/usr/share/racket/pkgs/lazy/lazy.rkt is in racket-common 6.3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 | #lang racket/base
(require (for-syntax racket/base)
(for-syntax stepper/private/syntax-property))
;; ~ = lazy (or delayed)
;; ! = strict (or forced)
;; (See below for app-related names)
;; --------------------------------------------------------------------------
;; Syntax utilities
;; taken & modified from swindle/misc.rkt
(provide defsubst) ; useful utility
(define-syntax (defsubst-process stx)
(syntax-case stx ()
[(_ name (acc ...))
#'(define-syntax (name stx)
(syntax-case stx () acc ...))]
[(_ name (acc ...) id subst . more) (identifier? #'id)
#'(defsubst-process
name (acc ...
(id (identifier? #'id) #'subst)
((id x (... ...)) #'(subst x (... ...))))
. more)]
[(_ name (acc ...) n+a subst . more)
#'(defsubst-process name (acc ... (n+a #'subst)) . more)]))
(define-syntax defsubst
(syntax-rules ()
[(_ (name . args) subst . more)
(defsubst-process name () (name . args) subst . more)]
[(_ name subst . more)
(defsubst-process name () name subst . more)]))
;; utility for defining ~foo but make it look like #<procedure:foo>
(define-syntax (define* stx)
(syntax-case stx ()
[(_ ~name val) (identifier? #'~name)
(let* ([~str (symbol->string (syntax-e #'~name))]
[str (string->symbol (regexp-replace #rx"^[~*]" ~str ""))])
(with-syntax ([name (datum->syntax #'~name str #'~name)])
#'(define ~name (let ([name val]) (mark-lazy name)))))]
[(_ (~name . xs) body ...) (identifier? #'~name)
#'(define* ~name (lambda xs body ...))]))
;; --------------------------------------------------------------------------
;; Delay/force etc
(require "force.rkt")
(provide ~)
;; the exposed `!' (and other similar !s) must be a special form in the lazy
;; language -- but this is achieved through the lazy #%app (~!%app below)
;; that treats it (and the others) specially: uses mzscheme's application
(define-for-syntax strict-names
(syntax->list #'(! !! !list !!list !values !!values)))
;; --------------------------------------------------------------------------
;; Stepper utility fns
(define-for-syntax (stepper-hide-operator stx)
(stepper-syntax-property stx 'stepper-skipto (append skipto/cdr skipto/second)))
(define-for-syntax (stepper-add-lazy-op-prop stx)
(stepper-syntax-property stx 'lazy-op #t))
(define-syntax (hidden-car stx)
(syntax-case stx ()
[(_ arg) (stepper-hide-operator (syntax/loc stx (car arg)))]))
(define-syntax (hidden-cdr stx)
(syntax-case stx ()
[(_ arg) (stepper-hide-operator (syntax/loc stx (cdr arg)))]))
(define-syntax (hidden-! stx)
(syntax-case stx ()
[(_ arg) (stepper-hide-operator (syntax/loc stx (! arg)))]))
(define-syntax (mark-as-lazy-op stx)
(syntax-case stx ()
[(_ arg)
(identifier? #'arg)
(stepper-add-lazy-op-prop (syntax/loc stx arg))]
[(_ arg) #'arg]))
(define-syntax (hidden-~ stx)
(syntax-case stx ()
[(_ arg) (stepper-hide-operator (syntax/loc stx (~ arg)))]))
;; --------------------------------------------------------------------------
;; Determine laziness
(define-values (lazy-proc lazy-proc?)
(let-values ([(type make pred ref set)
(make-struct-type
'lazy-proc #f 1 0 #f null (current-inspector) 0)])
(values make pred)))
(defsubst (lazy? x) (if (lazy-proc? x) #t (struct-constructor-procedure? x)))
;; a version that works on any value
(defsubst (mark-lazy x) (if (procedure? x) (lazy-proc x) x))
;; a few primitive constructors
(define ~cons (lazy-proc cons))
(define ~list (lazy-proc list))
(define ~list* (lazy-proc list*))
(define ~vector (lazy-proc vector))
(define ~box (lazy-proc box))
;; values is special, see below
;; --------------------------------------------------------------------------
;; Implicit begin & multiple values
;; This is used for implicit body begins. It is slightly complex since it
;; should still be possible to use it for splicing up macro contents, so
;; definitions are used with a normal begin. The actual body turns into one
;; promise that, when forced, forces each of its expressions and returns the
;; last value. This effectively ties evaluation of all expressions in one
;; package, so (~begin foo bar) will always evaluate `foo' when the value of
;; `bar' is forced.
