ...)])
  ;; this version makes created closures have meaningful names
  ;; also -- forbid using :keyword identifiers
  ;; also -- make (define (values ...) ...) a shortcut for define-values (this
  ;;   is just a patch, a full solution should override `define-values', and
  ;;   also deal with `let...' and `let...-values' and lambda binders)
  ;; also -- if the syntax is top-level, then translate all defines into a
  ;;   define with (void) followed by a set! -- this is for the problem of
  ;;   defining something that is provided by some module, and re-binding a
  ;;   syntax
  (define top-level? (eq? 'top-level (syntax-local-context)))
  (syntax-case* stx (values)
                ;; compare symbols if at the top-level
                (if top-level?
                  (lambda (x y) (eq? (syntax-e x) (syntax-e y)))
                  module-identifier=?)
    [(_ name expr) (identifier? #'name)
     (cond [(syntax-keyword? #'name)
            (raise-syntax-error #f "cannot redefine a keyword" stx #'name)]
           [top-level?
            (syntax/loc stx
              (begin (define-values (name) (void)) (set! name expr)))]
           [else
            (syntax/loc stx (define-values (name) expr))])]
    [(_ (values name ...) expr)
     (cond [(ormap (lambda (id) (and (syntax-keyword? id) id))
                   (syntax->list #'(name ...)))
            => (lambda (id)
                 (raise-syntax-error #f "cannot redefine a keyword" stx id))]
           [top-level?
            (syntax/loc stx
              (begin (define name (void)) ... (set!-values (name ...) expr)))]
           [else (syntax/loc stx (define-values (name ...) expr))])]
    [(_ names body0 body ...) (pair? (syntax-e #'names))
     (let loop ([s #'names] [args '()])
       (syntax-case s ()
         [(name . arg) (loop #'name (cons #'arg args))]
         [name
          (let ([sym (syntax-object->datum #'name)])
            (let loop ([i    (sub1 (length args))]
                       [as   (reverse (cdr args))]
                       [body #'(begin body0 body ...)])
              (if (zero? i)
                (cond [(syntax-keyword? #'name)
                       (raise-syntax-error
                        #f "cannot redefine a keyword" stx #'name)]
                      [top-level?
                       (quasisyntax/loc stx
                         (begin (define name (void))
                                (set! name (lambda~ #,(car args) #,body))))]
                      [else
                       (quasisyntax/loc stx
                         (define name (lambda~ #,(car args) #,body)))])
                (loop (sub1 i) (cdr as)
                      (syntax-property
                       (quasisyntax/loc stx (lambda~ #,(car as) #,body))
                       'inferred-name
                       (string->symbol (format "~a:~a" sym i)))))))]))]))

;;>> (let ([id-or-list ...] ...) ...)
;;>> (let* ([id-or-list ...] ...) ...)
;;>> (letrec ([id-or-list ...] ...) ...)
;;>   All standard forms of `let' are redefined so they can generate
;;>   functions using the same shortcut that `define' allows.  This includes
;;>   the above extension to the standard `define'.  For example:
;;>     => (let ([((f x) y) (+ x y)]) ((f 1) 2))
;;>     3
;;>   It also includes the `values' keyword in a similar way to `define'.
;;>   For example:
;;>     => (let ([(values i o) (make-pipe)]) i)
;;>     #<pipe-input-port>
(provide (rename let~ let) (rename let*~ let*) (rename letrec~ letrec))
(define-syntaxes (let~ let*~ letrec~)
  (let* ([process
          (lambda (stx var0 val0 . flat?)
            (syntax-case var0 (values)
              [(values var ...) (null? flat?) #`((var ...) . #,val0)]
              [_ (let loop ([var var0] [args '()])
                   (if (identifier? var)
                     (if (null? args)
                       (let ([val (syntax->list val0)])
                         (if (and (pair? val) (null? (cdr val)))
                           (list (if (null? flat?) (list var) var) (car val))
                           (raise-syntax-error
                            #f "bad binding" stx #`(#,var0 #,@val0))))
                       (let ([sym (syntax-e var)])
                         (let loop ([i   (sub1 (length args))]
                                    [as  (reverse args)]
                                    [val val0])
                           (if (< i 0)
                             (list (if (null? flat?) (list var) var)
                                   (car (syntax->list val)))
                             (loop (sub1 i) (cdr as)
                                   (let ([val #`((lambda~ #,(car as) #,@val))])
                                     (if (zero? i)
                                       val
                                       (syntax-property
                                        val 'inferred-name
                                        (if (zero? i)
                                          sym
                                          (string->symbol
                                           (format "~a:~a" sym i)))))))))))
                (syntax-case var ()
                  [(var . args1) (loop #'var (cons #'args1 args))])))]))]
         [mk-bindings
          (lambda (stx bindings . flat?)
