/usr/lib/python3/dist-packages/tables/idxutils.py is in python3-tables 3.2.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 | # -*- coding: utf-8 -*-
########################################################################
#
# License: BSD
# Created: April 02, 2007
# Author: Francesc Alted - faltet@pytables.com
#
# $Id$
#
########################################################################
"""Utilities to be used mainly by the Index class."""
import sys
import math
import numpy
from tables._past import previous_api
# Hints for chunk/slice/block/superblock computations:
# - The slicesize should not exceed 2**32 elements (because of
# implementation reasons). Such an extreme case would make the
# sorting algorithms to consume up to 64 GB of memory.
# - In general, one should favor a small chunksize ( < 128 KB) if one
# wants to reduce the latency for indexed queries. However, keep in
# mind that a very low value of chunksize for big datasets may hurt
# the performance by requering the HDF5 to use a lot of memory and CPU
# for its internal B-Tree.
def csformula(nrows):
"""Return the fitted chunksize (a float value) for nrows."""
# This formula has been computed using two points:
# 2**12 = m * 2**(n + log10(10**6))
# 2**15 = m * 2**(n + log10(10**9))
# where 2**12 and 2**15 are reasonable values for chunksizes for indexes
# with 10**6 and 10**9 elements respectively.
# Yes, return a floating point number!
return 64 * 2**math.log10(nrows)
def limit_er(expectedrows):
"""Protection against creating too small or too large chunks or slices."""
if expectedrows < 10**5:
expectedrows = 10**5
elif expectedrows > 10**12:
expectedrows = 10**12
return expectedrows
def computechunksize(expectedrows):
"""Get the optimum chunksize based on expectedrows."""
expectedrows = limit_er(expectedrows)
zone = int(math.log10(expectedrows))
nrows = 10**zone
return int(csformula(nrows))
def computeslicesize(expectedrows, memlevel):
"""Get the optimum slicesize based on expectedrows and memorylevel."""
expectedrows = limit_er(expectedrows)
# First, the optimum chunksize
cs = csformula(expectedrows)
# Now, the actual chunksize
chunksize = computechunksize(expectedrows)
# The optimal slicesize
ss = int(cs * memlevel**2)
# We *need* slicesize to be an exact multiple of the actual chunksize
ss = (ss // chunksize) * chunksize
ss *= 4 # slicesize should be at least divisible by 4
# ss cannot be bigger than 2**31 - 1 elements because of fundamental
# reasons (this limitation comes mainly from the way of compute
# indices for indexes, but also because C keysort is not implemented
# yet for the string type). Besides, it cannot be larger than
# 2**30, because limitiations of the optimized binary search code
# (in idx-opt.c, the line ``mid = lo + (hi-lo)/2;`` will overflow
# for values of ``lo`` and ``hi`` >= 2**30). Finally, ss must be a
# multiple of 4, so 2**30 must definitely be an upper limit.
if ss > 2**30:
ss = 2**30
return ss
def computeblocksize(expectedrows, compoundsize, lowercompoundsize):
"""Calculate the optimum number of superblocks made from compounds blocks.
This is useful for computing the sizes of both blocks and
superblocks (using the PyTables terminology for blocks in indexes).
"""
nlowerblocks = (expectedrows // lowercompoundsize) + 1
if nlowerblocks > 2**20:
# Protection against too large number of compound blocks
nlowerblocks = 2**20
size = lowercompoundsize * nlowerblocks
# We *need* superblocksize to be an exact multiple of the actual
# compoundblock size (a ceil must be performed here!)
size = ((size // compoundsize) + 1) * compoundsize
return size
def calc_chunksize(expectedrows, optlevel=6, indsize=4, memlevel=4):
"""Calculate the HDF5 chunk size for index and sorted arrays.
The logic to do that is based purely in experiments playing with
different chunksizes and compression flag. It is obvious that using
big chunks optimizes the I/O speed, but if they are too large, the
uncompressor takes too much time. This might (should) be further
optimized by doing more experiments.
