This file is indexed.

/usr/lib/python3/dist-packages/tables/table.py is in python3-tables 3.2.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
# -*- coding: utf-8 -*-

########################################################################
#
# License: BSD
# Created: September 4, 2002
# Author: Francesc Alted - faltet@pytables.com
#
# $Id$
#
########################################################################

"""Here is defined the Table class."""

import math
import operator
import os.path
import sys
import warnings

from functools import reduce as _reduce
from time import time

import numpy
import numexpr

from tables import tableextension
from tables.lrucacheextension import ObjectCache, NumCache
from tables.atom import Atom
from tables.conditions import compile_condition
from numexpr.necompiler import (
    getType as numexpr_getType, double, is_cpu_amd_intel)
from numexpr.expressions import functions as numexpr_functions
from tables.flavor import flavor_of, array_as_internal, internal_to_flavor
from tables.utils import is_idx, lazyattr, SizeType, NailedDict as CacheDict
from tables.leaf import Leaf
from tables.description import (
    IsDescription, Description, Col, descr_from_dtype)
from tables.exceptions import (NodeError, HDF5ExtError, PerformanceWarning,
                               OldIndexWarning, NoSuchNodeError)
from tables.utilsextension import get_nested_field

from tables.path import join_path, split_path
from tables.index import (
    OldIndex, default_index_filters, default_auto_index, Index, IndexesDescG,
    IndexesTableG)

profile = False
# profile = True  # Uncomment for profiling
if profile:
    from tables.utils import show_stats

from tables._past import previous_api, previous_api_property

# 2.2: Added support for complex types. Introduced in version 0.9.
# 2.2.1: Added suport for time types.
# 2.3: Changed the indexes naming schema.
# 2.4: Changed indexes naming schema (again).
# 2.5: Added the FIELD_%d_FILL attributes.
# 2.6: Added the FLAVOR attribute (optional).
# 2.7: Numeric and numarray flavors are gone.
obversion = "2.7"  # The Table VERSION number


try:
    # int_, long_ are only available in numexpr >= 2.1
    from numexpr.necompiler import int_, long_
except ImportError:
    int_ = int
    long_ = int

# Maps NumPy types to the types used by Numexpr.
_nxtype_from_nptype = {
    numpy.bool_: bool,
    numpy.int8: int_,
    numpy.int16: int_,
    numpy.int32: int_,
    numpy.int64: long_,
    numpy.uint8: int_,
    numpy.uint16: int_,
    numpy.uint32: long_,
    numpy.uint64: long_,
    numpy.float32: float,
    numpy.float64: double,
    numpy.complex64: complex,
    numpy.complex128: complex,
    numpy.bytes_: bytes,
}

if sys.version_info[0] > 2:
    _nxtype_from_nptype[numpy.str_] = str

if hasattr(numpy, 'float16'):
    _nxtype_from_nptype[numpy.float16] = float    # XXX: check
if hasattr(numpy, 'float96'):
    _nxtype_from_nptype[numpy.float96] = double   # XXX: check
if hasattr(numpy, 'float128'):
    _nxtype_from_nptype[numpy.float128] = double  # XXX: check
if hasattr(numpy, 'complec192'):
    _nxtype_from_nptype[numpy.complex192] = complex  # XXX: check
if hasattr(numpy, 'complex256'):
    _nxtype_from_nptype[numpy.complex256] = complex  # XXX: check


# The NumPy scalar type corresponding to `SizeType`.
_npsizetype = numpy.array(SizeType(0)).dtype.type


def _index_name_of(node):
    return '_i_%s' % node._v_name

_indexNameOf = previous_api(_index_name_of)


def _index_pathname_of(node):
    nodeParentPath = split_path(node._v_pathname)[0]
    return join_path(nodeParentPath, _index_name_of(node))

_indexPathnameOf = previous_api(_index_pathname_of)


def _index_pathname_of_column(table, colpathname):
    return join_path(_index_pathname_of(table), colpathname)

_indexPathnameOfColumn = previous_api(_index_pathname_of_column)

# The next are versions that work with just paths (i.e. we don't need
# a node instance for using them, which can be critical in certain
# situations)


def _index_name_of_(nodeName):
    return '_i_%s' % nodeName

_indexNameOf_ = previous_api(_index_name_of_)


def _index_pathname_of_(nodePath):
    nodeParentPath, nodeName = split_path(nodePath)
    return join_path(nodeParentPath, _index_name_of_(nodeName))

_indexPathnameOf_ = previous_api(_index_pathname_of_)


def _index_pathname_of_column_(tablePath, colpathname):
    return join_path(_index_pathname_of_(tablePath), colpathname)

_indexPathnameOfColumn_ = previous_api(_index_pathname_of_column_)


def _table__setautoindex(self, auto):
    auto = bool(auto)
    try:
        indexgroup = self._v_file._get_node(_index_pathname_of(self))
    except NoSuchNodeError:
        indexgroup = create_indexes_table(self)
    indexgroup.auto = auto
    # Update the cache in table instance as well
    self._autoindex = auto

_table__setautoIndex = previous_api(_table__setautoindex)


# **************** WARNING! ***********************
# This function can be called during the destruction time of a table
# so measures have been taken so that it doesn't have to revive
# another node (which can fool the LRU cache). The solution devised
# has been to add a cache for autoindex (Table._autoindex), populate
# it in creation time of the cache (which is a safe period) and then
# update the cache whenever it changes.
# This solves the error when running test_indexes.py ManyNodesTestCase.
# F. Alted 2007-04-20
# **************************************************
def _table__getautoindex(self):
    if self._autoindex is None:
        try:
            indexgroup = self._v_file._get_node(_index_pathname_of(self))
        except NoSuchNodeError:
            self._autoindex = default_auto_index  # update cache
            return self._autoindex
        else:
            self._autoindex = indexgroup.auto   # update cache
            return self._autoindex
    else:
        # The value is in cache, return it
        return self._autoindex

_table__getautoIndex = previous_api(_table__getautoindex)

_table__autoindex = property(
    _table__getautoindex, _table__setautoindex, None,
    """Automatically keep column indexes up to date?

    Setting this value states whether existing indexes should be
    automatically updated after an append operation or recomputed
    after an index-invalidating operation (i.e. removal and
    modification of rows).  The default is true.

    This value gets into effect whenever a column is altered.  If you
    don't have automatic indexing activated and you want to do an an
    immediate update use `Table.flush_rows_to_index()`; for an immediate
    reindexing of invalidated indexes, use `Table.reindex_dirty()`.

    This value is persistent.
    """)

_table__autoIndex = previous_api(_table__autoindex)


def restorecache(self):
    # Define a cache for sparse table reads
    params = self._v_file.params
    chunksize = self._v_chunkshape[0]
    nslots = params['TABLE_MAX_SIZE'] / (chunksize * self._v_dtype.itemsize)
    self._chunkcache = NumCache((nslots, chunksize), self._v_dtype,
                                'table chunk cache')
    self._seqcache = ObjectCache(params['ITERSEQ_MAX_SLOTS'],
                                 params['ITERSEQ_MAX_SIZE'],
                                 'Iter sequence cache')
    self._dirtycache = False


def _table__where_indexed(self, compiled, condition, condvars,
                          start, stop, step):
    if profile:
        tref = time()
    if profile:
        show_stats("Entering table_whereIndexed", tref)
    self._use_index = True
    # Clean the table caches for indexed queries if needed
    if self._dirtycache:
        restorecache(self)

    # Get the values in expression that are not columns
    values = []
    for key, value in condvars.items():
        if isinstance(value, numpy.ndarray):
            values.append((key, value.item()))
    # Build a key for the sequence cache
    seqkey = (condition, tuple(values), (start, stop, step))
    # Do a lookup in sequential cache for this query
    nslot = self._seqcache.getslot(seqkey)
    if nslot >= 0:
        # Get the row sequence from the cache
        seq = self._seqcache.getitem(nslot)
        if len(seq) == 0:
            return iter([])
        # seq is a list.
        seq = numpy.array(seq, dtype='int64')
        # Correct the ranges in cached sequence
        if (start, stop, step) != (0, self.nrows, 1):
            seq = seq[(seq >= start) & (
                seq < stop) & ((seq - start) % step == 0)]
        return self.itersequence(seq)
    else:
        # No luck.  self._seqcache will be populated
        # in the iterator if possible. (Row._finish_riterator)
        self._seqcache_key = seqkey

    # Compute the chunkmap for every index in indexed expression
    idxexprs = compiled.index_expressions
    strexpr = compiled.string_expression
    cmvars = {}
    tcoords = 0
    for i, idxexpr in enumerate(idxexprs):
        var, ops, lims = idxexpr
        col = condvars[var]
        index = col.index
        assert index is not None, "the chosen column is not indexed"
        assert not index.dirty, "the chosen column has a dirty index"

        # Get the number of rows that the indexed condition yields.
        range_ = index.get_lookup_range(ops, lims)
        ncoords = index.search(range_)
        tcoords += ncoords
        if index.reduction == 1 and ncoords == 0:
            # No values from index condition, thus the chunkmap should be empty
            nrowsinchunk = self.chunkshape[0]
            nchunks = int(math.ceil(float(self.nrows) / nrowsinchunk))
            chunkmap = numpy.zeros(shape=nchunks, dtype="bool")
        else:
            # Get the chunkmap from the index
            chunkmap = index.get_chunkmap()
        # Assign the chunkmap to the cmvars dictionary
        cmvars["e%d" % i] = chunkmap

    if index.reduction == 1 and tcoords == 0:
        # No candidates found in any indexed expression component, so leave now
        self._seqcache.setitem(seqkey, [], 1)
        return iter([])

    # Compute the final chunkmap
    chunkmap = numexpr.evaluate(strexpr, cmvars)
    if not chunkmap.any():
        # The chunkmap is all False, so the result is empty
        self._seqcache.setitem(seqkey, [], 1)
        return iter([])

    if profile:
        show_stats("Exiting table_whereIndexed", tref)
    return chunkmap

_table__whereIndexed = previous_api(_table__where_indexed)


def create_indexes_table(table):
    itgroup = IndexesTableG(
        table._v_parent, _index_name_of(table),
        "Indexes container for table " + table._v_pathname, new=True)
    return itgroup

createIndexesTable = previous_api(create_indexes_table)


def create_indexes_descr(igroup, dname, iname, filters):
    idgroup = IndexesDescG(
        igroup, iname,
        "Indexes container for sub-description " + dname,
        filters=filters, new=True)
    return idgroup

createIndexesDescr = previous_api(create_indexes_descr)


def _column__create_index(self, optlevel, kind, filters, tmp_dir,
                          blocksizes, verbose):
    name = self.name
    table = self.table
    dtype = self.dtype
    descr = self.descr
    index = self.index
    get_node = table._v_file._get_node

    # Warn if the index already exists
    if index:
        raise ValueError("%s for column '%s' already exists. If you want to "
                         "re-create it, please, try with reindex() method "
                         "better" % (str(index), str(self.pathname)))

    # Check that the datatype is indexable.
    if dtype.str[1:] == 'u8':
        raise NotImplementedError(
            "indexing 64-bit unsigned integer columns "
            "is not supported yet, sorry")
    if dtype.kind == 'c':
        raise TypeError("complex columns can not be indexed")
    if dtype.shape != ():
        raise TypeError("multidimensional columns can not be indexed")

    # Get the indexes group for table, and if not exists, create it
    try:
        itgroup = get_node(_index_pathname_of(table))
    except NoSuchNodeError:
        itgroup = create_indexes_table(table)

    # Create the necessary intermediate groups for descriptors
    idgroup = itgroup
    dname = ""
    pathname = descr._v_pathname
    if pathname != '':
        inames = pathname.split('/')
        for iname in inames:
            if dname == '':
                dname = iname
            else:
                dname += '/' + iname
            try:
                idgroup = get_node('%s/%s' % (itgroup._v_pathname, dname))
            except NoSuchNodeError:
                idgroup = create_indexes_descr(idgroup, dname, iname, filters)

    # Create the atom
    assert dtype.shape == ()
    atom = Atom.from_dtype(numpy.dtype((dtype, (0,))))

    # Protection on tables larger than the expected rows (perhaps the
    # user forgot to pass this parameter to the Table constructor?)
    expectedrows = table._v_expectedrows
    if table.nrows > expectedrows:
        expectedrows = table.nrows

    # Create the index itself
    index = Index(
        idgroup, name, atom=atom,
        title="Index for %s column" % name,
        kind=kind,
        optlevel=optlevel,
        filters=filters,
        tmp_dir=tmp_dir,
        expectedrows=expectedrows,
        byteorder=table.byteorder,
        blocksizes=blocksizes)

    table._set_column_indexing(self.pathname, True)

    # Feed the index with values

    # Add rows to the index if necessary
    if table.nrows > 0:
        indexedrows = table._add_rows_to_index(
            self.pathname, 0, table.nrows, lastrow=True, update=False)
    else:
        indexedrows = 0
    index.dirty = False
    table._indexedrows = indexedrows
    table._unsaved_indexedrows = table.nrows - indexedrows

    # Optimize the index that has been already filled-up
    index.optimize(verbose=verbose)

    # We cannot do a flush here because when reindexing during a
    # flush, the indexes are created anew, and that creates a nested
    # call to flush().
    # table.flush()

    return indexedrows

_column__createIndex = previous_api(_column__create_index)


class _ColIndexes(dict):
    """Provides a nice representation of column indexes."""

    def __repr__(self):
        """Gives a detailed Description column representation."""

        rep = ['  \"%s\": %s' % (k, self[k]) for k in self.keys()]
        return '{\n  %s}' % (',\n  '.join(rep))


class Table(tableextension.Table, Leaf):
    """This class represents heterogeneous datasets in an HDF5 file.

    Tables are leaves (see the Leaf class in :ref:`LeafClassDescr`) whose data
    consists of a unidimensional sequence of *rows*, where each row contains
    one or more *fields*.  Fields have an associated unique *name* and
    *position*, with the first field having position 0.  All rows have the same
    fields, which are arranged in *columns*.

    Fields can have any type supported by the Col class (see
    :ref:`ColClassDescr`) and its descendants, which support multidimensional
    data.  Moreover, a field can be *nested* (to an arbitrary depth), meaning
    that it includes further fields inside.  A field named x inside a nested
    field a in a table can be accessed as the field a/x (its *path name*) from
    the table.

    The structure of a table is declared by its description, which is made
    available in the Table.description attribute (see :class:`Table`).

    This class provides new methods to read, write and search table data
    efficiently.  It also provides special Python methods to allow accessing
    the table as a normal sequence or array (with extended slicing supported).

    PyTables supports *in-kernel* searches working simultaneously on several
    columns using complex conditions.  These are faster than selections using
    Python expressions.  See the :meth:`Table.where` method for more
    information on in-kernel searches.

    Non-nested columns can be *indexed*.  Searching an indexed column can be
    several times faster than searching a non-nested one.  Search methods
    automatically take advantage of indexing where available.

    When iterating a table, an object from the Row (see :ref:`RowClassDescr`)
    class is used.  This object allows to read and write data one row at a
    time, as well as to perform queries which are not supported by in-kernel
    syntax (at a much lower speed, of course).