            (syntax-case bindings ()
              [((var val more ...) ...)
               (datum->syntax-object
                #'bindings
                (map (lambda (x y) (apply process stx x y flat?))
                     (syntax->list #'(var ...))
                     (syntax->list #'((val more ...) ...)))
                #'bindings)]))]
         [mk-let
          (lambda (tag . lbl)
            (lambda (stx)
              (syntax-case stx ()
                [(_ label bindings body0 body ...)
                 (and (identifier? #'label) (pair? lbl))
                 (quasisyntax/loc stx
                   (#,(car lbl) label #,(mk-bindings stx #'bindings #t)
                    body0 body ...))]
                [(_ bindings body0 body ...)
                 (quasisyntax/loc stx
                   (#,tag #,(mk-bindings stx #'bindings) body0 body ...))])))])
    (values (mk-let #'let-values #'let)
            (mk-let #'let*-values)
            (mk-let #'letrec-values))))

;;>> (lambda formals body ...)
;;>   The standard `lambda' is extended with Lisp-like &-keywords in its
;;>   argument list.  This extension is available using the above short
;;>   syntax.  There is one important difference between these keywords and
;;>   Lisp: some &-keywords are used to access arguments that follow the
;;>   keyword part of the arguments.  This makes it possible to write
;;>   procedures that can be invoked as follows:
;;>     (f <required-args> <optional-args> <keyword-args> <additional-args>)
;;>   (Note: do not use more keywords after the <additional-args>!)
;;>
;;>   Available &-keywords are:
(provide (rename lambda~ lambda))
(define-syntax (lambda~ stx)
  (define (process-optional-arg o)
    (syntax-case o ()
      [(var default) (identifier? #'var) (list #'var #'default)]
      [(var) (identifier? #'var) (list #'var #'#f)]
      [var (identifier? #'var) (list #'var #'#f)]
      [var (raise-syntax-error #f "not a valid &optional spec" stx #'var)]))
  (define (process-keyword-arg k)
    (define (key var)
      (datum->syntax-object
       k
       (string->symbol
        (string-append ":" (symbol->string (syntax-object->datum var))))
       k k))
    (syntax-case k ()
      [(var key default)
       (and (identifier? #'var) (syntax-keyword? #'key))
       (list #'var #'key #'default)]
      [(var default) (identifier? #'var) (list #'var (key #'var) #'default)]
      [(var) (identifier? #'var) (list #'var (key #'var) #'#f)]
      [var (identifier? #'var) (list #'var (key #'var) #'#f)]
      [var (raise-syntax-error #f "not a valid &key spec" stx #'var)]))
  (syntax-case stx ()
    [(_ formals expr0 expr ...)
     (let ([vars       '()]
           [opts       '()]
           [keys       '()]
           [rest       #f]  ; keys and all (no optionals)
           [rest-keys  #f]  ; like the above, minus specified keys
           [body       #f]  ; stuff that follows all keywords
           [all-keys   #f]  ; all keys, excluding body
           [other-keys #f]) ; unprocessed keys, excluding body
       ;; relations:
       ;;   rest = (append all-keys body)
       ;;   rest-keys = (append other-keys body)
       (let loop ([state #f] [args #'formals])
         (syntax-case args ()
           [() #f]
           [(v . xs)
            (let* ([v #'v]
                   [k (if (symbol? v) v (and (identifier? v) (syntax-e v)))]
                   [x (and k (symbol->string k))])
              (cond
               ;; check &-keywords according to their name, so something like
               ;;  (let ([&rest 1]) (lambda (&rest r) ...))
               ;; works as expected
               [(and x (> (string-length x) 0) (eq? #\& (string-ref x 0)))
                (case k
;;>   * &optional, &opt, &opts: denote an optional argument, possibly with a
;;>     default value (if the variable is specified as `(var val)').
;;>       => ((lambda (x &optional y [z 3]) (list x y z)) 1)
;;>       (1 #f 3)
;;>       => ((lambda (x &optional y [z 3]) (list x y z)) 1 2 #f)
;;>       (1 2 #f)
                  [(&optional &optionals &opt &opts)
                   (if state
                     (raise-syntax-error
                      #f "misplaced &optional argument" stx #'formals)
                     (loop 'o #'xs))]
;;>   * &keys, &key: a keyword argument -- the variable should be specified
;;>     as `x' or `(x)' to be initialized by an `:x' keyword, `(x v)' to
;;>     specify a default value `v', and `(x k v)' to further specify an
;;>     arbitrary keyword `k'.