(define-syntax ~begin
(let ([ids (syntax->list
#'(~define ~define-values define-syntax define-syntaxes
define-struct struct require provide))])
(define (definition? stx)
(ormap (lambda (id) (free-identifier=? id stx)) ids))
(lambda (stx)
(syntax-case stx ()
;; optimize simple cases
[(_) #'(begin)]
[(_ expr) #'expr]
[(_ expr ...)
(let loop ([exprs #'(expr ...)] [defs '()])
(syntax-case exprs ()
[((head . rest) expr ...)
(definition? #'head)
(loop #'(expr ...) (cons #'(head . rest) defs))]
;; only definitions
[() #`(begin #,@(reverse defs))]
;; single expr
[(expr) #`(begin #,@(reverse defs) expr)]
[(expr ...)
#`(begin #,@(reverse defs) (hidden-~ (begin (hidden-! expr) ...)))]))]))))
;; redefined to use lazy-proc and ~begin
(define-syntax (~lambda stx)
(syntax-case stx ()
[(_ args body0 body ...)
(let ([n (syntax-local-name)])
(with-syntax ([lam (syntax-property
(syntax/loc stx
(lambda args (~begin body0 body ...)))
'inferred-name n)])
(syntax/loc stx (lazy-proc lam))))]))
(provide (rename-out [~lambda λ]))
; (defsubst
; (~define (f . xs) body0 body ...) (define f (~lambda xs body0 body ...))
; (~define v x) (define v x))
;; STC: define ~define to add stepper-properties
;; had to duplicate some stuff from ~lambda
(define-syntax (~define stx)
(define (attach-inferred-name stx fn-name-stx)
(syntax-property
(stepper-syntax-property
(stepper-syntax-property
stx
'stepper-define-type 'shortened-proc-define)
'stepper-proc-define-name fn-name-stx)
'inferred-name fn-name-stx))
; duplicated some stuff from ~lambda so I could add stepper-properties
(syntax-case stx ()
[(_ (f . args) body0 body ...)
(quasisyntax/loc stx
(define f
(lazy-proc
#,(attach-inferred-name
#'(lambda args (~begin body0 body ...))
#'f)
)))]
[(_ name expr) #'(define name expr)]))
(defsubst
(~let [(x v) ...] body0 body ...)
(let ([x v] ...) (~begin body0 body ...))
(~let name [(x v) ...] body0 body ...)
(let name [(x v) ...] (~begin body0 body ...)))
(defsubst (~let* [(x v) ...] body0 body ...)
(let* ([x v] ...) (~begin body0 body ...)))
(defsubst (~letrec [(x v) ...] body0 body ...)
(letrec ([x v] ...) (~begin body0 body ...)))
;; parameterize should force its arguments
(defsubst (~parameterize ([param val] ...) body ...)
;; like ~begin, delaying the whole thing is necessary to tie the evaluation
;; to whenever the value is actually forced
(hidden-~ (parameterize ([param (hidden-! val)] ...) (~begin body ...))))
;; Multiple values are problematic: Racket promises can use multiple
;; values, but to carry that out `call-with-values' should be used in all
;; places that deal with multiple values, which will make the whole thing
;; much slower (about twice in tight loops) -- but multiple values are rarely
;; used (spceifically, students never use them). So `values' is redefined to
;; produce a first-class tuple-holding struct, and `split-values' turns that
;; into multiple values.
;; STC: add inspector for lazy stepper
(struct multiple-values (values) #:inspector (make-inspector))
(define (split-values x)
(let ([x (! x)])
(if (multiple-values? x) (apply values (multiple-values-values x)) x)))
(define-syntax (hidden-split-values stx)
(syntax-case stx ()
[(_ arg) (stepper-hide-operator (syntax/loc stx (split-values arg)))]))
;; Force and split resulting values.
(define (!values x)
(split-values (! x)))
;; Similar, but forces the actual values too.
(define (!!values x)
(let ([x (! x)])
(if (multiple-values? x)
(apply values (map ! (multiple-values-values x)))
x)))
(define* ~values
(lambda xs (multiple-values xs)))
;; Redefine multiple-value constructs so they split the results
(defsubst (~define-values (v ...) body)
(define-values (v ...) (hidden-split-values body)))
(defsubst (~let-values ([(x ...) v] ...) body ...)
(let-values ([(x ...) (split-values v)] ...) (~begin body ...)))