    Objects of this class support access to individual columns via *natural
    naming* through the :attr:`Table.cols` accessor.  Nested columns are
    mapped to Cols instances, and non-nested ones to Column instances.
    See the Column class in :ref:`ColumnClassDescr` for examples of this
    feature.

    Parameters
    ----------
    parentnode
        The parent :class:`Group` object.

        .. versionchanged:: 3.0
           Renamed from *parentNode* to *parentnode*.

    name : str
        The name of this node in its parent group.
    description
        An IsDescription subclass or a dictionary where the keys are the field
        names, and the values the type definitions. In addition, a pure NumPy
        dtype is accepted.  If None, the table metadata is read from disk,
        else, it's taken from previous parameters.
    title
        Sets a TITLE attribute on the HDF5 table entity.
    filters : Filters
        An instance of the Filters class that provides information about the
        desired I/O filters to be applied during the life of this object.
    expectedrows
        A user estimate about the number of rows that will be on table. If not
        provided, the default value is ``EXPECTED_ROWS_TABLE`` (see
        ``tables/parameters.py``).  If you plan to save bigger tables, try
        providing a guess; this will optimize the HDF5 B-Tree creation and
        management process time and memory used.
    chunkshape
        The shape of the data chunk to be read or written as a single HDF5 I/O
        operation. The filters are applied to those chunks of data. Its rank
        for tables has to be 1.  If ``None``, a sensible value is calculated
        based on the `expectedrows` parameter (which is recommended).
    byteorder
        The byteorder of the data *on-disk*, specified as 'little' or 'big'. If
        this is not specified, the byteorder is that of the platform, unless
        you passed a recarray as the `description`, in which case the recarray
        byteorder will be chosen.

    Notes
    -----
    The instance variables below are provided in addition to those in
    Leaf (see :ref:`LeafClassDescr`).  Please note that there are several
    col* dictionaries to ease retrieving information about a column
    directly by its path name, avoiding the need to walk through
    Table.description or Table.cols.


    .. rubric:: Table attributes

    .. attribute:: coldescrs

        Maps the name of a column to its Col description (see
        :ref:`ColClassDescr`).

    .. attribute:: coldflts

        Maps the name of a column to its default value.

    .. attribute:: coldtypes

        Maps the name of a column to its NumPy data type.

    .. attribute:: colindexed

        Is the column which name is used as a key indexed?

    .. attribute:: colinstances

        Maps the name of a column to its Column (see
        :ref:`ColumnClassDescr`) or Cols (see :ref:`ColsClassDescr`)
        instance.

    .. attribute:: colnames

        A list containing the names of *top-level* columns in the table.

    .. attribute:: colpathnames

        A list containing the pathnames of *bottom-level* columns in
        the table.

        These are the leaf columns obtained when walking the table
        description left-to-right, bottom-first. Columns inside a
        nested column have slashes (/) separating name components in
        their pathname.

    .. attribute:: cols

        A Cols instance that provides *natural naming* access to
        non-nested (Column, see :ref:`ColumnClassDescr`) and nested
        (Cols, see :ref:`ColsClassDescr`) columns.

    .. attribute:: coltypes

        Maps the name of a column to its PyTables data type.

    .. attribute:: description

        A Description instance (see :ref:`DescriptionClassDescr`)
        reflecting the structure of the table.

    .. attribute:: extdim

        The index of the enlargeable dimension (always 0 for tables).

    .. attribute:: indexed

        Does this table have any indexed columns?

    .. attribute:: nrows

        The current number of rows in the table.

    """

    # Class identifier.
    _c_classid = 'TABLE'

    _c_classId = previous_api_property('_c_classid')
    _v_objectId = previous_api_property('_v_objectid')

    # Properties
    # ~~~~~~~~~~
    @lazyattr
    def row(self):
        """The associated Row instance (see :ref:`RowClassDescr`)."""

        return tableextension.Row(self)

    @lazyattr
    def dtype(self):
        """The NumPy ``dtype`` that most closely matches this table."""

        return self.description._v_dtype

    # Read-only shorthands
    # ````````````````````

    shape = property(
        lambda self: (self.nrows,), None, None,
        "The shape of this table.")

    rowsize = property(
        lambda self: self.description._v_dtype.itemsize, None, None,
        "The size in bytes of each row in the table.")

    size_in_memory = property(
        lambda self: self.nrows * self.rowsize, None, None,
        """The size of this table's data in bytes when it is fully loaded into
        memory.  This may be used in combination with size_on_disk to calculate
        the compression ratio of the data.""")

    # Lazy attributes
    # ```````````````
    @lazyattr
    def _v_iobuf(self):
        """A buffer for doing I/O."""

        return self._get_container(self.nrowsinbuf)

    @lazyattr
    def _v_wdflts(self):
        """The defaults for writing in recarray format."""

        # First, do a check to see whether we need to set default values
        # different from 0 or not.
        for coldflt in self.coldflts.values():
            if isinstance(coldflt, numpy.ndarray) or coldflt:
                break
        else:
            # No default different from 0 found.  Returning None.
            return None
        wdflts = self._get_container(1)
        for colname, coldflt in self.coldflts.items():
            ra = get_nested_field(wdflts, colname)
            ra[:] = coldflt
        return wdflts

    @lazyattr
    def _colunaligned(self):
        """The pathnames of unaligned, *unidimensional* columns."""
        colunaligned, rarr = [], self._get_container(0)
        for colpathname in self.colpathnames:
            carr = get_nested_field(rarr, colpathname)
            if not carr.flags.aligned and carr.ndim == 1:
                colunaligned.append(colpathname)
        return frozenset(colunaligned)

    # Index-related properties
    # ````````````````````````
    autoindex = _table__autoindex
    """Automatically keep column indexes up to date?

    Setting this value states whether existing indexes should be automatically
    updated after an append operation or recomputed after an index-invalidating
    operation (i.e. removal and modification of rows). The default is true.

    This value gets into effect whenever a column is altered. If you don't have
    automatic indexing activated and you want to do an immediate update use
    :meth:`Table.flush_rows_to_index`; for immediate reindexing of invalidated
    indexes, use :meth:`Table.reindex_dirty`.

    This value is persistent.

    .. versionchanged:: 3.0
       The *autoIndex* property has been renamed into *autoindex*.

    """

    autoIndex = previous_api_property('autoindex')

    indexedcolpathnames = property(
        lambda self: [_colpname for _colpname in self.colpathnames
                      if self.colindexed[_colpname]],
        None, None,
        """List of pathnames of indexed columns in the table.""")

    colindexes = property(
        lambda self: _ColIndexes(
            ((_colpname, self.cols._f_col(_colpname).index)
             for _colpname in self.colpathnames
             if self.colindexed[_colpname])),
        None, None,
        """A dictionary with the indexes of the indexed columns.""")

    _dirtyindexes = property(
        lambda self: self._condition_cache._nailcount > 0,
        None, None,
        """Whether some index in table is dirty.""")

    # Other methods
    # ~~~~~~~~~~~~~
    def __init__(self, parentnode, name,
                 description=None, title="", filters=None,
                 expectedrows=None, chunkshape=None,
                 byteorder=None, _log=True):

        self._v_new = new = description is not None
        """Is this the first time the node has been created?"""
        self._v_new_title = title
        """New title for this node."""
        self._v_new_filters = filters
        """New filter properties for this node."""
        self.extdim = 0   # Tables only have one dimension currently
        """The index of the enlargeable dimension (always 0 for tables)."""
        self._v_recarray = None
        """A structured array to be stored in the table."""
        self._rabyteorder = None
        """The computed byteorder of the self._v_recarray."""
        if expectedrows is None:
            expectedrows = parentnode._v_file.params['EXPECTED_ROWS_TABLE']
        self._v_expectedrows = expectedrows
        """The expected number of rows to be stored in the table."""
        self.nrows = SizeType(0)
        """The current number of rows in the table."""
        self.description = None
        """A Description instance (see :ref:`DescriptionClassDescr`)
        reflecting the structure of the table."""
        self._time64colnames = []
        """The names of ``Time64`` columns."""
        self._strcolnames = []
        """The names of ``String`` columns."""
        self._colenums = {}
        """Maps the name of an enumerated column to its ``Enum`` instance."""
        self._v_chunkshape = None
        """Private storage for the `chunkshape` property of the leaf."""

        self.indexed = False
        """Does this table have any indexed columns?"""
        self._indexedrows = 0
        """Number of rows indexed in disk."""
        self._unsaved_indexedrows = 0
        """Number of rows indexed in memory but still not in disk."""
        self._listoldindexes = []
        """The list of columns with old indexes."""
        self._autoindex = None
        """Private variable that caches the value for autoindex."""

        self.colnames = []
        """A list containing the names of *top-level* columns in the table."""
        self.colpathnames = []
        """A list containing the pathnames of *bottom-level* columns in the
        table.

        These are the leaf columns obtained when walking the
        table description left-to-right, bottom-first.  Columns inside a
        nested column have slashes (/) separating name components in
        their pathname.
        """
        self.colinstances = {}
        """Maps the name of a column to its Column (see
        :ref:`ColumnClassDescr`) or Cols (see :ref:`ColsClassDescr`)
        instance."""
        self.coldescrs = {}
        """Maps the name of a column to its Col description (see
        :ref:`ColClassDescr`)."""
        self.coltypes = {}
        """Maps the name of a column to its PyTables data type."""
        self.coldtypes = {}
        """Maps the name of a column to its NumPy data type."""
        self.coldflts = {}
        """Maps the name of a column to its default value."""
        self.colindexed = {}
        """Is the column which name is used as a key indexed?"""

        self._use_index = False
        """Whether an index can be used or not in a search.  Boolean."""
        self._where_condition = None
        """Condition function and argument list for selection of values."""
        self._seqcache_key = None
        """The key under which to save a query's results (list of row indexes)
        or None to not save."""
        max_slots = parentnode._v_file.params['COND_CACHE_SLOTS']
        self._condition_cache = CacheDict(max_slots)
        """Cache of already compiled conditions."""
        self._exprvars_cache = {}
        """Cache of variables participating in numexpr expressions."""
        self._enabled_indexing_in_queries = True
        """Is indexing enabled in queries?  *Use only for testing.*"""
        self._empty_array_cache = {}
        """Cache of empty arrays."""

        self._v_dtype = None
        """The NumPy datatype fopr this table."""
        self.cols = None
        """
        A Cols instance that provides *natural naming* access to non-nested
        (Column, see :ref:`ColumnClassDescr`) and nested (Cols, see
        :ref:`ColsClassDescr`) columns.
        """
        self._dirtycache = True
        """Whether the data caches are dirty or not. Initially set to yes."""
        self._descflavor = None
        """Temporarily keeps the flavor of a description with data."""

        # Initialize this object in case is a new Table

        # Try purely descriptive description objects.
        if new and isinstance(description, dict):
            # Dictionary case
            self.description = Description(description)
        elif new and (type(description) == type(IsDescription)
                      and issubclass(description, IsDescription)):
            # IsDescription subclass case
            descr = description()
            self.description = Description(descr.columns)
        elif new and isinstance(description, Description):
            # It is a Description instance already
            self.description = description

        # No description yet?
        if new and self.description is None:
            # Try NumPy dtype instances
            if isinstance(description, numpy.dtype):
                self.description, self._rabyteorder = \
                    descr_from_dtype(description)

        # No description yet?
        if new and self.description is None:
            # Try structured array description objects.
            try:
                self._descflavor = flavor = flavor_of(description)
            except TypeError:  # probably not an array
                pass
            else:
                if flavor == 'python':
                    nparray = numpy.rec.array(description)
                else:
                    nparray = array_as_internal(description, flavor)
                self.nrows = nrows = SizeType(nparray.size)
                # If `self._v_recarray` is set, it will be used as the
                # initial buffer.
                if nrows > 0:
                    self._v_recarray = nparray
                self.description, self._rabyteorder = \
                    descr_from_dtype(nparray.dtype)

        # No description yet?
        if new and self.description is None:
            raise TypeError(
                "the ``description`` argument is not of a supported type: "
                "``IsDescription`` subclass, ``Description`` instance, "
                "dictionary, or structured array")

        # Check the chunkshape parameter
        if new and chunkshape is not None:
            if isinstance(chunkshape, (int, numpy.integer, int)):
                chunkshape = (chunkshape,)
            try:
                chunkshape = tuple(chunkshape)
            except TypeError:
                raise TypeError(
                    "`chunkshape` parameter must be an integer or sequence "
                    "and you passed a %s" % type(chunkshape))
            if len(chunkshape) != 1:
                raise ValueError("`chunkshape` rank (length) must be 1: %r"
                                 % (chunkshape,))
            self._v_chunkshape = tuple(SizeType(s) for s in chunkshape)

        super(Table, self).__init__(parentnode, name, new, filters,
                                    byteorder, _log)

    def _g_post_init_hook(self):
        # We are putting here the index-related issues
        # as well as filling general info for table
        # This is needed because we need first the index objects created

        # First, get back the flavor of input data (if any) for
        # `Leaf._g_post_init_hook()`.
        self._flavor, self._descflavor = self._descflavor, None
        super(Table, self)._g_post_init_hook()

        # Create a cols accessor.
        self.cols = Cols(self, self.description)

        # Place the `Cols` and `Column` objects into `self.colinstances`.
        colinstances, cols = self.colinstances, self.cols
        for colpathname in self.description._v_pathnames:
            colinstances[colpathname] = cols._g_col(colpathname)

        if self._v_new:
            # Columns are never indexed on creation.
            self.colindexed = dict((cpn, False) for cpn in self.colpathnames)
            return

        # The following code is only for opened tables.

        # Do the indexes group exist?
        indexesgrouppath = _index_pathname_of(self)
        igroup = indexesgrouppath in self._v_file
        oldindexes = False
        for colobj in self.description._f_walk(type="Col"):
            colname = colobj._v_pathname
            # Is this column indexed?
            if igroup:
                indexname = _index_pathname_of_column(self, colname)
                indexed = indexname in self._v_file
                self.colindexed[colname] = indexed
                if indexed:
                    column = self.cols._g_col(colname)
                    indexobj = column.index
                    if isinstance(indexobj, OldIndex):
                        indexed = False  # Not a vaild index
                        oldindexes = True
                        self._listoldindexes.append(colname)
                    else:
                        # Tell the condition cache about columns with dirty
                        # indexes.
                        if indexobj.dirty:
                            self._condition_cache.nail()
            else:
                indexed = False
                self.colindexed[colname] = False
            if indexed:
                self.indexed = True

        if oldindexes:  # this should only appear under 2.x Pro
            warnings.warn(
                "table ``%s`` has column indexes with PyTables 1.x format. "
                "Unfortunately, this format is not supported in "
                "PyTables 2.x series. Note that you can use the "
                "``ptrepack`` utility in order to recreate the indexes. "
                "The 1.x indexed columns found are: %s" %
                (self._v_pathname, self._listoldindexes),
                OldIndexWarning)

        # It does not matter to which column 'indexobj' belongs,
        # since their respective index objects share
        # the same number of elements.
        if self.indexed:
            self._indexedrows = indexobj.nelements
            self._unsaved_indexedrows = self.nrows - self._indexedrows
            # Put the autoindex value in a cache variable
            self._autoindex = self.autoindex

    _g_postInitHook = previous_api(_g_post_init_hook)

    def _calc_nrowsinbuf(self):
        """Calculate the number of rows that fits on a PyTables buffer."""

        params = self._v_file.params
        # Compute the nrowsinbuf
        rowsize = self.rowsize
        buffersize = params['IO_BUFFER_SIZE']
        if rowsize != 0:
            nrowsinbuf = buffersize // rowsize
            # The number of rows in buffer needs to be an exact multiple of
            # chunkshape[0] for queries using indexed columns.
            # Fixes #319 and probably #409 too.
            nrowsinbuf -= nrowsinbuf % self.chunkshape[0]
        else:
            nrowsinbuf = 1

        # tableextension.pyx performs an assertion
        # to make sure nrowsinbuf is greater than or
        # equal to the chunksize.
        # See gh-206 and gh-238
        if self.chunkshape is not None:
            if nrowsinbuf < self.chunkshape[0]:
                nrowsinbuf = self.chunkshape[0]

        # Safeguard against row sizes being extremely large
        if nrowsinbuf == 0:
            nrowsinbuf = 1
            # If rowsize is too large, issue a Performance warning
            maxrowsize = params['BUFFER_TIMES'] * buffersize
            if rowsize > maxrowsize:
                warnings.warn("""\
The Table ``%s`` is exceeding the maximum recommended rowsize (%d bytes);
be ready to see PyTables asking for *lots* of memory and possibly slow
I/O.  You may want to reduce the rowsize by trimming the value of
dimensions that are orthogonal (and preferably close) to the *main*
dimension of this leave.  Alternatively, in case you have specified a
very small/large chunksize, you may want to increase/decrease it."""
                              % (self._v_pathname, maxrowsize),
                              PerformanceWarning)
        return nrowsinbuf

    def _getemptyarray(self, dtype):
        # Acts as a cache for empty arrays
        key = dtype
        if key in self._empty_array_cache:
            return self._empty_array_cache[key]
        else:
            self._empty_array_cache[
                key] = arr = numpy.empty(shape=0, dtype=key)
            return arr

    def _get_container(self, shape):
        "Get the appropriate buffer for data depending on table nestedness."