;;>       => ((lambda (&key x [y 2] [z :zz 3]) (list x y z)) :x 'x :zz 'z)
;;>       (x 2 z)
;;>     Note that keyword values take precedence on the left, and that
;;>     keywords are not verified:
;;>       => ((lambda (&key y) y) :y 1 :z 3 :y 2)
;;>       1
                  [(&key &keys)
                   (if (memq state '(#f o r!))
                     (loop 'k #'xs)
                     (raise-syntax-error
                      #f "misplaced &keys argument" stx #'formals))]
;;>   * &rest: a `rest' argument which behaves exactly like the Scheme dot
;;>     formal parameter (actually a synonym for it: can't use both).  Note
;;>     that in case of optional arguments, the rest variable holds any
;;>     arguments that were not used for defaults, but using keys doesn't
;;>     change its value.  For example:
;;>       => ((lambda (x &rest r) r) 1 2 3)
;;>       (2 3)
;;>       => ((lambda (x &optional y &rest r) r) 1)
;;>       ()
;;>       => ((lambda (x &optional y &rest r) r) 1 2 3)
;;>       (3)
;;>       => ((lambda (x &optional y . r) r) 1 2 3)
;;>       (3)
;;>       => ((lambda (x &key y &rest r) (list y r)) 1 :y 2 3 4)
;;>       (2 (:y 2 3 4))
;;>       => ((lambda (x &key y &rest r) (list y r)) 1 :y 2 3 4 5)
;;>       (2 (:y 2 3 4 5))
;;>     Note that the last two examples indicate that there is no error if
;;>     the given argument list is not balanced.
                  [(&rest)
                   (if (pair? (syntax-e #'xs))
                     (loop 'r #'xs)
                     (raise-syntax-error
                      #f "no name for &rest argument" stx #'formals))]
;;>   * &rest-keys: similar to `&rest', but all specified keys are removed
;;>     with their values.
;;>       => ((lambda (x &key y &rest r) r) 1 :x 2 :y 3)
;;>       (:x 2 :y 3)
;;>       => ((lambda (x &key y &rest-keys r) r) 1 :x 2 :y 3)
;;>       (:x 2)
                  [(&rest-keys)
                   (if (pair? (syntax-e #'xs))
                     (loop 'rk #'xs)
                     (raise-syntax-error
                      #f "no name for &rest-keys argument" stx #'formals))]
;;>   * &body: similar to `&rest-keys', but all key/values are removed one
;;>     by one until a non-key is encountered.  (Warning: this is *not* the
;;>     same as in Common Lisp!)
;;>       => ((lambda (x &key y &body r) r) 1 :x 2 :y 3)
;;>       ()
;;>       => ((lambda (x &key y &body r) r) 1 :x 2 :y 3 5 6)
;;>       (5 6)
                  [(&body &rest-all-keys) ; &rest-all-keys for compatibility
                   (if (pair? (syntax-e #'xs))
                     (loop 'b #'xs)
                     (raise-syntax-error
                      #f "no name for &body argument"
                      stx #'formals))]
;;>   * &all-keys: the list of all keys+vals, without a trailing body.
;;>       => ((lambda (&keys x y &all-keys r) r) :x 1 :z 2 3 4)
;;>       (:x 1 :z 2)
                  [(&all-keys)
                   (if (pair? (syntax-e #'xs))
                     (loop 'ak #'xs)
                     (raise-syntax-error
                      #f "no name for &all-keys argument"
                      stx #'formals))]
;;>   * &other-keys: the list of unprocessed keys+vals, without a trailing
;;>     body.
;;>       => ((lambda (&keys x y &other-keys r) r) :x 1 :z 2 3 4)
;;>       (:z 2)
                  [(&other-keys)
                   (if (pair? (syntax-e #'xs))
                     (loop 'ok #'xs)
                     (raise-syntax-error
                      #f "no name for &other-keys argument"
                      stx #'formals))]
;;>
;;>   Finally, here is an example where all &rest-like arguments are
;;>   different:
;;>     => ((lambda (&keys x y
;;>                  &rest r
;;>                  &rest-keys rk
;;>                  &body b
;;>                  &all-keys ak
;;>                  &other-keys ok)
;;>           (list r rk b ak ok))
;;>         :z 1 :x 2 2 3 4)
;;>     ((:z 1 :x 2 2 3 4) (:z 1 2 3 4) (2 3 4) (:z 1 :x 2) (:z 1))
;;>   Note that the following invariants hold:
;;>   * rest = (append all-keys body)
;;>   * rest-keys = (append other-keys body)
                  [else (raise-syntax-error
                         #f "unknown lambda &-keyword" stx v)])]
               [(not (or x (memq state '(o k))))
                (raise-syntax-error #f "not an identifier" stx v)]
               [else
                (let ([test (lambda (var name)
                              (if var
                                (raise-syntax-error
                                 #f (format "too many &~a arguments" name)
                                 stx #'formals)
                                (set! state 'r!)))])