(defsubst (~let*-values ([(x ...) v] ...) body ...)
(let*-values ([(x ...) (split-values v)] ...) (~begin body ...)))
(defsubst (~letrec-values ([(x ...) v] ...) body ...)
(letrec-values ([(x ...) (split-values v)] ...) (~begin body ...)))
;; Redefine things that return multiple values.
;; (todo: only stuff necessary for the datatypes are done, more needed)
(define* (~make-struct-type . args)
(let ([args (!!list args)])
(call-with-values (lambda () (apply make-struct-type args)) ~values)))
;; --------------------------------------------------------------------------
;; Applications
;; Basic names:
;; `app': syntax, calls a function over given arguments
;; `apply': function, last argument is a list of arguments to the function
;; Conventions:
;; `!*---': forces args when needed (depending on the function)
;; doesn't force the function (internal use only)
;; `!---': forces function, and forces args when needed
;; `~!---': adds a delay wrapper to the application (uses the above)
;; (this is a macro in the `apply' case too)
;; `~!*---': like the previous, but does not force the function (internal)
;; Provided stuff:
;; `~!%app': provided as `#%app' -- similar to `~!app' but treats a few
;; application kinds as special (mostly all kinds of forces)
;; `!apply': provided as `apply' (no need to provide `~!apply', since all
;; function calls are delayed by `#%app')
(define (extract-if-lazy-proc f)
(or (procedure-extract-target f) f))
(define-syntax (!*app stx)
(syntax-case stx ()
[(_ f x ...)
(let ([$$ (lambda (stx)
(stepper-syntax-property
stx
'stepper-skipto
(append skipto/cddr
`(both-l () (car)))))]
[$ (lambda (stx)
(stepper-syntax-property
stx
'stepper-skipto
(append skipto/cdr
skipto/first)))])
(with-syntax ([(y ...) (generate-temporaries #'(x ...))])
;; use syntax/loc for better errors etc
(with-syntax ([lazy (syntax/loc stx ((extract-if-lazy-proc p) y ...))]
[strict (syntax/loc stx (p (hidden-! y) ...))])
(quasisyntax/loc stx
((lambda (p y ...)
#,($$ #'(if (lazy? p) lazy strict)))
f x ...)
#;(let ([p f] [y x] ...)
;; #,($$ #`(if (lazy? p) lazy strict))
(if (lazy? p) lazy strict))))))]))
(defsubst (!app f x ...) (!*app (hidden-! (mark-as-lazy-op f)) x ...))
(defsubst (~!*app f x ...) (hidden-~ (!*app f x ...)))
(defsubst (~!app f x ...) (hidden-~ (!app f x ...)))
(define-for-syntax (toplevel?)
(memq (syntax-local-context)
'(top-level module module-begin))) ; not sure about module-begin
;; What happens when encoutering a toplevel non-definition expression?
(provide toplevel-forcer)
(define toplevel-forcer (make-parameter !))
(provide (rename-out [~!%app #%app])) ; all applications are delayed
(define-syntax (~!%app stx) ; provided as #%app
#;(define (unwinder stx rec)
(syntax-case stx (!)
[(let-values ([(_p) (_app ! f)] [(_y) x] ...) _body)
(with-syntax ([(f x ...) (rec #'(f x ...))])
#'(f x ...))]))
#;(define (stepper-annotate stx)
(let* ([stx (stepper-syntax-property stx 'stepper-hint unwinder)]
[stx (stepper-syntax-property stx 'stepper-skip-double-break #t)])
stx))
(syntax-case stx (~)
;; the usual () shorthand for null
[(_) #'null]
[(_ ~ x) (syntax/loc stx (~ x))] ; not really needed
[(_ f x ...)
(cond [(let ([f #'f])
(and (identifier? f)
(ormap (lambda (s) (free-identifier=? f s))
strict-names)))
;; strict function => special forms => use plain application
(syntax/loc stx (f x ...))]
[(toplevel?)
;; toplevel expressions are always forced
(syntax/loc stx ((toplevel-forcer) (!app f x ...)))]
[else (syntax/loc stx (~!app f x ...))])]))