        # This is *much* faster than the numpy.rec.array counterpart
        return numpy.empty(shape=shape, dtype=self._v_dtype)

    def _get_type_col_names(self, type_):
        """Returns a list containing 'type_' column names."""

        return [colobj._v_pathname
                for colobj in self.description._f_walk('Col')
                if colobj.type == type_]

    _getTypeColNames = previous_api(_get_type_col_names)

    def _get_enum_map(self):
        """Return mapping from enumerated column names to `Enum` instances."""

        enumMap = {}
        for colobj in self.description._f_walk('Col'):
            if colobj.kind == 'enum':
                enumMap[colobj._v_pathname] = colobj.enum
        return enumMap

    _getEnumMap = previous_api(_get_enum_map)

    def _g_create(self):
        """Create a new table on disk."""

        # Warning against assigning too much columns...
        # F. Alted 2005-06-05
        maxColumns = self._v_file.params['MAX_COLUMNS']
        if (len(self.description._v_names) > maxColumns):
            warnings.warn(
                "table ``%s`` is exceeding the recommended "
                "maximum number of columns (%d); "
                "be ready to see PyTables asking for *lots* of memory "
                "and possibly slow I/O" % (self._v_pathname, maxColumns),
                PerformanceWarning)

        # 1. Create the HDF5 table (some parameters need to be computed).

        # Fix the byteorder of the recarray and update the number of
        # expected rows if necessary
        if self._v_recarray is not None:
            self._v_recarray = self._g_fix_byteorder_data(self._v_recarray,
                                                          self._rabyteorder)
            if len(self._v_recarray) > self._v_expectedrows:
                self._v_expectedrows = len(self._v_recarray)
        # Compute a sensible chunkshape
        if self._v_chunkshape is None:
            self._v_chunkshape = self._calc_chunkshape(
                self._v_expectedrows, self.rowsize, self.rowsize)
        # Correct the byteorder, if still needed
        if self.byteorder is None:
            self.byteorder = sys.byteorder

        # Cache some data which is already in the description.
        # This is necessary to happen before creation time in order
        # to be able to populate the self._v_wdflts
        self._cache_description_data()

        # After creating the table, ``self._v_objectid`` needs to be
        # set because it is needed for setting attributes afterwards.
        self._v_objectid = self._create_table(
            self._v_new_title, self.filters.complib or '', obversion)
        self._v_recarray = None  # not useful anymore
        self._rabyteorder = None  # not useful anymore

        # 2. Compute or get chunk shape and buffer size parameters.
        self.nrowsinbuf = self._calc_nrowsinbuf()

        # 3. Get field fill attributes from the table description and
        #    set them on disk.
        if self._v_file.params['PYTABLES_SYS_ATTRS']:
            set_attr = self._v_attrs._g__setattr
            for i, colobj in enumerate(self.description._f_walk(type="Col")):
                fieldname = "FIELD_%d_FILL" % i
                set_attr(fieldname, colobj.dflt)

        return self._v_objectid

    def _g_open(self):
        """Opens a table from disk and read the metadata on it.

        Creates an user description on the flight to easy the access to
        the actual data.

        """

        # 1. Open the HDF5 table and get some data from it.
        self._v_objectid, description, chunksize = self._get_info()
        self._v_expectedrows = self.nrows  # the actual number of rows

        # 2. Create an instance description to host the record fields.
        validate = not self._v_file._isPTFile  # only for non-PyTables files
        self.description = Description(description, validate=validate)

        # 3. Compute or get chunk shape and buffer size parameters.
        if chunksize == 0:
            self._v_chunkshape = self._calc_chunkshape(
                self._v_expectedrows, self.rowsize, self.rowsize)
        else:
            self._v_chunkshape = (chunksize,)
        self.nrowsinbuf = self._calc_nrowsinbuf()

        # 4. If there are field fill attributes, get them from disk and
        #    set them in the table description.
        if self._v_file.params['PYTABLES_SYS_ATTRS']:
            if "FIELD_0_FILL" in self._v_attrs._f_list("sys"):
                i = 0
                get_attr = self._v_attrs.__getattr__
                for objcol in self.description._f_walk(type="Col"):
                    colname = objcol._v_pathname
                    # Get the default values for each column
                    fieldname = "FIELD_%s_FILL" % i
                    defval = get_attr(fieldname)
                    if defval is not None:
                        objcol.dflt = defval
                    else:
                        warnings.warn("could not load default value "
                                      "for the ``%s`` column of table ``%s``; "
                                      "using ``%r`` instead"
                                      % (colname, self._v_pathname,
                                          objcol.dflt))
                        defval = objcol.dflt
                    i += 1

                # Set also the correct value in the desc._v_dflts dictionary
                for descr in self.description._f_walk(type="Description"):
                    names = descr._v_names
                    for i in range(len(names)):
                        objcol = descr._v_colobjects[names[i]]
                        if isinstance(objcol, Col):
                            descr._v_dflts[objcol._v_name] = objcol.dflt

        # 5. Cache some data which is already in the description.
        self._cache_description_data()

        return self._v_objectid

    def _cache_description_data(self):
        """Cache some data which is already in the description.

        Some information is extracted from `self.description` to build
        some useful (but redundant) structures:

        * `self.colnames`
        * `self.colpathnames`
        * `self.coldescrs`
        * `self.coltypes`
        * `self.coldtypes`
        * `self.coldflts`
        * `self._v_dtype`
        * `self._time64colnames`
        * `self._strcolnames`
        * `self._colenums`

        """

        self.colnames = list(self.description._v_names)
        self.colpathnames = [
            col._v_pathname for col in self.description._f_walk()
            if not hasattr(col, '_v_names')]  # bottom-level

        # Find ``time64`` column names.
        self._time64colnames = self._get_type_col_names('time64')
        # Find ``string`` column names.
        self._strcolnames = self._get_type_col_names('string')
        # Get a mapping of enumerated columns to their `Enum` instances.
        self._colenums = self._get_enum_map()

        # Get info about columns
        for colobj in self.description._f_walk(type="Col"):
            colname = colobj._v_pathname
            # Get the column types, types and defaults
            self.coldescrs[colname] = colobj
            self.coltypes[colname] = colobj.type
            self.coldtypes[colname] = colobj.dtype
            self.coldflts[colname] = colobj.dflt

        # Assign _v_dtype for this table
        self._v_dtype = self.description._v_dtype

    _cacheDescriptionData = previous_api(_cache_description_data)

    def _get_column_instance(self, colpathname):
        """Get the instance of the column with the given `colpathname`.

        If the column does not exist in the table, a `KeyError` is
        raised.

        """

        try:
            return _reduce(getattr, colpathname.split('/'), self.description)
        except AttributeError:
            raise KeyError("table ``%s`` does not have a column named ``%s``"
                           % (self._v_pathname, colpathname))

    _getColumnInstance = previous_api(_get_column_instance)

    _check_column = _get_column_instance

    def _disable_indexing_in_queries(self):
        """Force queries not to use indexing.

        *Use only for testing.*

        """

        if not self._enabled_indexing_in_queries:
            return  # already disabled
        # The nail avoids setting/getting compiled conditions in/from
        # the cache where indexing is used.
        self._condition_cache.nail()
        self._enabled_indexing_in_queries = False

    _disableIndexingInQueries = previous_api(_disable_indexing_in_queries)

    def _enable_indexing_in_queries(self):
        """Allow queries to use indexing.

        *Use only for testing.*

        """

        if self._enabled_indexing_in_queries:
            return  # already enabled
        self._condition_cache.unnail()
        self._enabled_indexing_in_queries = True

    _enableIndexingInQueries = previous_api(_enable_indexing_in_queries)

    def _required_expr_vars(self, expression, uservars, depth=1):
        """Get the variables required by the `expression`.

        A new dictionary defining the variables used in the `expression`
        is returned.  Required variables are first looked up in the
        `uservars` mapping, then in the set of top-level columns of the
        table.  Unknown variables cause a `NameError` to be raised.

        When `uservars` is `None`, the local and global namespace where
        the API callable which uses this method is called is sought
        instead.  This mechanism will not work as expected if this
        method is not used *directly* from an API callable.  To disable
        this mechanism, just specify a mapping as `uservars`.

        Nested columns and columns from other tables are not allowed
        (`TypeError` and `ValueError` are raised, respectively).  Also,
        non-column variable values are converted to NumPy arrays.

        `depth` specifies the depth of the frame in order to reach local
        or global variables.

        """

        # Get the names of variables used in the expression.
        exprvarscache = self._exprvars_cache
        if not expression in exprvarscache:
            # Protection against growing the cache too much
            if len(exprvarscache) > 256:
                # Remove 10 (arbitrary) elements from the cache
                for k in list(exprvarscache.keys())[:10]:
                    del exprvarscache[k]
            cexpr = compile(expression, '<string>', 'eval')
            exprvars = [var for var in cexpr.co_names
                        if var not in ['None', 'False', 'True']
                        and var not in numexpr_functions]
            exprvarscache[expression] = exprvars
        else:
            exprvars = exprvarscache[expression]

        # Get the local and global variable mappings of the user frame
        # if no mapping has been explicitly given for user variables.
        user_locals, user_globals = {}, {}
        if uservars is None:
            # We use specified depth to get the frame where the API
            # callable using this method is called.  For instance:
            #
            # * ``table._required_expr_vars()`` (depth 0) is called by
            # * ``table._where()`` (depth 1) is called by
            # * ``table.where()`` (depth 2) is called by
            # * user-space functions (depth 3)
            user_frame = sys._getframe(depth)
            user_locals = user_frame.f_locals
            user_globals = user_frame.f_globals

        colinstances = self.colinstances
        tblfile, tblpath = self._v_file, self._v_pathname
        # Look for the required variables first among the ones
        # explicitly provided by the user, then among implicit columns,
        # then among external variables (only if no explicit variables).
        reqvars = {}
        for var in exprvars:
            # Get the value.
            if uservars is not None and var in uservars:
                val = uservars[var]
            elif var in colinstances:
                val = colinstances[var]
            elif uservars is None and var in user_locals:
                val = user_locals[var]
            elif uservars is None and var in user_globals:
                val = user_globals[var]
            else:
                raise NameError("name ``%s`` is not defined" % var)

            # Check the value.
            if hasattr(val, 'pathname'):  # non-nested column
                if val.shape[1:] != ():
                    raise NotImplementedError(
                        "variable ``%s`` refers to "
                        "a multidimensional column, "
                        "not yet supported in conditions, sorry" % var)
                if (val._table_file is not tblfile or
                        val._table_path != tblpath):
                    raise ValueError("variable ``%s`` refers to a column "
                                     "which is not part of table ``%s``"
                                     % (var, tblpath))
                if val.dtype.str[1:] == 'u8':
                    raise NotImplementedError(
                        "variable ``%s`` refers to "
                        "a 64-bit unsigned integer column, "
                        "not yet supported in conditions, sorry; "
                        "please use regular Python selections" % var)
            elif hasattr(val, '_v_colpathnames'):  # nested column
                raise TypeError(
                    "variable ``%s`` refers to a nested column, "
                    "not allowed in conditions" % var)
            else:  # only non-column values are converted to arrays
                # XXX: not 100% sure about this
                if isinstance(val, str):
                    val = numpy.asarray(val.encode('ascii'))
                else:
                    val = numpy.asarray(val)
            reqvars[var] = val
        return reqvars

    _requiredExprVars = previous_api(_required_expr_vars)

    def _get_condition_key(self, condition, condvars):
        """Get the condition cache key for `condition` with `condvars`.

        Currently, the key is a tuple of `condition`, column variables
        names, normal variables names, column paths and variable paths
        (all are tuples).

        """

        # Variable names for column and normal variables.
        colnames, varnames = [], []
        # Column paths and types for each of the previous variable.
        colpaths, vartypes = [], []
        for (var, val) in condvars.items():
            if hasattr(val, 'pathname'):  # column
                colnames.append(var)
                colpaths.append(val.pathname)
            else:  # array
                try:
                    varnames.append(var)
                    vartypes.append(numexpr_getType(val))  # expensive
                except ValueError:
                    # This is more clear than the error given by Numexpr.
                    raise TypeError("variable ``%s`` has data type ``%s``, "
                                    "not allowed in conditions"
                                    % (var, val.dtype.name))
        colnames, varnames = tuple(colnames), tuple(varnames)
        colpaths, vartypes = tuple(colpaths), tuple(vartypes)
        condkey = (condition, colnames, varnames, colpaths, vartypes)
        return condkey

    _getConditionKey = previous_api(_get_condition_key)

    def _compile_condition(self, condition, condvars):
        """Compile the `condition` and extract usable index conditions.

        This method returns an instance of ``CompiledCondition``.  See
        the ``compile_condition()`` function in the ``conditions``
        module for more information about the compilation process.

        This method makes use of the condition cache when possible.

        """

        # Look up the condition in the condition cache.
        condcache = self._condition_cache
        condkey = self._get_condition_key(condition, condvars)
        compiled = condcache.get(condkey)
        if compiled:
            return compiled.with_replaced_vars(condvars)  # bingo!