"""
chunksize = computechunksize(expectedrows)
slicesize = computeslicesize(expectedrows, memlevel)
# Correct the slicesize and the chunksize based on optlevel
if indsize == 1: # ultralight
chunksize, slicesize = ccs_ultralight(optlevel, chunksize, slicesize)
elif indsize == 2: # light
chunksize, slicesize = ccs_light(optlevel, chunksize, slicesize)
elif indsize == 4: # medium
chunksize, slicesize = ccs_medium(optlevel, chunksize, slicesize)
elif indsize == 8: # full
chunksize, slicesize = ccs_full(optlevel, chunksize, slicesize)
# Finally, compute blocksize and superblocksize
blocksize = computeblocksize(expectedrows, slicesize, chunksize)
superblocksize = computeblocksize(expectedrows, blocksize, slicesize)
# The size for different blocks information
sizes = (superblocksize, blocksize, slicesize, chunksize)
return sizes
calcChunksize = previous_api(calc_chunksize)
def ccs_ultralight(optlevel, chunksize, slicesize):
"""Correct the slicesize and the chunksize based on optlevel."""
if optlevel in (0, 1, 2):
slicesize //= 2
slicesize += optlevel * slicesize
elif optlevel in (3, 4, 5):
slicesize *= optlevel - 1
elif optlevel in (6, 7, 8):
slicesize *= optlevel - 1
elif optlevel == 9:
slicesize *= optlevel - 1
return chunksize, slicesize
def ccs_light(optlevel, chunksize, slicesize):
"""Correct the slicesize and the chunksize based on optlevel."""
if optlevel in (0, 1, 2):
slicesize //= 2
elif optlevel in (3, 4, 5):
pass
elif optlevel in (6, 7, 8):
chunksize /= 2
elif optlevel == 9:
# Reducing the chunksize and enlarging the slicesize is the
# best way to reduce the entropy with the current algorithm.
chunksize /= 2
slicesize *= 2
return chunksize, slicesize
def ccs_medium(optlevel, chunksize, slicesize):
"""Correct the slicesize and the chunksize based on optlevel."""
if optlevel in (0, 1, 2):
slicesize //= 2
elif optlevel in (3, 4, 5):
pass
elif optlevel in (6, 7, 8):
chunksize //= 2
elif optlevel == 9:
# Reducing the chunksize and enlarging the slicesize is the
# best way to reduce the entropy with the current algorithm.
chunksize //= 2
slicesize *= 2
return chunksize, slicesize
def ccs_full(optlevel, chunksize, slicesize):
"""Correct the slicesize and the chunksize based on optlevel."""
if optlevel in (0, 1, 2):
slicesize //= 2
elif optlevel in (3, 4, 5):
pass
elif optlevel in (6, 7, 8):
chunksize //= 2
elif optlevel == 9:
# Reducing the chunksize and enlarging the slicesize is the
# best way to reduce the entropy with the current algorithm.
chunksize //= 2
slicesize *= 2
return chunksize, slicesize
def calcoptlevels(nblocks, optlevel, indsize):
"""Compute the optimizations to be done.
The calculation is based on the number of blocks, optlevel and
indexing mode.
"""
if indsize == 2: # light
return col_light(nblocks, optlevel)
elif indsize == 4: # medium
return col_medium(nblocks, optlevel)
elif indsize == 8: # full
return col_full(nblocks, optlevel)
def col_light(nblocks, optlevel):
"""Compute the optimizations to be done for light indexes."""
optmedian, optstarts, optstops, optfull = (False,) * 4
if 0 < optlevel <= 3:
optmedian = True
elif 3 < optlevel <= 6:
optmedian, optstarts = (True, True)
elif 6 < optlevel <= 9:
optmedian, optstarts, optstops = (True, True, True)
return optmedian, optstarts, optstops, optfull
def col_medium(nblocks, optlevel):
"""Compute the optimizations to be done for medium indexes."""
optmedian, optstarts, optstops, optfull = (False,) * 4
# Medium case
if nblocks <= 1:
if 0 < optlevel <= 3:
optmedian = True
elif 3 < optlevel <= 6:
optmedian, optstarts = (True, True)
elif 6 < optlevel <= 9:
optfull = 1
else: # More than a block
if 0 < optlevel <= 3:
optfull = 1
elif 3 < optlevel <= 6:
optfull = 2
elif 6 < optlevel <= 9:
optfull = 3
return optmedian, optstarts, optstops, optfull
def col_full(nblocks, optlevel):
"""Compute the optimizations to be done for full indexes."""