(define (!*apply f . xs)
(let ([xs (!list (apply list* xs))])
(apply f (if (lazy? f) xs (map ! xs)))))
(define* (!apply f . xs)
(let ([f (! f)] [xs (!list (apply list* xs))])
(apply f (if (lazy? f) xs (map ! xs)))))
(defsubst (~!*apply f . xs) (hidden-~ (!*apply f . xs)))
(defsubst (~!apply f . xs) (hidden-~ (!apply f . xs)))
(provide (rename-out [!apply apply])) ; can only be used through #%app => delayed
;; do the same special treatment for toplevel variable expressions
(provide (rename-out [!top #%top]))
(define-syntax (!top stx)
(syntax-case stx ()
[(_ . id) (if (toplevel?) #'(! (#%top . id)) #'(#%top . id))]))
;; used for explicitly strict/lazy calls
(defsubst (strict-call f x ...) (hidden-~ (f (! x) ...)))
(defsubst (lazy-call f x ...) (hidden-~ (f x ...)))
;; --------------------------------------------------------------------------
;; Special forms that are now functions
;; Since these things are rarely used as functions, they are defined as
;; macros that expand to the function form when used as an expression.
(define* *if
(case-lambda [(e1 e2 e3) (if (! e1) e2 e3)]
[(e1 e2 ) (when (! e1) e2 )]))
(defsubst (~if e1 e2 e3) (hidden-~ (if (hidden-! e1) e2 e3))
(~if e1 e2 ) (hidden-~ (if (hidden-! e1) e2 ))
~if *if)
(define* (*and . xs)
(let ([xs (!list xs)])
(or (null? xs)
(let loop ([x (car xs)] [xs (cdr xs)])
(if (null? xs) x (and (! x) (loop (car xs) (cdr xs))))))))
(define-syntax !and
(syntax-rules ()
[(_) (and)]
[(_ x ... y) (and (hidden-! x) ... y)]))
(defsubst (~and x ...) (hidden-~ (!and x ...)) ~and *and)
(define* (*or . xs)
(let ([xs (!list xs)])
(and (pair? xs)
(let loop ([x (car xs)] [xs (cdr xs)])
(if (null? xs) x (or (! x) (loop (car xs) (cdr xs))))))))
(define-syntax !or
(syntax-rules ()
[(_) (or)]
[(_ x ... y) (or (hidden-! x) ... y)]))
(defsubst (~or x ...) (hidden-~ (!or x ...)) ~or *or)
;; --------------------------------------------------------------------------
;; Special forms that are still special forms since they use ~begin
(defsubst (~begin0 x y ...) ; not using ~begin, but equivalent
(hidden-~ (let ([val (hidden-! x)]) (hidden-! y) ... val)))
(defsubst (~when e x ...) (hidden-~ (when (hidden-! e) (~begin x ...))))
(defsubst (~unless e x ...) (hidden-~ (unless (hidden-! e) (~begin x ...))))
;; --------------------------------------------------------------------------
;; Misc stuff
;; Just for fun...
(defsubst (~set! id expr) (hidden-~ (set! id (hidden-! expr))))
;; The last ! above is needed -- without it:
;; (let ([a 1] [b 2]) (set! a (add1 b)) (set! b (add1 a)) a)
;; goes into an infinite loop. (Thanks to Jos Koot)
(define* (~set-mcar! mpair val) (~ (set-mcar! (! mpair) val)))
(define* (~set-mcdr! mpair val) (~ (set-mcdr! (! mpair) val)))
(define* (~vector-set! vec i val) (~ (vector-set! (! vec) (! i) val)))
(define* (~set-box! box val) (~ (set-box! (! box) val)))
;; not much to do with these besides inserting strictness points and ~begin
; for stepper: change else to #t test, add new error else branch
(define-syntax (~cond stx)
(syntax-case stx ()
[(_ clause ...) ; stepper needs the loc of the full clause
(with-syntax
([(new-clause ...)
(map
(λ (c)
(with-syntax ([(test body ...) c])
(with-syntax
([new-test
(syntax-case #'test (else)
[else ; for stepper
(stepper-syntax-property #'#t 'stepper-else #t)]
[x (syntax/loc #'x (hidden-! x))])])
(syntax/loc c (new-test (~begin body ...))))))
(syntax->list #'(clause ...)))]
[new-else-body (syntax/loc stx (error 'cond "should not get here"))])
(quasisyntax/loc stx
(hidden-~
#,(syntax/loc stx
(cond
new-clause ...
[else new-else-body])))))]))
(defsubst (~case v [keys body ...] ...)
(hidden-~ (case (hidden-! v) [keys (~begin body ...)] ...)))