        # Bad luck, the condition must be parsed and compiled.
        # Fortunately, the key provides some valuable information. ;)
        (condition, colnames, varnames, colpaths, vartypes) = condkey

        # Extract more information from referenced columns.
        typemap = dict(zip(varnames, vartypes))  # start with normal variables
        indexedcols = []
        for colname in colnames:
            col = condvars[colname]

            # Extract types from *all* the given variables.
            coltype = col.dtype.type
            typemap[colname] = _nxtype_from_nptype[coltype]

            # Get the set of columns with usable indexes.
            if (self._enabled_indexing_in_queries  # no in-kernel searches
                    and self.colindexed[col.pathname] and not col.index.dirty):
                indexedcols.append(colname)

        indexedcols = frozenset(indexedcols)
        # Now let ``compile_condition()`` do the Numexpr-related job.
        compiled = compile_condition(condition, typemap, indexedcols)

        # Check that there actually are columns in the condition.
        if not set(compiled.parameters).intersection(set(colnames)):
            raise ValueError("there are no columns taking part "
                             "in condition ``%s``" % (condition,))

        # Store the compiled condition in the cache and return it.
        condcache[condkey] = compiled
        return compiled.with_replaced_vars(condvars)

    _compileCondition = previous_api(_compile_condition)

    def will_query_use_indexing(self, condition, condvars=None):
        """Will a query for the condition use indexing?

        The meaning of the condition and *condvars* arguments is the same as in
        the :meth:`Table.where` method. If condition can use indexing, this
        method returns a frozenset with the path names of the columns whose
        index is usable. Otherwise, it returns an empty list.

        This method is mainly intended for testing. Keep in mind that changing
        the set of indexed columns or their dirtiness may make this method
        return different values for the same arguments at different times.

        """

        # Compile the condition and extract usable index conditions.
        condvars = self._required_expr_vars(condition, condvars, depth=2)
        compiled = self._compile_condition(condition, condvars)
        # Return the columns in indexed expressions
        idxcols = [condvars[var].pathname for var in compiled.index_variables]
        return frozenset(idxcols)

    willQueryUseIndexing = previous_api(will_query_use_indexing)

    def where(self, condition, condvars=None,
              start=None, stop=None, step=None):
        """Iterate over values fulfilling a condition.

        This method returns a Row iterator (see :ref:`RowClassDescr`) which
        only selects rows in the table that satisfy the given condition (an
        expression-like string).

        The condvars mapping may be used to define the variable names appearing
        in the condition. condvars should consist of identifier-like strings
        pointing to Column (see :ref:`ColumnClassDescr`) instances *of this
        table*, or to other values (which will be converted to arrays). A
        default set of condition variables is provided where each top-level,
        non-nested column with an identifier-like name appears. Variables in
        condvars override the default ones.

        When condvars is not provided or None, the current local and global
        namespace is sought instead of condvars. The previous mechanism is
        mostly intended for interactive usage. To disable it, just specify a
        (maybe empty) mapping as condvars.

        If a range is supplied (by setting some of the start, stop or step
        parameters), only the rows in that range and fulfilling the condition
        are used. The meaning of the start, stop and step parameters is the
        same as for Python slices.

        When possible, indexed columns participating in the condition will be
        used to speed up the search. It is recommended that you place the
        indexed columns as left and out in the condition as possible. Anyway,
        this method has always better performance than regular Python
        selections on the table.

        You can mix this method with regular Python selections in order to
        support even more complex queries. It is strongly recommended that you
        pass the most restrictive condition as the parameter to this method if
        you want to achieve maximum performance.

        .. warning::

            When in the middle of a table row iterator, you should not
            use methods that can change the number of rows in the table
            (like :meth:`Table.append` or :meth:`Table.remove_rows`) or
            unexpected errors will happen.

        Examples
        --------

        ::

            >>> passvalues = [ row['col3'] for row in
            ...                table.where('(col1 > 0) & (col2 <= 20)', step=5)
            ...                if your_function(row['col2']) ]
            >>> print(("Values that pass the cuts:", passvalues))

        .. note::

            A special care should be taken when the query condition includes
            string literals.  Indeed Python 2 string literals are string of
            bytes while Python 3 strings are unicode objects.

            Let's assume that the table ``table`` has the following
            structure::

                class Record(IsDescription):
                    col1 = StringCol(4)  # 4-character String of bytes
                    col2 = IntCol()
                    col3 = FloatCol()

            The type of "col1" do not change depending on the Python version
            used (of course) and it always corresponds to strings of bytes.

            Any condition involving "col1" should be written using the
            appropriate type for string literals in order to avoid
            :exc:`TypeError`\ s.

            The code below will work fine in Python 2 but will fail with a
            :exc:`TypeError` in Python 3::

                condition = 'col1 == "AAAA"'
                for record in table.where(condition):  # TypeError in Python3
                    # do something with "record"

            The reason is that in Python 3 "condition" implies a comparison
            between a string of bytes ("col1" contents) and an unicode literal
            ("AAAA").

            The correct way to write the condition is::

                condition = 'col1 == b"AAAA"'

        .. versionchanged:: 3.0
           The start, stop and step parameters now behave like in slice.

        """

        return self._where(condition, condvars, start, stop, step)

    def _where(self, condition, condvars, start=None, stop=None, step=None):
        """Low-level counterpart of `self.where()`."""

        if profile:
            tref = time()
        if profile:
            show_stats("Entering table._where", tref)
        # Adjust the slice to be used.
        (start, stop, step) = self._process_range_read(start, stop, step)
        if start >= stop:  # empty range, reset conditions
            self._use_index = False
            self._where_condition = None
            return iter([])

        # Compile the condition and extract usable index conditions.
        condvars = self._required_expr_vars(condition, condvars, depth=3)
        compiled = self._compile_condition(condition, condvars)

        # Can we use indexes?
        if compiled.index_expressions:
            chunkmap = _table__where_indexed(
                self, compiled, condition, condvars, start, stop, step)
            if not isinstance(chunkmap, numpy.ndarray):
                # If it is not a NumPy array it should be an iterator
                # Reset conditions
                self._use_index = False
                self._where_condition = None
                # ...and return the iterator
                return chunkmap
        else:
            chunkmap = None  # default to an in-kernel query

        args = [condvars[param] for param in compiled.parameters]
        self._where_condition = (compiled.function, args)
        row = tableextension.Row(self)
        if profile:
            show_stats("Exiting table._where", tref)
        return row._iter(start, stop, step, chunkmap=chunkmap)

    def read_where(self, condition, condvars=None, field=None,
                   start=None, stop=None, step=None):
        """Read table data fulfilling the given *condition*.

        This method is similar to :meth:`Table.read`, having their common
        arguments and return values the same meanings. However, only the rows
        fulfilling the *condition* are included in the result.

        The meaning of the other arguments is the same as in the
        :meth:`Table.where` method.

        """

        self._g_check_open()
        coords = [p.nrow for p in
                  self._where(condition, condvars, start, stop, step)]
        self._where_condition = None  # reset the conditions
        if len(coords) > 1:
            cstart, cstop = coords[0], coords[-1] + 1
            if cstop - cstart == len(coords):
                # Chances for monotonically increasing row values. Refine.
                inc_seq = numpy.alltrue(
                    numpy.arange(cstart, cstop) == numpy.array(coords))
                if inc_seq:
                    return self.read(cstart, cstop, field=field)
        return self.read_coordinates(coords, field)

    readWhere = previous_api(read_where)

    def append_where(self, dstTable, condition, condvars=None,
                     start=None, stop=None, step=None):
        """Append rows fulfilling the condition to the dstTable table.

        dstTable must be capable of taking the rows resulting from the query,
        i.e. it must have columns with the expected names and compatible
        types. The meaning of the other arguments is the same as in the
        :meth:`Table.where` method.

        The number of rows appended to dstTable is returned as a result.

        .. versionchanged:: 3.0
           The *whereAppend* method has been renamed into *append_where*.

        """

        self._g_check_open()

        # Check that the destination file is not in read-only mode.
        dstTable._v_file._check_writable()

        # Row objects do not support nested columns, so we must iterate
        # over the flat column paths.  When rows support nesting,
        # ``self.colnames`` can be directly iterated upon.
        colNames = [colName for colName in self.colpathnames]
        dstRow = dstTable.row
        nrows = 0
        for srcRow in self._where(condition, condvars, start, stop, step):
            for colName in colNames:
                dstRow[colName] = srcRow[colName]
            dstRow.append()
            nrows += 1
        dstTable.flush()
        return nrows

    whereAppend = previous_api(append_where)

    def get_where_list(self, condition, condvars=None, sort=False,
                       start=None, stop=None, step=None):
        """Get the row coordinates fulfilling the given condition.

        The coordinates are returned as a list of the current flavor.  sort
        means that you want to retrieve the coordinates ordered. The default is
        to not sort them.

        The meaning of the other arguments is the same as in the
        :meth:`Table.where` method.

        """

        self._g_check_open()

        coords = [p.nrow for p in
                  self._where(condition, condvars, start, stop, step)]
        coords = numpy.array(coords, dtype=SizeType)
        # Reset the conditions
        self._where_condition = None
        if sort:
            coords = numpy.sort(coords)
        return internal_to_flavor(coords, self.flavor)

    getWhereList = previous_api(get_where_list)

    def itersequence(self, sequence):
        """Iterate over a sequence of row coordinates.

        Notes
        -----
        This iterator can be nested (see :meth:`Table.where` for an example).

        """

        if not hasattr(sequence, '__getitem__'):
            raise TypeError(("Wrong 'sequence' parameter type. Only sequences "
                             "are suported."))
        # start, stop and step are necessary for the new iterator for
        # coordinates, and perhaps it would be useful to add them as
        # parameters in the future (not now, because I've just removed
        # the `sort` argument for 2.1).
        #
        # *Important note*: Negative values for step are not supported
        # for the general case, but only for the itersorted() and
        # read_sorted() purposes!  The self._process_range_read will raise
        # an appropiate error.
        # F. Alted 2008-09-18
        # A.V. 20130513: _process_range_read --> _process_range
        (start, stop, step) = self._process_range(None, None, None)
        if (start > stop) or (len(sequence) == 0):
            return iter([])
        row = tableextension.Row(self)
        return row._iter(start, stop, step, coords=sequence)

    def _check_sortby_csi(self, sortby, checkCSI):
        if isinstance(sortby, Column):
            icol = sortby
        elif isinstance(sortby, str):
            icol = self.cols._f_col(sortby)
        else:
            raise TypeError(
                "`sortby` can only be a `Column` or string object, "
                "but you passed an object of type: %s" % type(sortby))
        if icol.is_indexed and icol.index.kind == "full":
            if checkCSI and not icol.index.is_csi:
                # The index exists, but it is not a CSI one.
                raise ValueError(
                    "Field `%s` must have associated a CSI index "
                    "in table `%s`, but the existing one is not. "
                    % (sortby, self))
            return icol.index
        else:
            raise ValueError(
                "Field `%s` must have associated a 'full' index "
                "in table `%s`." % (sortby, self))

    _check_sortby_CSI = previous_api(_check_sortby_csi)

    def itersorted(self, sortby, checkCSI=False,
                   start=None, stop=None, step=None):
        """Iterate table data following the order of the index of sortby
        column.

        The sortby column must have associated a full index.  If you want to
        ensure a fully sorted order, the index must be a CSI one.  You may want
        to use the checkCSI argument in order to explicitly check for the
        existence of a CSI index.

        The meaning of the start, stop and step arguments is the same as in
        :meth:`Table.read`.

        .. versionchanged:: 3.0
           If the *start* parameter is provided and *stop* is None then the
           table is iterated from *start* to the last line.
           In PyTables < 3.0 only one element was returned.

        """

        index = self._check_sortby_csi(sortby, checkCSI)
        # Adjust the slice to be used.
        (start, stop, step) = self._process_range(start, stop, step,
                                                  warn_negstep=False)
        if (start > stop and 0 < step) or (start < stop and 0 > step):
            # Fall-back action is to return an empty iterator
            return iter([])
        row = tableextension.Row(self)
        return row._iter(start, stop, step, coords=index)

    def read_sorted(self, sortby, checkCSI=False, field=None,
                    start=None, stop=None, step=None):
        """Read table data following the order of the index of sortby column.

        The sortby column must have associated a full index.  If you want to
        ensure a fully sorted order, the index must be a CSI one.  You may want
        to use the checkCSI argument in order to explicitly check for the
        existence of a CSI index.

        If field is supplied only the named column will be selected.  If the
        column is not nested, an *array* of the current flavor will be
        returned; if it is, a *structured array* will be used instead.  If no
        field is specified, all the columns will be returned in a structured
        array of the current flavor.

        The meaning of the start, stop and step arguments is the same as in
        :meth:`Table.read`.

        .. versionchanged:: 3.0
           The start, stop and step parameters now behave like in slice.

        """

        self._g_check_open()
        index = self._check_sortby_csi(sortby, checkCSI)
        coords = index[start:stop:step]
        return self.read_coordinates(coords, field)

    readSorted = previous_api(read_sorted)

    def iterrows(self, start=None, stop=None, step=None):
        """Iterate over the table using a Row instance.

        If a range is not supplied, *all the rows* in the table are iterated
        upon - you can also use the :meth:`Table.__iter__` special method for
        that purpose. If you want to iterate over a given *range of rows* in
        the table, you may use the start, stop and step parameters.

        .. warning::

            When in the middle of a table row iterator, you should not
            use methods that can change the number of rows in the table
            (like :meth:`Table.append` or :meth:`Table.remove_rows`) or
            unexpected errors will happen.

        See Also
        --------
        tableextension.Row : the table row iterator and field accessor

        Examples
        --------

        ::

            result = [ row['var2'] for row in table.iterrows(step=5)
                                                    if row['var1'] <= 20 ]

        Notes
        -----
        This iterator can be nested (see :meth:`Table.where` for an example).

        .. versionchanged:: 3.0
           If the *start* parameter is provided and *stop* is None then the
           table is iterated from *start* to the last line.
           In PyTables < 3.0 only one element was returned.

        """
        (start, stop, step) = self._process_range(start, stop, step,
                                                  warn_negstep=False)
        if (start > stop and 0 < step) or (start < stop and 0 > step):
            # Fall-back action is to return an empty iterator
            return iter([])
        row = tableextension.Row(self)
        return row._iter(start, stop, step)

    def __iter__(self):
        """Iterate over the table using a Row instance.

        This is equivalent to calling :meth:`Table.iterrows` with default
        arguments, i.e. it iterates over *all the rows* in the table.

        See Also
        --------
        tableextension.Row : the table row iterator and field accessor

        Examples
        --------

        ::

            result = [ row['var2'] for row in table if row['var1'] <= 20 ]

        Which is equivalent to::

            result = [ row['var2'] for row in table.iterrows()
                                                    if row['var1'] <= 20 ]

        Notes
        -----
        This iterator can be nested (see :meth:`Table.where` for an example).