optmedian, optstarts, optstops, optfull = (False,) * 4
# Full case
if nblocks <= 1:
if 0 < optlevel <= 3:
optmedian = True
elif 3 < optlevel <= 6:
optmedian, optstarts = (True, True)
elif 6 < optlevel <= 9:
optfull = 1
else: # More than a block
if 0 < optlevel <= 3:
optfull = 1
elif 3 < optlevel <= 6:
optfull = 2
elif 6 < optlevel <= 9:
optfull = 3
return optmedian, optstarts, optstops, optfull
def get_reduction_level(indsize, optlevel, slicesize, chunksize):
"""Compute the reduction level based on indsize and optlevel."""
rlevels = [
[8, 8, 8, 8, 4, 4, 4, 2, 2, 1], # 8-bit indices (ultralight)
[4, 4, 4, 4, 2, 2, 2, 1, 1, 1], # 16-bit indices (light)
[2, 2, 2, 2, 1, 1, 1, 1, 1, 1], # 32-bit indices (medium)
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1], # 64-bit indices (full)
]
isizes = {1: 0, 2: 1, 4: 2, 8: 3}
rlevel = rlevels[isizes[indsize]][optlevel]
# The next cases should only happen in tests
if rlevel >= slicesize:
rlevel = 1
if slicesize <= chunksize * rlevel:
rlevel = 1
if indsize == 8:
# Ensure that, for full indexes we will never perform a reduction.
# This is required because of implementation assumptions.
assert rlevel == 1
return rlevel
# Python implementations of NextAfter and NextAfterF
#
# These implementations exist because the standard function
# nextafterf is not available on Microsoft platforms.
#
# These implementations are based on the IEEE representation of
# floats and doubles.
# Author: Shack Toms - shack@livedata.com
#
# Thanks to Shack Toms shack@livedata.com for NextAfter and NextAfterF
# implementations in Python. 2004-10-01
# epsilon = math.ldexp(1.0, -53) # smallest double such that
# # 0.5 + epsilon != 0.5
# epsilonF = math.ldexp(1.0, -24) # smallest float such that 0.5 + epsilonF
# != 0.5
# maxFloat = float(2**1024 - 2**971) # From the IEEE 754 standard
# maxFloatF = float(2**128 - 2**104) # From the IEEE 754 standard
# minFloat = math.ldexp(1.0, -1022) # min positive normalized double
# minFloatF = math.ldexp(1.0, -126) # min positive normalized float
# smallEpsilon = math.ldexp(1.0, -1074) # smallest increment for
# # doubles < minFloat
# smallEpsilonF = math.ldexp(1.0, -149) # smallest increment for
# # floats < minFloatF
infinity = math.ldexp(1.0, 1023) * 2
infinityf = math.ldexp(1.0, 128)
# Finf = float("inf") # Infinite in the IEEE 754 standard (not avail in Win)
# A portable representation of NaN
# if sys.byteorder == "little":
# testNaN = struct.unpack("d", '\x01\x00\x00\x00\x00\x00\xf0\x7f')[0]
# elif sys.byteorder == "big":
# testNaN = struct.unpack("d", '\x7f\xf0\x00\x00\x00\x00\x00\x01')[0]
# else:
# raise ValueError("Byteorder '%s' not supported!" % sys.byteorder)
# This one seems better
# testNaN = infinity - infinity
# "infinity" for several types
infinitymap = {
'bool': [0, 1],
'int8': [-2**7, 2**7 - 1],
'uint8': [0, 2**8 - 1],
'int16': [-2**15, 2**15 - 1],
'uint16': [0, 2**16 - 1],
'int32': [-2**31, 2**31 - 1],
'uint32': [0, 2**32 - 1],
'int64': [-2**63, 2**63 - 1],
'uint64': [0, 2**64 - 1],
'float32': [-infinityf, infinityf],
'float64': [-infinity, infinity],
}
if hasattr(numpy, 'float16'):
infinitymap['float16'] = [-numpy.float16(numpy.inf),
numpy.float16(numpy.inf)]
if hasattr(numpy, 'float96'):
infinitymap['float96'] = [-numpy.float96(numpy.inf),
numpy.float96(numpy.inf)]
if hasattr(numpy, 'float128'):
infinitymap['float128'] = [-numpy.float128(numpy.inf),
numpy.float128(numpy.inf)]
# deprecated API
infinityMap = infinitymap
infinityF = infinityf
# Utility functions
def inftype(dtype, itemsize, sign=+1):
"""Return a superior limit for maximum representable data type."""