;; Doing this will print the whole thing, but problems with infinite things
(define* (~error . args) (apply error (!! args)))
;; I/O shows the whole thing
(define* (~printf fmt . args) (apply printf (! fmt) (!! args)))
(define* (~fprintf p fmt . args) (apply fprintf (! p) (! fmt) (!! args)))
(define* (~display x . port) (apply display (!! x) (!!list port)))
(define* (~write x . port) (apply write (!! x) (!!list port)))
(define* (~print x . port) (apply print (!! x) (!!list port)))
;; --------------------------------------------------------------------------
;; Equality functions
;; All of these try to stop if the promises are the same.
(define* (~eq? . args)
(or (apply eq? (!list args)) (apply eq? (!!list args))))
(define* (~eqv? . args)
(or (apply eqv? (!list args)) (apply eqv? (!!list args))))
;; for `equal?' we must do a recursive scan
(define (equal2? x y)
(cond [(pair? x) (and (pair? y)
(~equal? (car x) (car y))
(~equal? (cdr x) (cdr y)))]
[(vector? x)
(let ([k (vector-length x)])
(and (vector? y)
(= k (vector-length y))
(let loop ([i 0])
(or (= i k)
(and (~equal? (vector-ref x i) (vector-ref y i))
(loop (add1 i)))))))]
[(struct? x)
(and (struct? y)
(let-values ([(xtype xskipped?) (struct-info x)]
[(ytype yskipped?) (struct-info y)])
(and xtype ytype (not xskipped?) (not yskipped?)
(eq? xtype ytype)
(let*-values ([(name initk autok ref set imms spr skp?)
(struct-type-info xtype)]
[(k) (+ initk autok)])
(let loop ([i 0])
(or (= i k) (and (~equal? (ref x i) (ref y i))
(loop (add1 i)))))))))]
[(box? x) (and (box? y) (~equal? (unbox x) (unbox y)))]
[else #f]))
(define* (~equal? x y . args)
(let ([args (!list args)])
(if (pair? args)
(and (~equal? x y) (apply ~equal? x (cdr args)))
(or (equal? x y)
(let ([x (! x)] [y (! y)])
(or (equal? x y) (equal2? x y)))))))
;; --------------------------------------------------------------------------
;; List functions
(define* (~list? x) (list? (!list x))) ; must force the whole list
(define* (~length l) (length (!list l))) ; for these
(define* (~car x) (car (! x))) ; these are for internal use: ~!app will do
(define* (~cdr x) (cdr (! x))) ; this job when using this language
(define* (~caar x) (car (! (car (! x)))))
(define* (~cadr x) (car (! (cdr (! x)))))
(define* (~cdar x) (cdr (! (car (! x)))))
(define* (~cddr x) (cdr (! (cdr (! x)))))
(define* (~caaar x) (car (! (~caar x))))
(define* (~caadr x) (car (! (~cadr x))))
(define* (~cadar x) (car (! (~cdar x))))
(define* (~caddr x) (car (! (~cddr x))))
(define* (~cdaar x) (cdr (! (~caar x))))
(define* (~cdadr x) (cdr (! (~cadr x))))
(define* (~cddar x) (cdr (! (~cdar x))))
(define* (~cdddr x) (cdr (! (~cddr x))))
(define* (~caaaar x) (car (! (~caaar x))))
(define* (~caaadr x) (car (! (~caadr x))))
(define* (~caadar x) (car (! (~cadar x))))
(define* (~caaddr x) (car (! (~caddr x))))
(define* (~cadaar x) (car (! (~cdaar x))))
(define* (~cadadr x) (car (! (~cdadr x))))
(define* (~caddar x) (car (! (~cddar x))))
(define* (~cadddr x) (car (! (~cdddr x))))
(define* (~cdaaar x) (cdr (! (~caaar x))))
(define* (~cdaadr x) (cdr (! (~caadr x))))
(define* (~cdadar x) (cdr (! (~cadar x))))
(define* (~cdaddr x) (cdr (! (~caddr x))))
(define* (~cddaar x) (cdr (! (~cdaar x))))
(define* (~cddadr x) (cdr (! (~cdadr x))))
(define* (~cdddar x) (cdr (! (~cddar x))))
(define* (~cddddr x) (cdr (! (~cdddr x))))
(define* (~list-ref l k)
(let ([k (! k)])
(unless (exact-nonnegative-integer? k)
(raise-type-error 'list-ref "non-negative exact integer" 1 l k))
(let loop ([k k] [l (! l)])
(cond [(not (pair? l))
(raise-type-error 'list-ref "proper list" l)]
[(zero? k) (car l)]
[else (loop (sub1 k) (! (cdr l)))]))))
(define* (~list-tail l k)
(let ([k (! k)])
(unless (exact-nonnegative-integer? k)
(raise-type-error 'list-tail "non-negative exact integer" 1 l k))
(let loop ([k k] [l l]) ; don't force here -- unlike list-ref
(cond [(zero? k) l]
[else (let ([l (! l)])
(unless (pair? l)
(raise-type-error 'list-tail "list" l))
(loop (sub1 k) (cdr l)))]))))
(define* (~append . xs)
(let ([xs (!list xs)])
(cond [(null? xs) '()]
[(null? (cdr xs)) (car xs)]