        """

        return self.iterrows()

    def _read(self, start, stop, step, field=None, out=None):
        """Read a range of rows and return an in-memory object."""

        select_field = None
        if field:
            if field not in self.coldtypes:
                if field in self.description._v_names:
                    # Remember to select this field
                    select_field = field
                    field = None
                else:
                    raise KeyError(("Field {0} not found in table "
                                    "{1}").format(field, self))
            else:
                # The column hangs directly from the top
                dtype_field = self.coldtypes[field]

        # Return a rank-0 array if start > stop
        if (start >= stop and 0 < step) or (start <= stop and 0 > step):
            if field is None:
                nra = self._get_container(0)
                return nra
            return numpy.empty(shape=0, dtype=dtype_field)

        nrows = len(range(0, stop - start, step))

        if out is None:
            # Compute the shape of the resulting column object
            if field:
                # Create a container for the results
                result = numpy.empty(shape=nrows, dtype=dtype_field)
            else:
                # Recarray case
                result = self._get_container(nrows)
        else:
            # there is no fast way to byteswap, since different columns may
            # have different byteorders
            if not out.dtype.isnative:
                raise ValueError(("output array must be in system's byteorder "
                                  "or results will be incorrect"))
            if field:
                bytes_required = dtype_field.itemsize * nrows
            else:
                bytes_required = self.rowsize * nrows
            if bytes_required != out.nbytes:
                raise ValueError(('output array size invalid, got {0} bytes, '
                                  'need {1} bytes').format(out.nbytes,
                                                           bytes_required))
            if not out.flags['C_CONTIGUOUS']:
                raise ValueError('output array not C contiguous')
            result = out

        # Call the routine to fill-up the resulting array
        if step == 1 and not field:
            # This optimization works three times faster than
            # the row._fill_col method (up to 170 MB/s on a pentium IV @ 2GHz)
            self._read_records(start, stop - start, result)
        # Warning!: _read_field_name should not be used until
        # H5TBread_fields_name in tableextension will be finished
        # F. Alted 2005/05/26
        # XYX Ho implementem per a PyTables 2.0??
        elif field and step > 15 and 0:
            # For step>15, this seems to work always faster than row._fill_col.
            self._read_field_name(result, start, stop, step, field)
        else:
            self.row._fill_col(result, start, stop, step, field)

        if select_field:
            return result[select_field]
        else:
            return result

    def read(self, start=None, stop=None, step=None, field=None, out=None):
        """Get data in the table as a (record) array.

        The start, stop and step parameters can be used to select only
        a *range of rows* in the table. Their meanings are the same as
        in the built-in Python slices.

        If field is supplied only the named column will be selected.
        If the column is not nested, an *array* of the current flavor
        will be returned; if it is, a *structured array* will be used
        instead.  If no field is specified, all the columns will be
        returned in a structured array of the current flavor.

        Columns under a nested column can be specified in the field
        parameter by using a slash character (/) as a separator (e.g.
        'position/x').

        The out parameter may be used to specify a NumPy array to
        receive the output data.  Note that the array must have the
        same size as the data selected with the other parameters.
        Note that the array's datatype is not checked and no type
        casting is performed, so if it does not match the datatype on
        disk, the output will not be correct.

        When specifying a single nested column with the field parameter,
        and supplying an output buffer with the out parameter, the
        output buffer must contain all columns in the table.
        The data in all columns will be read into the output buffer.
        However, only the specified nested column will be returned from
        the method call.

        When data is read from disk in NumPy format, the output will be
        in the current system's byteorder, regardless of how it is
        stored on disk. If the out parameter is specified, the output
        array also must be in the current system's byteorder.

        .. versionchanged:: 3.0
           Added the *out* parameter.  Also the start, stop and step
           parameters now behave like in slice.

        Examples
        --------

        Reading the entire table::

            t.read()

        Reading record n. 6::

            t.read(6, 7)

        Reading from record n. 6 to the end of the table::

            t.read(6)

        """

        self._g_check_open()

        if field:
            self._check_column(field)

        if out is not None and self.flavor != 'numpy':
            msg = ("Optional 'out' argument may only be supplied if array "
                   "flavor is 'numpy', currently is {0}").format(self.flavor)
            raise TypeError(msg)

        #(start, stop, step) = self._process_range_read(start, stop, step,
        (start, stop, step) = self._process_range(start, stop, step,
                                                  warn_negstep=False)

        arr = self._read(start, stop, step, field, out)
        return internal_to_flavor(arr, self.flavor)

    def _read_coordinates(self, coords, field=None):
        """Private part of `read_coordinates()` with no flavor conversion."""

        coords = self._point_selection(coords)

        ncoords = len(coords)
        # Create a read buffer only if needed
        if field is None or ncoords > 0:
            # Doing a copy is faster when ncoords is small (<1000)
            if ncoords < min(1000, self.nrowsinbuf):
                result = self._v_iobuf[:ncoords].copy()
            else:
                result = self._get_container(ncoords)

        # Do the real read
        if ncoords > 0:
            # Turn coords into an array of coordinate indexes, if necessary
            if not (isinstance(coords, numpy.ndarray) and
                    coords.dtype.type is _npsizetype and
                    coords.flags.contiguous and
                    coords.flags.aligned):
                # Get a contiguous and aligned coordinate array
                coords = numpy.array(coords, dtype=SizeType)
            self._read_elements(coords, result)

        # Do the final conversions, if needed
        if field:
            if ncoords > 0:
                result = get_nested_field(result, field)
            else:
                # Get an empty array from the cache
                result = self._getemptyarray(self.coldtypes[field])
        return result

    _readCoordinates = previous_api(_read_coordinates)

    def read_coordinates(self, coords, field=None):
        """Get a set of rows given their indexes as a (record) array.

        This method works much like the :meth:`Table.read` method, but it uses
        a sequence (coords) of row indexes to select the wanted columns,
        instead of a column range.

        The selected rows are returned in an array or structured array of the
        current flavor.

        """

        self._g_check_open()
        result = self._read_coordinates(coords, field)
        return internal_to_flavor(result, self.flavor)

    readCoordinates = previous_api(read_coordinates)

    def get_enum(self, colname):
        """Get the enumerated type associated with the named column.

        If the column named colname (a string) exists and is of an enumerated
        type, the corresponding Enum instance (see :ref:`EnumClassDescr`) is
        returned. If it is not of an enumerated type, a TypeError is raised. If
        the column does not exist, a KeyError is raised.

        """

        self._check_column(colname)

        try:
            return self._colenums[colname]
        except KeyError:
            raise TypeError(
                "column ``%s`` of table ``%s`` is not of an enumerated type"
                % (colname, self._v_pathname))

    getEnum = previous_api(get_enum)

    def col(self, name):
        """Get a column from the table.

        If a column called name exists in the table, it is read and returned as
        a NumPy object. If it does not exist, a KeyError is raised.

        Examples
        --------

        ::

            narray = table.col('var2')

        That statement is equivalent to::

            narray = table.read(field='var2')

        Here you can see how this method can be used as a shorthand for the
        :meth:`Table.read` method.

        """

        return self.read(field=name)

    def __getitem__(self, key):
        """Get a row or a range of rows from the table.

        If key argument is an integer, the corresponding table row is returned
        as a record of the current flavor. If key is a slice, the range of rows
        determined by it is returned as a structured array of the current
        flavor.

        In addition, NumPy-style point selections are supported.  In
        particular, if key is a list of row coordinates, the set of rows
        determined by it is returned.  Furthermore, if key is an array of
        boolean values, only the coordinates where key is True are returned.
        Note that for the latter to work it is necessary that key list would
        contain exactly as many rows as the table has.

        Examples
        --------

        ::

            record = table[4]
            recarray = table[4:1000:2]
            recarray = table[[4,1000]]   # only retrieves rows 4 and 1000
            recarray = table[[True, False, ..., True]]

        Those statements are equivalent to::

            record = table.read(start=4)[0]
            recarray = table.read(start=4, stop=1000, step=2)
            recarray = table.read_coordinates([4,1000])
            recarray = table.read_coordinates([True, False, ..., True])

        Here, you can see how indexing can be used as a shorthand for the
        :meth:`Table.read` and :meth:`Table.read_coordinates` methods.

        """

        self._g_check_open()

        if is_idx(key):
            key = operator.index(key)

            # Index out of range protection
            if key >= self.nrows:
                raise IndexError("Index out of range")
            if key < 0:
                # To support negative values
                key += self.nrows
            (start, stop, step) = self._process_range(key, key + 1, 1)
            return self.read(start, stop, step)[0]
        elif isinstance(key, slice):
            (start, stop, step) = self._process_range(
                key.start, key.stop, key.step)
            return self.read(start, stop, step)
        # Try with a boolean or point selection
        elif type(key) in (list, tuple) or isinstance(key, numpy.ndarray):
            return self._read_coordinates(key, None)
        else:
            raise IndexError("Invalid index or slice: %r" % (key,))

    def __setitem__(self, key, value):
        """Set a row or a range of rows in the table.

        It takes different actions depending on the type of the *key*
        parameter: if it is an integer, the corresponding table row is
        set to *value* (a record or sequence capable of being converted
        to the table structure).  If *key* is a slice, the row slice
        determined by it is set to *value* (a record array or sequence
        capable of being converted to the table structure).

        In addition, NumPy-style point selections are supported.  In
        particular, if key is a list of row coordinates, the set of rows
        determined by it is set to value.  Furthermore, if key is an array of
        boolean values, only the coordinates where key is True are set to
        values from value.  Note that for the latter to work it is necessary
        that key list would contain exactly as many rows as the table has.

        Examples
        --------

        ::

            # Modify just one existing row
            table[2] = [456,'db2',1.2]

            # Modify two existing rows
            rows = numpy.rec.array([[457,'db1',1.2],[6,'de2',1.3]],
                                   formats='i4,a3,f8')
            table[1:30:2] = rows             # modify a table slice
            table[[1,3]] = rows              # only modifies rows 1 and 3
            table[[True,False,True]] = rows  # only modifies rows 0 and 2

        Which is equivalent to::

            table.modify_rows(start=2, rows=[456,'db2',1.2])
            rows = numpy.rec.array([[457,'db1',1.2],[6,'de2',1.3]],
                                   formats='i4,a3,f8')
            table.modify_rows(start=1, stop=3, step=2, rows=rows)
            table.modify_coordinates([1,3,2], rows)
            table.modify_coordinates([True, False, True], rows)

        Here, you can see how indexing can be used as a shorthand for the
        :meth:`Table.modify_rows` and :meth:`Table.modify_coordinates`
        methods.

        """

        self._g_check_open()
        self._v_file._check_writable()

        if is_idx(key):
            key = operator.index(key)

            # Index out of range protection
            if key >= self.nrows:
                raise IndexError("Index out of range")
            if key < 0:
                # To support negative values
                key += self.nrows
            return self.modify_rows(key, key + 1, 1, [value])
        elif isinstance(key, slice):
            (start, stop, step) = self._process_range(
                key.start, key.stop, key.step)
            return self.modify_rows(start, stop, step, value)
        # Try with a boolean or point selection
        elif type(key) in (list, tuple) or isinstance(key, numpy.ndarray):
            return self.modify_coordinates(key, value)
        else:
            raise IndexError("Invalid index or slice: %r" % (key,))

    def _save_buffered_rows(self, wbufRA, lenrows):
        """Update the indexes after a flushing of rows."""

        self._open_append(wbufRA)
        self._append_records(lenrows)
        self._close_append()
        if self.indexed:
            self._unsaved_indexedrows += lenrows
            # The table caches for indexed queries are dirty now
            self._dirtycache = True
            if self.autoindex:
                # Flush the unindexed rows
                self.flush_rows_to_index(_lastrow=False)
            else:
                # All the columns are dirty now
                self._mark_columns_as_dirty(self.colpathnames)

    _saveBufferedRows = previous_api(_save_buffered_rows)

    def append(self, rows):
        """Append a sequence of rows to the end of the table.

        The rows argument may be any object which can be converted to
        a structured array compliant with the table structure
        (otherwise, a ValueError is raised).  This includes NumPy
        structured arrays, lists of tuples or array records, and a
        string or Python buffer.

        Examples
        --------

        ::

            import tables as tb

            class Particle(tb.IsDescription):
                name        = tb.StringCol(16, pos=1) # 16-character String
                lati        = tb.IntCol(pos=2)        # integer
                longi       = tb.IntCol(pos=3)        # integer
                pressure    = tb.Float32Col(pos=4)  # float  (single-precision)
                temperature = tb.FloatCol(pos=5)    # double (double-precision)

            fileh = tb.open_file('test4.h5', mode='w')
            table = fileh.create_table(fileh.root, 'table', Particle,
                                       "A table")

            # Append several rows in only one call
            table.append([("Particle:     10", 10, 0, 10 * 10, 10**2),
                          ("Particle:     11", 11, -1, 11 * 11, 11**2),
                          ("Particle:     12", 12, -2, 12 * 12, 12**2)])
            fileh.close()

        """

        self._g_check_open()
        self._v_file._check_writable()

        if not self._chunked:
            raise HDF5ExtError(
                "You cannot append rows to a non-chunked table.", h5bt=False)

        # Try to convert the object into a recarray compliant with table
        try:
            iflavor = flavor_of(rows)
            if iflavor != 'python':
                rows = array_as_internal(rows, iflavor)
            # Works for Python structures and always copies the original,
            # so the resulting object is safe for in-place conversion.
            wbufRA = numpy.rec.array(rows, dtype=self._v_dtype)
        except Exception as exc:  # XXX
            raise ValueError("rows parameter cannot be converted into a "
                             "recarray object compliant with table '%s'. "
                             "The error was: <%s>" % (str(self), exc))
        lenrows = wbufRA.shape[0]
        # If the number of rows to append is zero, don't do anything else
        if lenrows > 0:
            # Save write buffer to disk
            self._save_buffered_rows(wbufRA, lenrows)

    def _conv_to_recarr(self, obj):
        """Try to convert the object into a recarray."""

        try:
            iflavor = flavor_of(obj)
            if iflavor != 'python':
                obj = array_as_internal(obj, iflavor)
            if hasattr(obj, "shape") and obj.shape == ():
                # To allow conversion of scalars (void type) into arrays.
                # See http://projects.scipy.org/scipy/numpy/ticket/315
                # for discussion on how to pass buffers to constructors
                # See also http://projects.scipy.org/scipy/numpy/ticket/348
                recarr = numpy.array([obj], dtype=self._v_dtype)
            else:
                # Works for Python structures and always copies the original,
                # so the resulting object is safe for in-place conversion.
                recarr = numpy.rec.array(obj, dtype=self._v_dtype)
        except Exception as exc:  # XXX
            raise ValueError("Object cannot be converted into a recarray "
                             "object compliant with table format '%s'. "
                             "The error was: <%s>" %
                            (self.description._v_nested_descr, exc))

        return recarr

    def modify_coordinates(self, coords, rows):
        """Modify a series of rows in positions specified in coords.

        The values in the selected rows will be modified with the data given in
        rows.  This method returns the number of rows modified.

        The possible values for the rows argument are the same as in
        :meth:`Table.append`.

        """

        if rows is None:      # Nothing to be done
            return SizeType(0)

        # Convert the coordinates to something expected by HDF5
        coords = self._point_selection(coords)

        lcoords = len(coords)
        if len(rows) < lcoords:
            raise ValueError("The value has not enough elements to fill-in "
                             "the specified range")

        # Convert rows into a recarray
        recarr = self._conv_to_recarr(rows)

        if len(coords) > 0:
            # Do the actual update of rows
            self._update_elements(lcoords, coords, recarr)

        # Redo the index if needed
        self._reindex(self.colpathnames)

        return SizeType(lcoords)

    modifyCoordinates = previous_api(modify_coordinates)

    def modify_rows(self, start=None, stop=None, step=None, rows=None):
        """Modify a series of rows in the slice [start:stop:step].