                  (case state
                    [(#f) (set! vars (cons v vars))]
                    [(o)  (set! opts (cons v opts))]
                    [(k)  (set! keys (cons v keys))]
                    [(r!) (raise-syntax-error
                           #f "second identifier after a &rest or similar"
                           stx v)]
                    [(r)  (test rest       'rest      ) (set! rest v)]
                    [(rk) (test rest-keys  'rest-keys ) (set! rest-keys v)]
                    [(b)  (test body       'body      ) (set! body v)]
                    [(ak) (test all-keys   'all-keys  ) (set! all-keys v)]
                    [(ok) (test other-keys 'other-keys) (set! other-keys v)]
                    [else (raise-syntax-error #f "bad lambda formals" stx v)])
                  (loop state #'xs))]))]
           [v (loop state #'(&rest v))]))
       (set! vars (reverse vars))
       (set! opts (map process-optional-arg (reverse opts)))
       (set! keys (map process-keyword-arg  (reverse keys)))
       (when (and (or rest-keys body all-keys other-keys) (not rest))
         (set! rest #'rest))
       (cond
        ;; non-trivial case -- full processing
        [(or (pair? opts) (pair? keys) rest-keys body all-keys other-keys)
         (unless rest (set! rest #'rest))
         ;; other-keys is computed from all-keys
         (when (and other-keys (not all-keys)) (set! all-keys #'all-keys))
         (quasisyntax/loc stx
           (lambda (#,@vars . #,rest)
             (let*-values
                 (#,@(map (lambda (o)
                            #`[(#,(car o))
                               (if (pair? #,rest)
                                 (begin0 (car #,rest)
                                   (set! #,rest (cdr #,rest)))
                                 #,(cadr o))])
                          opts)
                  #,@(map (lambda (k)
                            #`[(#,(car k))
                               (getarg #,rest #,(cadr k)
                                       (lambda () #,(caddr k)))])
                          keys)
                  #,@(if rest-keys
                       #`([(#,rest-keys)
                           (filter-out-keys '#,(map cadr keys) #,rest)])
                       #'())
                  #,@(cond
                      ;; At most one scan for body, all-keys, other-keys.  This
                      ;; could be much shorter by always using keys/args, but a
                      ;; function call is not a place to spend time on.
                      [(and body all-keys)
                       #`([(#,all-keys #,body)
                           ;; inlined keys/args
                           (let loop ([args #,rest] [keys '()])
                             (cond [(or (null? args)
                                        (null? (cdr args))
                                        (not (keyword*? (car args))))
                                    (values (reverse keys) args)]
                                   [else (loop (cddr args)
                                               (list* (cadr args) (car args)
                                                      keys))]))])]
                      [body
                       #`([(#,body)
                           (let loop ([args #,rest])
                             (if (or (null? args)
                                     (null? (cdr args))
                                     (not (keyword*? (car args))))
                               args
                               (loop (cddr args))))])]
                      [all-keys
                       #`([(#,all-keys)
                           ;; inlined keys/args, not returning args
                           (let loop ([args #,rest] [keys '()])
                             (cond [(or (null? args)
                                        (null? (cdr args))
                                        (not (keyword*? (car args))))
                                    (reverse keys)]
                                   [else (loop (cddr args)
                                               (list* (cadr args) (car args)
                                                      keys))]))])]
                      [else #'()])
                  #,@(if other-keys
                       #`([(#,other-keys) ; use all-keys (see above)
                           (filter-out-keys '#,(map cadr keys) #,all-keys)])
                       #'()))
               expr0 expr ...)))]
        ;; common cases: no optional, keyword, or other fancy stuff
        [(null? vars)
         (quasisyntax/loc stx
           (lambda #,(or rest #'()) expr0 expr ...))]
        [else
         (quasisyntax/loc stx
           (lambda (#,@vars . #,(or rest #'())) expr0 expr ...))]))]))