[else (let ([ls (~ (apply ~append (cdr xs)))])
(let loop ([l (! (car xs))])
(if (null? l)
ls
(cons (car l) (~ (loop (! (cdr l))))))))])))
;; useful utility for many list functions below
(define (!cdr l) (! (cdr l)))
(define-syntax (deflistiter stx)
(syntax-case stx (extra: null ->)
[(deflistiter (?~name ?proc ?args ... ?l . ?ls)
null -> ?base
?loop -> ?step-single ?step-multiple)
#'(deflistiter (?~name ?proc ?args ... ?l . ?ls)
extra:
null -> ?base
?loop -> ?step-single ?step-multiple)]
[(deflistiter (?~name ?proc ?args ... ?l . ?ls)
extra: [?var ?init] ...
null -> ?base
?loop -> ?step-single ?step-multiple)
(with-syntax ([?name (let* ([x (symbol->string (syntax-e #'?~name))]
[x (regexp-replace #rx"^~" x "")]
[x (string->symbol x)])
(datum->syntax #'?~name x #'?~name))])
#'(define* ?~name
(case-lambda
[(?proc ?args ... ?l)
(let ([?proc (hidden-! ?proc)])
(let ?loop ([?l (hidden-! ?l)] [?var ?init] ...)
(if (null? ?l)
?base
?step-single)))]
[(?proc ?args ... ?l . ?ls)
(let ([?proc (hidden-! ?proc)])
(let ?loop ([?ls (cons (hidden-! ?l) (!!list ?ls))] [?var ?init] ...)
(if (ormap null? ?ls)
(if (andmap null? ?ls)
?base
(error '?name "all lists must have same size"))
?step-multiple)))])))]))
;; These use the `*' version of app/ly, to avoid forcing the function over
;; and over -- `deflistiter' forces it on entry
(deflistiter (~map proc l . ls)
null -> '()
loop -> (cons (~!*app proc (car l)) (~ (loop (! (cdr l)))))
(cons (~!*apply proc (map car ls)) (~ (loop (map !cdr ls)))))
(deflistiter (~for-each proc l . ls)
null -> (void)
loop -> (begin (! (!*app proc (car l))) (loop (! (cdr l))))
(begin (! (!*apply proc (map car ls))) (loop (map !cdr ls))))
(deflistiter (~andmap proc l . ls)
null -> #t
loop -> (and (! (!*app proc (car l))) (loop (! (cdr l))))
(and (! (!*apply proc (map car ls))) (loop (map !cdr ls))))
(deflistiter (~ormap proc l . ls)
null -> #f
loop -> (or (! (!*app proc (car l))) (loop (! (cdr l))))
(or (! (!*apply proc (map car ls))) (loop (map !cdr ls))))
(deflistiter (foldl proc init l . ls)
extra: [acc init]
null -> acc
loop ->
(~ (loop (! (cdr l)) (~!*app proc (car l) acc)))
(~ (loop (map !cdr ls)
(~!*apply proc (append (map car ls) (list acc))))))
(deflistiter (foldr proc init l . ls)
null -> init
loop ->
(~!*app proc (car l) (~ (loop (! (cdr l)))))
(~!*apply proc (append (map car ls) (list (~ (loop (map !cdr ls)))))))
(define (do-member name = elt list) ; no currying for procedure names
;; `elt', `=', and `name' are always forced values
(let loop ([list (! list)])
(cond [(null? list) #f]
[(not (pair? list)) (error name "not a proper list: ~e" list)]
[(= elt (! (car list))) list]
[else (loop (! (cdr list)))])))
(define* (~member elt list) (do-member 'member ~equal? (! elt) list))
(define* (~memq elt list) (do-member 'memq ~eq? (! elt) list))
(define* (~memv elt list) (do-member 'memv ~eqv? (! elt) list))
(define (do-assoc name = key alist) ; no currying for procedure names
;; `key', `=', and `name' are always forced values
(let loop ([alist (! alist)])
(cond [(null? alist) #f]
[(not (pair? alist)) (error name "not a proper list: ~e" alist)]
[else (let ([cell (! (car alist))])
(cond [(not (pair? cell))
(error name "non-pair found in list: ~e" cell)]
[(= (! (car cell)) key) cell]
[else (loop (! (cdr alist)))]))])))
(define* (~assoc key alist) (do-assoc 'assoc ~equal? (! key) alist))
(define* (~assq key alist) (do-assoc 'assq ~eq? (! key) alist))
(define* (~assv key alist) (do-assoc 'assv ~eqv? (! key) alist))
(define* (~reverse list)
(let ([list (!list list)])
(reverse list)))
;; --------------------------------------------------------------------------
;; Extra functionality that is useful for lazy list stuff
(define* (take n l)
(let ([n0 (! n)])
(unless (exact-nonnegative-integer? n0)
(raise-type-error 'take "non-negative exact integer" 0 n0 l))
(let loop ([n n0] [l l])
(if (zero? n)
'()
(let ([l (! l)])
(cond [(null? l)
;; it would be fine to force the whole list (since we now
;; know it's finite), but doing so means keeping a reference
;; to its head, which can lead to memory leaks.