        The values in the selected rows will be modified with the data given in
        rows.  This method returns the number of rows modified.  Should the
        modification exceed the length of the table, an IndexError is raised
        before changing data.

        The possible values for the rows argument are the same as in
        :meth:`Table.append`.

        """

        if step is None:
            step = 1
        if rows is None:      # Nothing to be done
            return SizeType(0)
        if start is None:
            start = 0

        if start < 0:
            raise ValueError("'start' must have a positive value.")
        if step < 1:
            raise ValueError(
                "'step' must have a value greater or equal than 1.")
        if stop is None:
            # compute the stop value. start + len(rows)*step does not work
            stop = start + (len(rows) - 1) * step + 1

        (start, stop, step) = self._process_range(start, stop, step)
        if stop > self.nrows:
            raise IndexError("This modification will exceed the length of "
                             "the table. Giving up.")
        # Compute the number of rows to read.
        nrows = len(range(0, stop - start, step))
        if len(rows) != nrows:
            raise ValueError("The value has different elements than the "
                             "specified range")

        # Convert rows into a recarray
        recarr = self._conv_to_recarr(rows)

        lenrows = len(recarr)
        if start + lenrows > self.nrows:
            raise IndexError("This modification will exceed the length of the "
                             "table. Giving up.")

        # Do the actual update
        self._update_records(start, stop, step, recarr)

        # Redo the index if needed
        self._reindex(self.colpathnames)

        return SizeType(lenrows)

    modifyRows = previous_api(modify_rows)

    def modify_column(self, start=None, stop=None, step=None,
                      column=None, colname=None):
        """Modify one single column in the row slice [start:stop:step].

        The colname argument specifies the name of the column in the
        table to be modified with the data given in column.  This
        method returns the number of rows modified.  Should the
        modification exceed the length of the table, an IndexError is
        raised before changing data.

        The *column* argument may be any object which can be converted
        to a (record) array compliant with the structure of the column
        to be modified (otherwise, a ValueError is raised).  This
        includes NumPy (record) arrays, lists of scalars, tuples or
        array records, and a string or Python buffer.

        """
        if step is None:
            step = 1
        if not isinstance(colname, str):
            raise TypeError("The 'colname' parameter must be a string.")
        self._v_file._check_writable()

        if column is None:      # Nothing to be done
            return SizeType(0)
        if start is None:
            start = 0

        if start < 0:
            raise ValueError("'start' must have a positive value.")
        if step < 1:
            raise ValueError(
                "'step' must have a value greater or equal than 1.")
        # Get the column format to be modified:
        objcol = self._get_column_instance(colname)
        descr = [objcol._v_parent._v_nested_descr[objcol._v_pos]]
        # Try to convert the column object into a NumPy ndarray
        try:
            # If the column is a recarray (or kind of), convert into ndarray
            if hasattr(column, 'dtype') and column.dtype.kind == 'V':
                column = numpy.rec.array(column, dtype=descr).field(0)
            else:
                # Make sure the result is always a *copy* of the original,
                # so the resulting object is safe for in-place conversion.
                iflavor = flavor_of(column)
                column = array_as_internal(column, iflavor)
        except Exception as exc:  # XXX
            raise ValueError("column parameter cannot be converted into a "
                             "ndarray object compliant with specified column "
                             "'%s'. The error was: <%s>" % (str(column), exc))

        # Get rid of single-dimensional dimensions
        column = column.squeeze()
        if column.shape == ():
            # Oops, stripped off to much dimensions
            column.shape = (1,)

        if stop is None:
            # compute the stop value. start + len(rows)*step does not work
            stop = start + (len(column) - 1) * step + 1
        (start, stop, step) = self._process_range(start, stop, step)
        if stop > self.nrows:
            raise IndexError("This modification will exceed the length of "
                             "the table. Giving up.")
        # Compute the number of rows to read.
        nrows = len(range(0, stop - start, step))
        if len(column) < nrows:
            raise ValueError("The value has not enough elements to fill-in "
                             "the specified range")
        # Now, read the original values:
        mod_recarr = self._read(start, stop, step)
        # Modify the appropriate column in the original recarray
        mod_col = get_nested_field(mod_recarr, colname)
        mod_col[:] = column
        # save this modified rows in table
        self._update_records(start, stop, step, mod_recarr)
        # Redo the index if needed
        self._reindex([colname])

        return SizeType(nrows)

    modifyColumn = previous_api(modify_column)

    def modify_columns(self, start=None, stop=None, step=None,
                       columns=None, names=None):
        """Modify a series of columns in the row slice [start:stop:step].

        The names argument specifies the names of the columns in the
        table to be modified with the data given in columns.  This
        method returns the number of rows modified.  Should the
        modification exceed the length of the table, an IndexError
        is raised before changing data.

        The columns argument may be any object which can be converted
        to a structured array compliant with the structure of the
        columns to be modified (otherwise, a ValueError is raised).
        This includes NumPy structured arrays, lists of tuples or array
        records, and a string or Python buffer.

        """
        if step is None:
            step = 1
        if type(names) not in (list, tuple):
            raise TypeError("The 'names' parameter must be a list of strings.")

        if columns is None:  # Nothing to be done
            return SizeType(0)
        if start is None:
            start = 0
        if start < 0:
            raise ValueError("'start' must have a positive value.")
        if step < 1:
            raise ValueError(("'step' must have a value greater or "
                              "equal than 1."))
        descr = []
        for colname in names:
            objcol = self._get_column_instance(colname)
            descr.append(objcol._v_parent._v_nested_descr[objcol._v_pos])
            # descr.append(objcol._v_parent._v_dtype[objcol._v_pos])
        # Try to convert the columns object into a recarray
        try:
            # Make sure the result is always a *copy* of the original,
            # so the resulting object is safe for in-place conversion.
            iflavor = flavor_of(columns)
            if iflavor != 'python':
                columns = array_as_internal(columns, iflavor)
                recarray = numpy.rec.array(columns, dtype=descr)
            else:
                recarray = numpy.rec.fromarrays(columns, dtype=descr)
        except Exception as exc:  # XXX
            raise ValueError("columns parameter cannot be converted into a "
                             "recarray object compliant with table '%s'. "
                             "The error was: <%s>" % (str(self), exc))

        if stop is None:
            # compute the stop value. start + len(rows)*step does not work
            stop = start + (len(recarray) - 1) * step + 1
        (start, stop, step) = self._process_range(start, stop, step)
        if stop > self.nrows:
            raise IndexError("This modification will exceed the length of "
                             "the table. Giving up.")
        # Compute the number of rows to read.
        nrows = len(range(0, stop - start, step))
        if len(recarray) < nrows:
            raise ValueError("The value has not enough elements to fill-in "
                             "the specified range")
        # Now, read the original values:
        mod_recarr = self._read(start, stop, step)
        # Modify the appropriate columns in the original recarray
        for i, name in enumerate(recarray.dtype.names):
            mod_col = get_nested_field(mod_recarr, names[i])
            mod_col[:] = recarray[name].squeeze()
        # save this modified rows in table
        self._update_records(start, stop, step, mod_recarr)
        # Redo the index if needed
        self._reindex(names)

        return SizeType(nrows)

    modifyColumns = previous_api(modify_columns)

    def flush_rows_to_index(self, _lastrow=True):
        """Add remaining rows in buffers to non-dirty indexes.

        This can be useful when you have chosen non-automatic indexing
        for the table (see the :attr:`Table.autoindex` property in
        :class:`Table`) and you want to update the indexes on it.

        """

        rowsadded = 0
        if self.indexed:
            # Update the number of unsaved indexed rows
            start = self._indexedrows
            nrows = self._unsaved_indexedrows
            for (colname, colindexed) in self.colindexed.items():
                if colindexed:
                    col = self.cols._g_col(colname)
                    if nrows > 0 and not col.index.dirty:
                        rowsadded = self._add_rows_to_index(
                            colname, start, nrows, _lastrow, update=True)
            self._unsaved_indexedrows -= rowsadded
            self._indexedrows += rowsadded
        return rowsadded

    flushRowsToIndex = previous_api(flush_rows_to_index)

    def _add_rows_to_index(self, colname, start, nrows, lastrow, update):
        """Add more elements to the existing index."""

        # This method really belongs to Column, but since it makes extensive
        # use of the table, it gets dangerous when closing the file, since the
        # column may be accessing a table which is being destroyed.
        index = self.cols._g_col(colname).index
        slicesize = index.slicesize
        # The next loop does not rely on xrange so that it can
        # deal with long ints (i.e. more than 32-bit integers)
        # This allows to index columns with more than 2**31 rows
        # F. Alted 2005-05-09
        startLR = index.sorted.nrows * slicesize
        indexedrows = startLR - start
        stop = start + nrows - slicesize + 1
        while startLR < stop:
            index.append(
                [self._read(startLR, startLR + slicesize, 1, colname)],
                update=update)
            indexedrows += slicesize
            startLR += slicesize
        # index the remaining rows in last row
        if lastrow and startLR < self.nrows:
            index.append_last_row(
                [self._read(startLR, self.nrows, 1, colname)],
                update=update)
            indexedrows += self.nrows - startLR
        return indexedrows

    _addRowsToIndex = previous_api(_add_rows_to_index)

    def remove_rows(self, start=None, stop=None, step=None):
        """Remove a range of rows in the table.

        .. versionchanged:: 3.0
           The start, stop and step parameters now behave like in slice.

        .. seealso:: remove_row()

        Parameters
        ----------
        start : int
            Sets the starting row to be removed. It accepts negative values
            meaning that the count starts from the end.  A value of 0 means the
            first row.
        stop : int
            Sets the last row to be removed to stop-1, i.e. the end point is
            omitted (in the Python range() tradition). Negative values are also
            accepted.
        step : int
            The step size between rows to remove.

            .. versionadded:: 3.0

        Examples
        --------

        Removing rows from 5 to 10 (excluded)::

            t.remove_rows(5, 10)

        Removing all rows starting drom the 10th::

            t.remove_rows(10)

        Removing the 6th row::

            t.remove_rows(6, 7)

        .. note::

            removing a single row can be done using the specific
            :meth:`remove_row` method.

        """

        (start, stop, step) = self._process_range(start, stop, step)
        nrows = numpy.abs(stop - start)
        if nrows >= self.nrows:
            raise NotImplementedError('You are trying to delete all the rows '
                                      'in table "%s". This is not supported '
                                      'right now due to limitations on the '
                                      'underlying HDF5 library. Sorry!' %
                                      self._v_pathname)
        nrows = self._remove_rows(start, stop, step)
        # remove_rows is a invalidating index operation
        self._reindex(self.colpathnames)

        return SizeType(nrows)

    removeRows = previous_api(remove_rows)

    def remove_row(self, n):
        """Removes a row from the table.

        If only start is supplied, only this row is to be deleted.  If a range
        is supplied, i.e. both the start and stop parameters are passed, all
        the rows in the range are removed. A step parameter is not supported,
        and it is not foreseen to be implemented anytime soon.

        Parameters
        ----------
        n : int
            The index of the row to remove.

        .. versionadded:: 3.0

        """

        self.remove_rows(start=n, stop=n + 1)

    def _g_update_dependent(self):
        super(Table, self)._g_update_dependent()

        # Update the new path in columns
        self.cols._g_update_table_location(self)

        # Update the new path in the Row instance, if cached.  Fixes #224.
        if 'row' in self.__dict__:
            self.__dict__['row'] = tableextension.Row(self)

    _g_updateDependent = previous_api(_g_update_dependent)

    def _g_move(self, newparent, newname):
        """Move this node in the hierarchy.

        This overloads the Node._g_move() method.

        """

        itgpathname = _index_pathname_of(self)

        # First, move the table to the new location.
        super(Table, self)._g_move(newparent, newname)

        # Then move the associated index group (if any).
        try:
            itgroup = self._v_file._get_node(itgpathname)
        except NoSuchNodeError:
            pass
        else:
            newigroup = self._v_parent
            newiname = _index_name_of(self)
            itgroup._g_move(newigroup, newiname)

    def _g_remove(self, recursive=False, force=False):
        # Remove the associated index group (if any).
        itgpathname = _index_pathname_of(self)
        try:
            itgroup = self._v_file._get_node(itgpathname)
        except NoSuchNodeError:
            pass
        else:
            itgroup._f_remove(recursive=True)
            self.indexed = False   # there are indexes no more

        # Remove the leaf itself from the hierarchy.
        super(Table, self)._g_remove(recursive, force)

    def _set_column_indexing(self, colpathname, indexed):
        """Mark the referred column as indexed or non-indexed."""

        colindexed = self.colindexed
        isindexed, wasindexed = bool(indexed), colindexed[colpathname]
        if isindexed == wasindexed:
            return  # indexing state is unchanged

        # Changing the set of indexed columns invalidates the condition cache
        self._condition_cache.clear()
        colindexed[colpathname] = isindexed
        self.indexed = max(colindexed.values())  # this is an OR :)

    _setColumnIndexing = previous_api(_set_column_indexing)

    def _mark_columns_as_dirty(self, colnames):
        """Mark column indexes in `colnames` as dirty."""

        assert len(colnames) > 0
        if self.indexed:
            colindexed, cols = self.colindexed, self.cols
            # Mark the proper indexes as dirty
            for colname in colnames:
                if colindexed[colname]:
                    col = cols._g_col(colname)
                    col.index.dirty = True

    _markColumnsAsDirty = previous_api(_mark_columns_as_dirty)

    def _reindex(self, colnames):
        """Re-index columns in `colnames` if automatic indexing is true."""

        if self.indexed:
            colindexed, cols = self.colindexed, self.cols
            colstoindex = []
            # Mark the proper indexes as dirty
            for colname in colnames:
                if colindexed[colname]:
                    col = cols._g_col(colname)
                    col.index.dirty = True
                    colstoindex.append(colname)
            # Now, re-index the dirty ones
            if self.autoindex and colstoindex:
                self._do_reindex(dirty=True)
            # The table caches for indexed queries are dirty now
            self._dirtycache = True

    _reIndex = previous_api(_reindex)

    def _do_reindex(self, dirty):
        """Common code for `reindex()` and `reindex_dirty()`."""

        indexedrows = 0
        for (colname, colindexed) in self.colindexed.items():
            if colindexed:
                indexcol = self.cols._g_col(colname)
                indexedrows = indexcol._do_reindex(dirty)
        # Update counters in case some column has been updated
        if indexedrows > 0:
            self._indexedrows = indexedrows
            self._unsaved_indexedrows = self.nrows - indexedrows

        return SizeType(indexedrows)

    _doReIndex = previous_api(_do_reindex)

    def reindex(self):
        """Recompute all the existing indexes in the table.

        This can be useful when you suspect that, for any reason, the
        index information for columns is no longer valid and want to
        rebuild the indexes on it.

        """

        self._do_reindex(dirty=False)

    reIndex = previous_api(reindex)

    def reindex_dirty(self):
        """Recompute the existing indexes in table, *if* they are dirty.

        This can be useful when you have set :attr:`Table.autoindex`
        (see :class:`Table`) to false for the table and you want to
        update the indexes after a invalidating index operation
        (:meth:`Table.remove_rows`, for example).