;; Keyword utilities
(provide (rename keyword*? keyword?) syntax-keyword?
         (rename keyword->string* keyword->string)
         (rename string->keyword* string->keyword)
         ;; also provide the builtin as `real-keyword'
         (rename keyword? real-keyword?)
         (rename keyword->string real-keyword->string)
         (rename string->keyword string->real-keyword))
;;>> (keyword? x)
;;>   A predicate for keyword symbols (symbols that begin with a ":").
;;>   (Note: this is different from Racket's keywords!)
(define (keyword*? x)
  (and (symbol? x) (not (eq? x '||))
       (eq? (string-ref (symbol->string x) 0) #\:)))
;;>> (syntax-keyword? x)
;;>   Similar to `keyword?' but also works for an identifier (a syntax
;;>   object) that contains a keyword.
(define (syntax-keyword? x)
  (keyword*? (if (syntax? x) (syntax-e x) x)))
;;>> (keyword->string k)
;;>> (string->keyword s)
;;>   Convert a Swindle keyword to a string and back.
(define (keyword->string* k)
  (if (keyword*? k)
    (substring (symbol->string k) 1)
    (raise-type-error 'keyword->string "keyword" k)))
(define (string->keyword* s)
  (if (string? s)
    (string->symbol (string-append ":" s))
    (raise-type-error 'string->keyword "string" s)))

;; Keyword searching utilities (note: no errors for odd length)
(provide getarg syntax-getarg getargs keys/args filter-out-keys)
;;>> (getarg args keyword [not-found])
;;>   Searches the given list of arguments for a value matched with the
;;>   given keyword.  Similar to CL's `getf', except no error checking is
;;>   done for an unbalanced list.  In case no value is found, the optional
;;>   default value can be used -- this can be either a thunk, a promise, or
;;>   any other value that will be used as is.  For a repeated keyword the
;;>   leftmost occurrence is used.
(define (getarg args keyword . not-found)
  (let loop ([args args])
    (cond [(or (null? args) (null? (cdr args)))
           (and (pair? not-found)
                (let ([x (car not-found)])
                  (cond [(procedure? x) (x)]
                        [(promise? x) (force x)]
                        [else x])))]
          [(eq? (car args) keyword) (cadr args)]
          [else (loop (cddr args))])))
;;>> (syntax-getarg syntax-args keyword [not-found])
;;>   Similar to `getarg' above, but the input is a syntax object of a
;;>   keyword-value list.
(define (syntax-getarg syntax-args keyword . not-found)
  (when (syntax? keyword) (set! keyword (syntax-e keyword)))
  (let loop ([args syntax-args])
    (syntax-case args ()
      [(key arg . more)
       (if (eq? (syntax-e #'key) keyword) #'arg (loop #'more))]
      [_ (and (pair? not-found)
              (let ([x (car not-found)])
                (cond [(procedure? x) (x)]
                      [(promise? x) (force x)]
                      [else x])))])))
;;>> (getargs initargs keyword)
;;>   The same as `getarg' but return the list of all key values matched --
;;>   no need for a default value.  The result is in the same order as in
;;>   the input.
(define (getargs initargs keyword)
  (define (scan tail)
    (cond [(null? tail) '()]
          [(null? (cdr tail)) (error 'getargs "keyword list not balanced.")]
          [(eq? (car tail) keyword) (cons (cadr tail) (scan (cddr tail)))]
          [else (scan (cddr tail))]))
  (scan initargs))
;;>> (keys/args args)
;;>   The given argument list is scanned and split at the point where there
;;>   are no more keyword-values, and the two parts are returned as two
;;>   values.
;;>     => (keys/args '(:a 1 :b 2 3 4 5))
;;>     (:a 1 :b 2)
;;>     (3 4 5)
(define (keys/args args)
  (let loop ([args args] [keys '()])
    (cond [(or (null? args) (null? (cdr args)) (not (keyword*? (car args))))
           (values (reverse keys) args)]
          [else (loop (cddr args) (list* (cadr args) (car args) keys))])))
;;>> (filter-out-keys outs args)
;;>   The keywords specified in the outs argument, with their matching
;;>   values are filtered out of the second arguments.
(define (filter-out-keys outs args)
  (let loop ([as args] [r '()])
    (cond [(null? as) (reverse r)]
          [(null? (cdr as)) (reverse (cons (car as) r))]
          [else
           (loop (cddr as)
                 (if (memq (car as) outs) r (list* (cadr as) (car as) r)))])))