(error 'take "index ~e too large for input list" n0)]
[(pair? l) (cons (car l) (~ (loop (sub1 n) (cdr l))))]
[else (error 'take "not a proper list: ~e" l)]))))))
;; not like Haskell's `cycle' that consumes a list
(define* (cycle . l)
(letrec ([r (~ (~append (! l) r))])
r))
;; --------------------------------------------------------------------------
;; mzlib/list functionality
;; These are a hack, they're not the same due to different error
;; messages (and they work with improper lists too).
(define* (rest x) (~cdr x))
(define* (first x) (~car x))
(define* (second x) (~cadr x))
(define* (third x) (~caddr x))
(define* (fourth x) (~cadddr x))
(define* (fifth x) (~car (~cddddr x)))
(define* (sixth x) (~cadr (~cddddr x)))
(define* (seventh x) (~caddr (~cddddr x)))
(define* (eighth x) (~cadddr (~cddddr x)))
(define* (cons? x) (pair? (! x)))
(define* empty null)
(define* (empty? x) (null? (! x)))
(require (only-in racket/list [last-pair !last-pair]))
(define* (last-pair list) (!last-pair (!list list)))
(define (do-remove name item list =)
(let ([= (! =)])
(let loop ([list (! list)])
(cond [(null? list) list]
[(not (pair? list))
(error name "not a proper list: ~e" list)]
[(!*app = item (car list)) (cdr list)]
[else (cons (car list) (~ (loop (! (cdr list)))))]))))
(define* remove
(case-lambda [(item list ) (do-remove 'remove item list ~equal?)]
[(item list =) (do-remove 'remove item list =)]))
(define* (remq item list) (do-remove 'remq item list ~eq?))
(define* (remv item list) (do-remove 'remv item list ~eqv?))
(define (do-remove* name items list =)
(let ([= (! =)] [items (!list items)])
(let loop ([list (! list)])
(cond [(null? list) list]
[(not (pair? list))
(error name "not a proper list: ~e" list)]
[else
(let ([xs (~ (loop (! (cdr list))))])
(if (memf (lambda (item) (!*app = item (car list))) items)
xs
(cons (car list) xs)))]))))
(define* remove*
(case-lambda [(items list ) (do-remove* 'remove* items list ~equal?)]
[(items list =) (do-remove* 'remove* items list =)]))
(define* (remq* items list) (do-remove* 'remq* items list ~eq?))
(define* (remv* items list) (do-remove* 'remv* items list ~eqv?))
(define* (memf pred list)
(let ([pred (! pred)])
(let loop ([list (! list)])
(cond [(null? list) #f]
[(not (pair? list)) (error 'memf "not a proper list: ~e" list)]
[(!*app pred (car list)) list]
[else (loop (! (cdr list)))]))))
(define* (assf pred alist)
(let ([pred (! pred)])
(let loop ([alist (! alist)])
(cond [(null? alist) #f]
[(not (pair? alist)) (error 'assf "not a proper list: ~e" alist)]
[else (let ([cell (! (car alist))])
(cond [(not (pair? cell))
(error 'assf "non-pair found in list: ~e" cell)]
[(!*app pred (car cell)) cell]
[else (loop (! (cdr alist)))]))]))))
(define* (filter pred list)
(let ([pred (! pred)])
(let loop ([list (! list)])
(cond [(null? list) list]
[(pair? list)
(let ([x (car list)]
[xs (~ (loop (! (cdr list))))])
(if (! (!*app pred x)) (cons x xs) xs))]
[else (error 'filter "not a proper list: ~e" list)]))))
(require (only-in racket/base [sort !sort]))
(define* (sort list less?)