        """

        self._do_reindex(dirty=True)

    reIndexDirty = previous_api(reindex_dirty)

    def _g_copy_rows(self, object, start, stop, step, sortby, checkCSI):
        "Copy rows from self to object"
        if sortby is None:
            self._g_copy_rows_optim(object, start, stop, step)
            return
        lenbuf = self.nrowsinbuf
        absstep = step
        if step < 0:
            absstep = -step
            start, stop = stop + 1, start + 1
        if sortby is not None:
            index = self._check_sortby_csi(sortby, checkCSI)
        for start2 in range(start, stop, absstep * lenbuf):
            stop2 = start2 + absstep * lenbuf
            if stop2 > stop:
                stop2 = stop
            # The next 'if' is not needed, but it doesn't bother either
            if sortby is None:
                rows = self[start2:stop2:step]
            else:
                coords = index[start2:stop2:step]
                rows = self.read_coordinates(coords)
            # Save the records on disk
            object.append(rows)
        object.flush()

    _g_copyRows = previous_api(_g_copy_rows)

    def _g_copy_rows_optim(self, object, start, stop, step):
        """Copy rows from self to object (optimized version)"""

        nrowsinbuf = self.nrowsinbuf
        object._open_append(self._v_iobuf)
        nrowsdest = object.nrows
        for start2 in range(start, stop, step * nrowsinbuf):
            # Save the records on disk
            stop2 = start2 + step * nrowsinbuf
            if stop2 > stop:
                stop2 = stop
            # Optimized version (it saves some conversions)
            nrows = ((stop2 - start2 - 1) // step) + 1
            self.row._fill_col(self._v_iobuf, start2, stop2, step, None)
            # The output buffer is created anew,
            # so the operation is safe to in-place conversion.
            object._append_records(nrows)
            nrowsdest += nrows
        object._close_append()

    _g_copyRows_optim = previous_api(_g_copy_rows_optim)

    def _g_prop_indexes(self, other):
        """Generate index in `other` table for every indexed column here."""

        oldcols, newcols = self.colinstances, other.colinstances
        for colname in newcols:
            if (isinstance(oldcols[colname], Column)):
                oldcolindexed = oldcols[colname].is_indexed
                if oldcolindexed:
                    oldcolindex = oldcols[colname].index
                    newcol = newcols[colname]
                    newcol.create_index(
                        kind=oldcolindex.kind, optlevel=oldcolindex.optlevel,
                        filters=oldcolindex.filters, tmp_dir=None)

    _g_propIndexes = previous_api(_g_prop_indexes)

    def _g_copy_with_stats(self, group, name, start, stop, step,
                           title, filters, chunkshape, _log, **kwargs):
        """Private part of Leaf.copy() for each kind of leaf."""

        # Get the private args for the Table flavor of copy()
        sortby = kwargs.pop('sortby', None)
        propindexes = kwargs.pop('propindexes', False)
        checkCSI = kwargs.pop('checkCSI', False)
        # Compute the correct indices.
        (start, stop, step) = self._process_range_read(
            start, stop, step, warn_negstep=sortby is None)
        # And the number of final rows
        nrows = len(range(0, stop - start, step))
        # Create the new table and copy the selected data.
        newtable = Table(group, name, self.description, title=title,
                         filters=filters, expectedrows=nrows,
                         chunkshape=chunkshape,
                         _log=_log)
        self._g_copy_rows(newtable, start, stop, step, sortby, checkCSI)
        nbytes = newtable.nrows * newtable.rowsize
        # Generate equivalent indexes in the new table, if required.
        if propindexes and self.indexed:
            self._g_prop_indexes(newtable)
        return (newtable, nbytes)

    _g_copyWithStats = previous_api(_g_copy_with_stats)

    # This overloading of copy is needed here in order to document
    # the additional keywords for the Table case.
    def copy(self, newparent=None, newname=None, overwrite=False,
             createparents=False, **kwargs):
        """Copy this table and return the new one.

        This method has the behavior and keywords described in
        :meth:`Leaf.copy`.  Moreover, it recognises the following additional
        keyword arguments.

        Parameters
        ----------
        sortby
            If specified, and sortby corresponds to a column with an index,
            then the copy will be sorted by this index.  If you want to ensure
            a fully sorted order, the index must be a CSI one.  A reverse
            sorted copy can be achieved by specifying a negative value for the
            step keyword.  If sortby is omitted or None, the original table
            order is used.
        checkCSI
            If true and a CSI index does not exist for the sortby column, an
            error will be raised.  If false (the default), it does nothing.
            You can use this flag in order to explicitly check for the
            existence of a CSI index.
        propindexes
            If true, the existing indexes in the source table are propagated
            (created) to the new one.  If false (the default), the indexes are
            not propagated.

        """

        return super(Table, self).copy(
            newparent, newname, overwrite, createparents, **kwargs)

    def flush(self):
        """Flush the table buffers."""

        # Flush rows that remains to be appended
        if 'row' in self.__dict__:
            self.row._flush_buffered_rows()
        if self.indexed and self.autoindex:
            # Flush any unindexed row
            rowsadded = self.flush_rows_to_index(_lastrow=True)
            assert rowsadded <= 0 or self._indexedrows == self.nrows, \
                ("internal error: the number of indexed rows (%d) "
                 "and rows in the table (%d) is not equal; "
                 "please report this to the authors."
                 % (self._indexedrows, self.nrows))
            if self._dirtyindexes:
                # Finally, re-index any dirty column
                self.reindex_dirty()

        super(Table, self).flush()

    def _g_pre_kill_hook(self):
        """Code to be called before killing the node."""

        # Flush the buffers before to clean-up them
        # self.flush()
        # It seems that flushing during the __del__ phase is a sure receipt for
        # bringing all kind of problems:
        # 1. Illegal Instruction
        # 2. Malloc(): trying to call free() twice
        # 3. Bus Error
        # 4. Segmentation fault
        # So, the best would be doing *nothing* at all in this __del__ phase.
        # As a consequence, the I/O will not be cleaned until a call to
        # Table.flush() would be done. This could lead to a potentially large
        # memory consumption.
        # NOTE: The user should make a call to Table.flush() whenever he has
        #       finished working with his table.
        # I've added a Performance warning in order to compel the user to
        # call self.flush() before the table is being preempted.
        # F. Alted 2006-08-03
        if (('row' in self.__dict__ and self.row._get_unsaved_nrows() > 0) or
            (self.indexed and self.autoindex and
             (self._unsaved_indexedrows > 0 or self._dirtyindexes))):
            warnings.warn(("table ``%s`` is being preempted from alive nodes "
                           "without its buffers being flushed or with some "
                           "index being dirty.  This may lead to very "
                           "ineficient use of resources and even to fatal "
                           "errors in certain situations.  Please do a call "
                           "to the .flush() or .reindex_dirty() methods on "
                           "this table before start using other nodes.")
                          % (self._v_pathname), PerformanceWarning)
        # Get rid of the IO buffers (if they have been created at all)
        mydict = self.__dict__
        if '_v_iobuf' in mydict:
            del mydict['_v_iobuf']
        if '_v_wdflts' in mydict:
            del mydict['_v_wdflts']

    _g_preKillHook = previous_api(_g_pre_kill_hook)

    def _f_close(self, flush=True):
        if not self._v_isopen:
            return  # the node is already closed

        # .. note::
        #
        #   As long as ``Table`` objects access their indices on closing,
        #   ``File.close()`` will need to make *two separate passes*
        #   to first close ``Table`` objects and then ``Index`` hierarchies.
        #

        # Flush right now so the row object does not get in the middle.
        if flush:
            self.flush()

        # Some warnings can be issued after calling `self._g_set_location()`
        # in `self.__init__()`.  If warnings are turned into exceptions,
        # `self._g_post_init_hook` may not be called and `self.cols` not set.
        # One example of this is
        # ``test_create.createTestCase.test05_maxFieldsExceeded()``.
        cols = self.cols
        if cols is not None:
            cols._g_close()

        # Close myself as a leaf.
        super(Table, self)._f_close(False)

    def __repr__(self):
        """This provides column metainfo in addition to standard __str__"""

        if self.indexed:
            format = """\
%s
  description := %r
  byteorder := %r
  chunkshape := %r
  autoindex := %r
  colindexes := %r"""
            return format % (str(self), self.description, self.byteorder,
                             self.chunkshape, self.autoindex,
                             _ColIndexes(self.colindexes))
        else:
            return """\
%s
  description := %r
  byteorder := %r
  chunkshape := %r""" % \
                (str(self), self.description, self.byteorder, self.chunkshape)


class Cols(object):
    """Container for columns in a table or nested column.

    This class is used as an *accessor* to the columns in a table or nested
    column.  It supports the *natural naming* convention, so that you can
    access the different columns as attributes which lead to Column instances
    (for non-nested columns) or other Cols instances (for nested columns).

    For instance, if table.cols is a Cols instance with a column named col1
    under it, the later can be accessed as table.cols.col1. If col1 is nested
    and contains a col2 column, this can be accessed as table.cols.col1.col2
    and so on. Because of natural naming, the names of members start with
    special prefixes, like in the Group class (see :ref:`GroupClassDescr`).

    Like the Column class (see :ref:`ColumnClassDescr`), Cols supports item
    access to read and write ranges of values in the table or nested column.


    .. rubric:: Cols attributes

    .. attribute:: _v_colnames

        A list of the names of the columns hanging directly
        from the associated table or nested column.  The order of
        the names matches the order of their respective columns in
        the containing table.

    .. attribute:: _v_colpathnames

        A list of the pathnames of all the columns under the
        associated table or nested column (in preorder).  If it does
        not contain nested columns, this is exactly the same as the
        :attr:`Cols._v_colnames` attribute.

    .. attribute:: _v_desc

        The associated Description instance (see
        :ref:`DescriptionClassDescr`).

    """

    def _g_gettable(self):
        return self._v__tableFile._get_node(self._v__tablePath)

    _v_table = property(
        _g_gettable, None, None,
        "The parent Table instance (see :ref:`TableClassDescr`).")

    def __init__(self, table, desc):

        myDict = self.__dict__
        myDict['_v__tableFile'] = table._v_file
        myDict['_v__tablePath'] = table._v_pathname
        myDict['_v_desc'] = desc
        myDict['_v_colnames'] = desc._v_names
        myDict['_v_colpathnames'] = table.description._v_pathnames
        # Put the column in the local dictionary
        for name in desc._v_names:
            if name in desc._v_types:
                myDict[name] = Column(table, name, desc)
            else:
                myDict[name] = Cols(table, desc._v_colobjects[name])

    def _g_update_table_location(self, table):
        """Updates the location information about the associated `table`."""

        myDict = self.__dict__
        myDict['_v__tableFile'] = table._v_file
        myDict['_v__tablePath'] = table._v_pathname

        # Update the locations in individual columns.
        for colname in self._v_colnames:
            myDict[colname]._g_update_table_location(table)

    _g_updateTableLocation = previous_api(_g_update_table_location)

    def __len__(self):
        """Get the number of top level columns in table."""

        return len(self._v_colnames)

    def _f_col(self, colname):
        """Get an accessor to the column colname.

        This method returns a Column instance (see :ref:`ColumnClassDescr`) if
        the requested column is not nested, and a Cols instance (see
        :ref:`ColsClassDescr`) if it is.  You may use full column pathnames in
        colname.

        Calling cols._f_col('col1/col2') is equivalent to using cols.col1.col2.
        However, the first syntax is more intended for programmatic use.  It is
        also better if you want to access columns with names that are not valid
        Python identifiers.

        """

        if not isinstance(colname, str):
            raise TypeError("Parameter can only be an string. You passed "
                            "object: %s" % colname)
        if ((colname.find('/') > -1 and
             not colname in self._v_colpathnames) and
                not colname in self._v_colnames):
            raise KeyError(("Cols accessor ``%s.cols%s`` does not have a "
                            "column named ``%s``")
                           % (self._v__tablePath, self._v_desc._v_pathname,
                              colname))

        return self._g_col(colname)

    def _g_col(self, colname):
        """Like `self._f_col()` but it does not check arguments."""

        # Get the Column or Description object
        inames = colname.split('/')
        cols = self
        for iname in inames:
            cols = cols.__dict__[iname]
        return cols

    def __getitem__(self, key):
        """Get a row or a range of rows from a table or nested column.

        If key argument is an integer, the corresponding nested type row is
        returned as a record of the current flavor. If key is a slice, the
        range of rows determined by it is returned as a structured array of the
        current flavor.

        Examples
        --------

        ::

            record = table.cols[4]  # equivalent to table[4]
            recarray = table.cols.Info[4:1000:2]

        Those statements are equivalent to::

            nrecord = table.read(start=4)[0]
            nrecarray = table.read(start=4, stop=1000, step=2).field('Info')

        Here you can see how a mix of natural naming, indexing and slicing can
        be used as shorthands for the :meth:`Table.read` method.

        """

        table = self._v_table
        nrows = table.nrows
        if is_idx(key):
            key = operator.index(key)

            # Index out of range protection
            if key >= nrows:
                raise IndexError("Index out of range")
            if key < 0:
                # To support negative values
                key += nrows
            (start, stop, step) = table._process_range(key, key + 1, 1)
            colgroup = self._v_desc._v_pathname
            if colgroup == "":  # The root group
                return table.read(start, stop, step)[0]
            else:
                crecord = table.read(start, stop, step)[0]
                return crecord[colgroup]
        elif isinstance(key, slice):
            (start, stop, step) = table._process_range(
                key.start, key.stop, key.step)
            colgroup = self._v_desc._v_pathname
            if colgroup == "":  # The root group
                return table.read(start, stop, step)
            else:
                crecarray = table.read(start, stop, step)
                if hasattr(crecarray, "field"):
                    return crecarray.field(colgroup)  # RecArray case
                else:
                    return get_nested_field(crecarray, colgroup)  # numpy case
        else:
            raise TypeError("invalid index or slice: %r" % (key,))

    def __setitem__(self, key, value):
        """Set a row or a range of rows in a table or nested column.

        If key argument is an integer, the corresponding row is set to
        value. If key is a slice, the range of rows determined by it is set to
        value.

        Examples
        --------

        ::

            table.cols[4] = record
            table.cols.Info[4:1000:2] = recarray

        Those statements are equivalent to::

            table.modify_rows(4, rows=record)
            table.modify_column(4, 1000, 2, colname='Info', column=recarray)

        Here you can see how a mix of natural naming, indexing and slicing
        can be used as shorthands for the :meth:`Table.modify_rows` and
        :meth:`Table.modify_column` methods.

        """

        table = self._v_table
        nrows = table.nrows
        if is_idx(key):
            key = operator.index(key)

            # Index out of range protection
            if key >= nrows:
                raise IndexError("Index out of range")
            if key < 0:
                # To support negative values
                key += nrows
            (start, stop, step) = table._process_range(key, key + 1, 1)
        elif isinstance(key, slice):
            (start, stop, step) = table._process_range(
                key.start, key.stop, key.step)
        else:
            raise TypeError("invalid index or slice: %r" % (key,))

        # Actually modify the correct columns
        colgroup = self._v_desc._v_pathname
        if colgroup == "":  # The root group
            table.modify_rows(start, stop, step, rows=value)
        else:
            table.modify_column(
                start, stop, step, colname=colgroup, column=value)

    def _g_close(self):
        # First, close the columns (ie possible indices open)
        for col in self._v_colnames:
            colobj = self._g_col(col)
            if isinstance(colobj, Column):
                colobj.close()
                # Delete the reference to column
                del self.__dict__[col]
            else:
                colobj._g_close()

        self.__dict__.clear()

    def __str__(self):
        """The string representation for this object."""