assert sign in [-1, +1]
if dtype.kind == "S":
if sign < 0:
return b"\x00" * itemsize
else:
return b"\xff" * itemsize
try:
return infinitymap[dtype.name][sign >= 0]
except KeyError:
raise TypeError("Type %s is not supported" % dtype.name)
infType = previous_api(inftype)
def string_next_after(x, direction, itemsize):
"""Return the next representable neighbor of x in the appropriate
direction."""
assert direction in [-1, +1]
# Pad the string with \x00 chars until itemsize completion
padsize = itemsize - len(x)
if padsize > 0:
x += b"\x00" * padsize
if sys.version_info[0] < 3:
xlist = list(x)
else:
# int.to_bytes is not available in Python < 3.2
# xlist = [i.to_bytes(1, sys.byteorder) for i in x]
xlist = [bytes([i]) for i in x]
xlist.reverse()
i = 0
if direction > 0:
if xlist == b"\xff" * itemsize:
# Maximum value, return this
return b"".join(xlist)
for xchar in xlist:
if ord(xchar) < 0xff:
xlist[i] = chr(ord(xchar) + 1).encode('ascii')
break
else:
xlist[i] = b"\x00"
i += 1
else:
if xlist == b"\x00" * itemsize:
# Minimum value, return this
return b"".join(xlist)
for xchar in xlist:
if ord(xchar) > 0x00:
xlist[i] = chr(ord(xchar) - 1).encode('ascii')
break
else:
xlist[i] = b"\xff"
i += 1
xlist.reverse()
return b"".join(xlist)
StringNextAfter = previous_api(string_next_after)
def int_type_next_after(x, direction, itemsize):
"""Return the next representable neighbor of x in the appropriate
direction."""
assert direction in [-1, +1]
# x is guaranteed to be either an int or a float
if direction < 0:
if isinstance(x, int):
return x - 1
else:
# return int(PyNextAfter(x, x - 1))
return int(numpy.nextafter(x, x - 1))
else:
if isinstance(x, int):
return x + 1
else:
# return int(PyNextAfter(x,x + 1)) + 1
return int(numpy.nextafter(x, x + 1)) + 1
IntTypeNextAfter = previous_api(int_type_next_after)
def bool_type_next_after(x, direction, itemsize):
"""Return the next representable neighbor of x in the appropriate
direction."""
assert direction in [-1, +1]
# x is guaranteed to be either a boolean
if direction < 0:
return False
else:
return True
BoolTypeNextAfter = previous_api(bool_type_next_after)
def nextafter(x, direction, dtype, itemsize):
"""Return the next representable neighbor of x in the appropriate
direction."""
assert direction in [-1, 0, +1]
assert dtype.kind == "S" or type(x) in (bool, int, int, float)
if direction == 0:
return x
if dtype.kind == "S":
return string_next_after(x, direction, itemsize)
if dtype.kind in ['b']:
return bool_type_next_after(x, direction, itemsize)
elif dtype.kind in ['i', 'u']:
return int_type_next_after(x, direction, itemsize)
elif dtype.kind == "f":
if direction < 0:
return numpy.nextafter(x, x - 1)
else:
return numpy.nextafter(x, x + 1)
# elif dtype.name == "float32":
# if direction < 0:
# return PyNextAfterF(x,x-1)
# else:
# return PyNextAfterF(x,x + 1)
# elif dtype.name == "float64":
# if direction < 0:
# return PyNextAfter(x,x-1)
# else:
# return PyNextAfter(x,x + 1)
raise TypeError("data type ``%s`` is not supported" % dtype)
## Local Variables:
## mode: python
## py-indent-offset: 4
## tab-width: 4
## fill-column: 72
## End:
|