(let ([less? (! less?)])
(!sort (!list list) (lambda (x y) (! (!*app less? x y))))))
;; --------------------------------------------------------------------------
;; mzlib/etc functionality
(require (only-in racket/bool boolean=? symbol=?))
(define* true #t)
(define* false #f)
(define* (identity x) x)
;; no need for dealing with multiple values since students don't use them
(define* (compose . fs)
(let ([fs (!list fs)])
(cond [(null? fs) identity]
[(null? (cdr fs)) (car fs)]
[else (let ([fs (reverse fs)])
(lambda xs
(let loop ([fs (cdr fs)]
[x (~!apply (car fs) xs)])
(if (null? fs)
x
(loop (cdr fs) (~!app (car fs) x))))))])))
(define* (build-list n f)
(let ([n (! n)] [f (! f)])
(unless (exact-nonnegative-integer? n)
(error 'build-list "~s must be an exact integer >= 0" n))
(unless (procedure? f)
(error 'build-list "~s must be a procedure" f))
(let loop ([i 0])
(if (>= i n)
'()
(cons (~ (f i)) (~ (loop (add1 i))))))))
;; --------------------------------------------------------------------------
;; Provide everything except some renamed stuff
(define-syntax (provide-strict-names stx)
#`(provide #,@strict-names))
(provide-strict-names)
(define-syntax (renaming-provide stx)
(syntax-case stx ()
[(_ id ...)
(with-syntax
([(~id ...)
(map (lambda (id)
(let* ([str (symbol->string (syntax-e id))]
[~id (string->symbol (string-append "~" str))])
(datum->syntax id ~id id)))
(syntax->list #'(id ...)))])
#'(provide (except-out (all-from-out racket/base) module #%app apply #%top λ
id ...)
(rename-out [~id id] ...)))]))
(renaming-provide
lambda define let let* letrec parameterize
values define-values let-values let*-values letrec-values make-struct-type
cons list list* vector box
if and or begin begin0 when unless
set! set-mcar! set-mcdr! vector-set! set-box!
cond case error printf fprintf display write print
eq? eqv? equal?
list? length list-ref list-tail append map for-each andmap ormap
member memq memv assoc assq assv reverse
caar cadr cdar cddr caaar caadr cadar caddr cdaar cdadr cddar cdddr caaaar
caaadr caadar caaddr cadaar cadadr caddar cadddr cdaaar cdaadr cdadar cdaddr
cddaar cddadr cdddar cddddr)
(provide
;; multiple values (see above)
split-values
;; explicit strict/lazy calls
strict-call lazy-call
;; `list' stuff
first second third fourth fifth sixth seventh eighth rest cons? empty empty?
foldl foldr last-pair remove remq remv remove* remq* remv* memf assf filter
sort
;; `etc' stuff
true false boolean=? symbol=? identity compose build-list
;; extra stuff for lazy Scheme
take cycle)
#|
;; Some tests
(cadr (list (/ 1 0) 1 (/ 1 0))) -> 1
(foldl + 0 '(1 2 3 4)) -> 10
(foldl (lambda (x y) y) 0 (list (/ 1 0) (/ 2 0) (/ 3 0))) -> 0
(foldl (lambda (x y) y) 0 (cons (/ 1 0) (cons (/ 2 0) '()))) -> 0
(foldr + 0 '(1 2 3 4)) -> 10
(foldr (lambda (x y) y) 0 (list (/ 1 0) (/ 2 0) (/ 3 0))) -> 0
(foldr (lambda (x y) y) 0 (cons (/ 1 0) (cons (/ 2 0) '()))) -> 0
(define ones (cons 1 ones))
(take 5 (foldr cons '() ones)) -> (1 1 1 1 1)
(define a (list (/ 1 0) 2 (/ 3 0)))
(caadr (map list a)) -> 2
(cadr (map + a a)) -> 4
(andmap even? '(1 2 3 4)) -> #f
(ormap even? '(1 2 3 4)) -> #t
(ormap even? '(1 21 3 41)) -> #f
(andmap even? (list 1 2 3 (/ 4 0))) -> #f
|#
|