        # The pathname
        tablepathname = self._v__tablePath
        descpathname = self._v_desc._v_pathname
        if descpathname:
            descpathname = "." + descpathname
        # Get this class name
        classname = self.__class__.__name__
        # The number of columns
        ncols = len(self._v_colnames)
        return "%s.cols%s (%s), %s columns" % \
               (tablepathname, descpathname, classname, ncols)

    def __repr__(self):
        """A detailed string representation for this object."""

        out = str(self) + "\n"
        for name in self._v_colnames:
            # Get this class name
            classname = getattr(self, name).__class__.__name__
            # The type
            if name in self._v_desc._v_dtypes:
                tcol = self._v_desc._v_dtypes[name]
                # The shape for this column
                shape = (self._v_table.nrows,) + \
                    self._v_desc._v_dtypes[name].shape
            else:
                tcol = "Description"
                # Description doesn't have a shape currently
                shape = ()
            out += "  %s (%s%s, %s)" % (name, classname, shape, tcol) + "\n"
        return out


class Column(object):
    """Accessor for a non-nested column in a table.

    Each instance of this class is associated with one *non-nested* column of a
    table. These instances are mainly used to read and write data from the
    table columns using item access (like the Cols class - see
    :ref:`ColsClassDescr`), but there are a few other associated methods to
    deal with indexes.

    .. rubric:: Column attributes

    .. attribute:: descr

        The Description (see :ref:`DescriptionClassDescr`) instance of the
        parent table or nested column.

    .. attribute:: name

        The name of the associated column.

    .. attribute:: pathname

        The complete pathname of the associated column (the same as
        Column.name if the column is not inside a nested column).

    Parameters
    ----------
    table
        The parent table instance
    name
        The name of the column that is associated with this object
    descr
        The parent description object

    """

    # Lazy read-only attributes
    # `````````````````````````
    @lazyattr
    def dtype(self):
        """The NumPy dtype that most closely matches this column."""

        return self.descr._v_dtypes[self.name].base  # Get rid of shape info

    @lazyattr
    def type(self):
        """The PyTables type of the column (a string)."""

        return self.descr._v_types[self.name]

    # Properties
    # ~~~~~~~~~~
    def _gettable(self):
        return self._table_file._get_node(self._table_path)

    table = property(_gettable, None, None,
                     """The parent Table instance (see
                     :ref:`TableClassDescr`).""")

    def _getindex(self):
        indexPath = _index_pathname_of_column_(self._table_path, self.pathname)
        try:
            index = self._table_file._get_node(indexPath)
        except NodeError:
            index = None  # The column is not indexed
        return index

    index = property(_getindex, None, None,
                     """The Index instance (see :ref:`IndexClassDescr`)
                     associated with this column (None if the column is not
                     indexed).""")

    @lazyattr
    def _itemtype(self):
        return self.descr._v_dtypes[self.name]

    def _getshape(self):
        return (self.table.nrows,) + self.descr._v_dtypes[self.name].shape

    shape = property(_getshape, None, None, "The shape of this column.")

    def _isindexed(self):
        if self.index is None:
            return False
        else:
            return True

    is_indexed = property(_isindexed, None, None,
                          "True if the column is indexed, false otherwise.")

    maindim = property(
        lambda self: 0, None, None,
        """"The dimension along which iterators work. Its value is 0 (i.e. the
        first dimension).""")

    def __init__(self, table, name, descr):

        self._table_file = table._v_file
        self._table_path = table._v_pathname
        self.name = name
        """The name of the associated column."""
        self.pathname = descr._v_colobjects[name]._v_pathname
        """The complete pathname of the associated column (the same as
        Column.name if the column is not inside a nested column)."""
        self.descr = descr
        """The Description (see :ref:`DescriptionClassDescr`) instance of the
        parent table or nested column."""

    def _g_update_table_location(self, table):
        """Updates the location information about the associated `table`."""

        self._table_file = table._v_file
        self._table_path = table._v_pathname

    _g_updateTableLocation = previous_api(_g_update_table_location)

    def __len__(self):
        """Get the number of elements in the column.

        This matches the length in rows of the parent table.

        """

        return self.table.nrows

    def __getitem__(self, key):
        """Get a row or a range of rows from a column.

        If key argument is an integer, the corresponding element in the column
        is returned as an object of the current flavor.  If key is a slice, the
        range of elements determined by it is returned as an array of the
        current flavor.

        Examples
        --------

        ::

            print("Column handlers:")
            for name in table.colnames:
                print(table.cols._f_col(name))
                print("Select table.cols.name[1]-->", table.cols.name[1])
                print("Select table.cols.name[1:2]-->", table.cols.name[1:2])
                print("Select table.cols.name[:]-->", table.cols.name[:])
                print("Select table.cols._f_col('name')[:]-->",
                                                table.cols._f_col('name')[:])

        The output of this for a certain arbitrary table is::

            Column handlers:
            /table.cols.name (Column(), string, idx=None)
            /table.cols.lati (Column(), int32, idx=None)
            /table.cols.longi (Column(), int32, idx=None)
            /table.cols.vector (Column(2,), int32, idx=None)
            /table.cols.matrix2D (Column(2, 2), float64, idx=None)
            Select table.cols.name[1]--> Particle:     11
            Select table.cols.name[1:2]--> ['Particle:     11']
            Select table.cols.name[:]--> ['Particle:     10'
             'Particle:     11' 'Particle:     12'
             'Particle:     13' 'Particle:     14']
            Select table.cols._f_col('name')[:]--> ['Particle:     10'
             'Particle:     11' 'Particle:     12'
             'Particle:     13' 'Particle:     14']

        See the :file:`examples/table2.py` file for a more complete example.

        """

        table = self.table

        # Generalized key support not there yet, but at least allow
        # for a tuple with one single element (the main dimension).
        # (key,) --> key
        if isinstance(key, tuple) and len(key) == 1:
            key = key[0]

        if is_idx(key):
            key = operator.index(key)

            # Index out of range protection
            if key >= table.nrows:
                raise IndexError("Index out of range")
            if key < 0:
                # To support negative values
                key += table.nrows
            (start, stop, step) = table._process_range(key, key + 1, 1)
            return table.read(start, stop, step, self.pathname)[0]
        elif isinstance(key, slice):
            (start, stop, step) = table._process_range(
                key.start, key.stop, key.step)
            return table.read(start, stop, step, self.pathname)
        else:
            raise TypeError(
                "'%s' key type is not valid in this context" % key)

    def __iter__(self):
        """Iterate through all items in the column."""

        table = self.table
        itemsize = self.dtype.itemsize
        nrowsinbuf = table._v_file.params['IO_BUFFER_SIZE'] // itemsize
        buf = numpy.empty((nrowsinbuf, ), self._itemtype)
        max_row = len(self)
        for start_row in range(0, len(self), nrowsinbuf):
            end_row = min(start_row + nrowsinbuf, max_row)
            buf_slice = buf[0:end_row - start_row]
            table.read(start_row, end_row, 1, field=self.pathname,
                       out=buf_slice)
            for row in buf_slice:
                yield row

    def __setitem__(self, key, value):
        """Set a row or a range of rows in a column.

        If key argument is an integer, the corresponding element is set to
        value.  If key is a slice, the range of elements determined by it is
        set to value.

        Examples
        --------

        ::

            # Modify row 1
            table.cols.col1[1] = -1

            # Modify rows 1 and 3
            table.cols.col1[1::2] = [2,3]

        Which is equivalent to::

            # Modify row 1
            table.modify_columns(start=1, columns=[[-1]], names=['col1'])

            # Modify rows 1 and 3
            columns = numpy.rec.fromarrays([[2,3]], formats='i4')
            table.modify_columns(start=1, step=2, columns=columns,
                                 names=['col1'])

        """

        table = self.table
        table._v_file._check_writable()

        # Generalized key support not there yet, but at least allow
        # for a tuple with one single element (the main dimension).
        # (key,) --> key
        if isinstance(key, tuple) and len(key) == 1:
            key = key[0]

        if is_idx(key):
            key = operator.index(key)

            # Index out of range protection
            if key >= table.nrows:
                raise IndexError("Index out of range")
            if key < 0:
                # To support negative values
                key += table.nrows
            return table.modify_column(key, key + 1, 1,
                                       [[value]], self.pathname)
        elif isinstance(key, slice):
            (start, stop, step) = table._process_range(
                key.start, key.stop, key.step)
            return table.modify_column(start, stop, step,
                                       value, self.pathname)
        else:
            raise ValueError("Non-valid index or slice: %s" % key)

    def create_index(self, optlevel=6, kind="medium", filters=None,
                     tmp_dir=None, _blocksizes=None, _testmode=False,
                     _verbose=False):
        """Create an index for this column.

        .. warning::

            In some situations it is useful to get a completely sorted
            index (CSI).  For those cases, it is best to use the
            :meth:`Column.create_csindex` method instead.

        Parameters
        ----------
        optlevel : int
            The optimization level for building the index.  The levels ranges
            from 0 (no optimization) up to 9 (maximum optimization).  Higher
            levels of optimization mean better chances for reducing the entropy
            of the index at the price of using more CPU, memory and I/O
            resources for creating the index.
        kind : str
            The kind of the index to be built.  It can take the 'ultralight',
            'light', 'medium' or 'full' values.  Lighter kinds ('ultralight'
            and 'light') mean that the index takes less space on disk, but will
            perform queries slower.  Heavier kinds ('medium' and 'full') mean
            better chances for reducing the entropy of the index (increasing
            the query speed) at the price of using more disk space as well as
            more CPU, memory and I/O resources for creating the index.

            Note that selecting a full kind with an optlevel of 9 (the maximum)
            guarantees the creation of an index with zero entropy, that is, a
            completely sorted index (CSI) - provided that the number of rows in
            the table does not exceed the 2**48 figure (that is more than 100
            trillions of rows).  See :meth:`Column.create_csindex` method for a
            more direct way to create a CSI index.
        filters : Filters
            Specify the Filters instance used to compress the index.  If None,
            default index filters will be used (currently, zlib level 1 with
            shuffling).
        tmp_dir
            When kind is other than 'ultralight', a temporary file is created
            during the index build process.  You can use the tmp_dir argument
            to specify the directory for this temporary file.  The default is
            to create it in the same directory as the file containing the
            original table.

        """

        kinds = ['ultralight', 'light', 'medium', 'full']
        if kind not in kinds:
            raise ValueError("Kind must have any of these values: %s" % kinds)
        if (not isinstance(optlevel, (int, int)) or
                (optlevel < 0 or optlevel > 9)):
            raise ValueError("Optimization level must be an integer in the "
                             "range 0-9")
        if filters is None:
            filters = default_index_filters
        if tmp_dir is None:
            tmp_dir = os.path.dirname(self._table_file.filename)
        else:
            if not os.path.isdir(tmp_dir):
                raise ValueError("Temporary directory '%s' does not exist" %
                                 tmp_dir)
        if (_blocksizes is not None and
                (not isinstance(_blocksizes, tuple) or len(_blocksizes) != 4)):
            raise ValueError("_blocksizes must be a tuple with exactly 4 "
                             "elements")
        idxrows = _column__create_index(self, optlevel, kind, filters,
                                        tmp_dir, _blocksizes, _verbose)
        return SizeType(idxrows)

    createIndex = previous_api(create_index)

    def create_csindex(self, filters=None, tmp_dir=None,
                       _blocksizes=None, _testmode=False, _verbose=False):
        """Create a completely sorted index (CSI) for this column.

        This method guarantees the creation of an index with zero entropy, that
        is, a completely sorted index (CSI) -- provided that the number of rows
        in the table does not exceed the 2**48 figure (that is more than 100
        trillions of rows).  A CSI index is needed for some table methods (like
        :meth:`Table.itersorted` or :meth:`Table.read_sorted`) in order to
        ensure completely sorted results.

        For the meaning of filters and tmp_dir arguments see
        :meth:`Column.create_index`.

        Notes
        -----
        This method is equivalent to
        Column.create_index(optlevel=9, kind='full', ...).

        """

        return self.create_index(
            kind='full', optlevel=9, filters=filters, tmp_dir=tmp_dir,
            _blocksizes=_blocksizes, _testmode=_testmode, _verbose=_verbose)

    createCSIndex = previous_api(create_csindex)

    def _do_reindex(self, dirty):
        """Common code for reindex() and reindex_dirty() codes."""

        index = self.index
        dodirty = True
        if dirty and not index.dirty:
            dodirty = False
        if index is not None and dodirty:
            self._table_file._check_writable()
            # Get the old index parameters
            kind = index.kind
            optlevel = index.optlevel
            filters = index.filters
            # We *need* to tell the index that it is going to be undirty.
            # This is needed here so as to unnail() the condition cache.
            index.dirty = False
            # Delete the existing Index
            index._f_remove()
            # Create a new Index with the previous parameters
            return SizeType(self.create_index(
                kind=kind, optlevel=optlevel, filters=filters))
        else:
            return SizeType(0)  # The column is not intended for indexing

    _doReIndex = previous_api(_do_reindex)

    def reindex(self):
        """Recompute the index associated with this column.

        This can be useful when you suspect that, for any reason,
        the index information is no longer valid and you want to rebuild it.

        This method does nothing if the column is not indexed.

        """

        self._do_reindex(dirty=False)

    reIndex = previous_api(reindex)

    def reindex_dirty(self):
        """Recompute the associated index only if it is dirty.

        This can be useful when you have set :attr:`Table.autoindex` to false
        for the table and you want to update the column's index after an
        invalidating index operation (like :meth:`Table.remove_rows`).

        This method does nothing if the column is not indexed.

        """

        self._do_reindex(dirty=True)

    reIndexDirty = previous_api(reindex_dirty)

    def remove_index(self):
        """Remove the index associated with this column.

        This method does nothing if the column is not indexed. The removed
        index can be created again by calling the :meth:`Column.create_index`
        method.

        """

        self._table_file._check_writable()

        # Remove the index if existing.
        if self.is_indexed:
            index = self.index
            index._f_remove()
            self.table._set_column_indexing(self.pathname, False)

    removeIndex = previous_api(remove_index)

    def close(self):
        """Close this column."""

        self.__dict__.clear()

    def __str__(self):
        """The string representation for this object."""

        # The pathname
        tablepathname = self._table_path
        pathname = self.pathname.replace('/', '.')
        # Get this class name
        classname = self.__class__.__name__
        # The shape for this column
        shape = self.shape
        # The type
        tcol = self.descr._v_types[self.name]
        return "%s.cols.%s (%s%s, %s, idx=%s)" % \
               (tablepathname, pathname, classname, shape, tcol, self.index)

    def __repr__(self):
        """A detailed string representation for this object."""

        return str(self)


## Local Variables:
## mode: python
## py-indent-offset: 4
## tab-width: 4
## fill-column: 72
## End: