This file is indexed.

/usr/lib/python3/dist-packages/tables/idxutils.py is in python3-tables 3.2.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
# -*- coding: utf-8 -*-

########################################################################
#
#       License: BSD
#       Created: April 02, 2007
#       Author:  Francesc Alted - faltet@pytables.com
#
#       $Id$
#
########################################################################

"""Utilities to be used mainly by the Index class."""

import sys
import math
import numpy

from tables._past import previous_api


# Hints for chunk/slice/block/superblock computations:
# - The slicesize should not exceed 2**32 elements (because of
# implementation reasons).  Such an extreme case would make the
# sorting algorithms to consume up to 64 GB of memory.
# - In general, one should favor a small chunksize ( < 128 KB) if one
# wants to reduce the latency for indexed queries. However, keep in
# mind that a very low value of chunksize for big datasets may hurt
# the performance by requering the HDF5 to use a lot of memory and CPU
# for its internal B-Tree.

def csformula(nrows):
    """Return the fitted chunksize (a float value) for nrows."""

    # This formula has been computed using two points:
    # 2**12 = m * 2**(n + log10(10**6))
    # 2**15 = m * 2**(n + log10(10**9))
    # where 2**12 and 2**15 are reasonable values for chunksizes for indexes
    # with 10**6 and 10**9 elements respectively.
    # Yes, return a floating point number!
    return 64 * 2**math.log10(nrows)


def limit_er(expectedrows):
    """Protection against creating too small or too large chunks or slices."""

    if expectedrows < 10**5:
        expectedrows = 10**5
    elif expectedrows > 10**12:
        expectedrows = 10**12
    return expectedrows


def computechunksize(expectedrows):
    """Get the optimum chunksize based on expectedrows."""

    expectedrows = limit_er(expectedrows)
    zone = int(math.log10(expectedrows))
    nrows = 10**zone
    return int(csformula(nrows))


def computeslicesize(expectedrows, memlevel):
    """Get the optimum slicesize based on expectedrows and memorylevel."""

    expectedrows = limit_er(expectedrows)
    # First, the optimum chunksize
    cs = csformula(expectedrows)
    # Now, the actual chunksize
    chunksize = computechunksize(expectedrows)
    # The optimal slicesize
    ss = int(cs * memlevel**2)
    # We *need* slicesize to be an exact multiple of the actual chunksize
    ss = (ss // chunksize) * chunksize
    ss *= 4    # slicesize should be at least divisible by 4
    # ss cannot be bigger than 2**31 - 1 elements because of fundamental
    # reasons (this limitation comes mainly from the way of compute
    # indices for indexes, but also because C keysort is not implemented
    # yet for the string type).  Besides, it cannot be larger than
    # 2**30, because limitiations of the optimized binary search code
    # (in idx-opt.c, the line ``mid = lo + (hi-lo)/2;`` will overflow
    # for values of ``lo`` and ``hi`` >= 2**30).  Finally, ss must be a
    # multiple of 4, so 2**30 must definitely be an upper limit.
    if ss > 2**30:
        ss = 2**30
    return ss


def computeblocksize(expectedrows, compoundsize, lowercompoundsize):
    """Calculate the optimum number of superblocks made from compounds blocks.

    This is useful for computing the sizes of both blocks and
    superblocks (using the PyTables terminology for blocks in indexes).

    """

    nlowerblocks = (expectedrows // lowercompoundsize) + 1
    if nlowerblocks > 2**20:
        # Protection against too large number of compound blocks
        nlowerblocks = 2**20
    size = lowercompoundsize * nlowerblocks
    # We *need* superblocksize to be an exact multiple of the actual
    # compoundblock size (a ceil must be performed here!)
    size = ((size // compoundsize) + 1) * compoundsize
    return size


def calc_chunksize(expectedrows, optlevel=6, indsize=4, memlevel=4):
    """Calculate the HDF5 chunk size for index and sorted arrays.

    The logic to do that is based purely in experiments playing with
    different chunksizes and compression flag. It is obvious that using
    big chunks optimizes the I/O speed, but if they are too large, the
    uncompressor takes too much time. This might (should) be further
    optimized by doing more experiments.

    """

    chunksize = computechunksize(expectedrows)
    slicesize = computeslicesize(expectedrows, memlevel)

    # Correct the slicesize and the chunksize based on optlevel
    if indsize == 1:  # ultralight
        chunksize, slicesize = ccs_ultralight(optlevel, chunksize, slicesize)
    elif indsize == 2:  # light
        chunksize, slicesize = ccs_light(optlevel, chunksize, slicesize)
    elif indsize == 4:  # medium
        chunksize, slicesize = ccs_medium(optlevel, chunksize, slicesize)
    elif indsize == 8:  # full
        chunksize, slicesize = ccs_full(optlevel, chunksize, slicesize)

    # Finally, compute blocksize and superblocksize
    blocksize = computeblocksize(expectedrows, slicesize, chunksize)
    superblocksize = computeblocksize(expectedrows, blocksize, slicesize)
    # The size for different blocks information
    sizes = (superblocksize, blocksize, slicesize, chunksize)
    return sizes

calcChunksize = previous_api(calc_chunksize)


def ccs_ultralight(optlevel, chunksize, slicesize):
    """Correct the slicesize and the chunksize based on optlevel."""

    if optlevel in (0, 1, 2):
        slicesize //= 2
        slicesize += optlevel * slicesize
    elif optlevel in (3, 4, 5):
        slicesize *= optlevel - 1
    elif optlevel in (6, 7, 8):
        slicesize *= optlevel - 1
    elif optlevel == 9:
        slicesize *= optlevel - 1
    return chunksize, slicesize


def ccs_light(optlevel, chunksize, slicesize):
    """Correct the slicesize and the chunksize based on optlevel."""

    if optlevel in (0, 1, 2):
        slicesize //= 2
    elif optlevel in (3, 4, 5):
        pass
    elif optlevel in (6, 7, 8):
        chunksize /= 2
    elif optlevel == 9:
        # Reducing the chunksize and enlarging the slicesize is the
        # best way to reduce the entropy with the current algorithm.
        chunksize /= 2
        slicesize *= 2
    return chunksize, slicesize


def ccs_medium(optlevel, chunksize, slicesize):
    """Correct the slicesize and the chunksize based on optlevel."""

    if optlevel in (0, 1, 2):
        slicesize //= 2
    elif optlevel in (3, 4, 5):
        pass
    elif optlevel in (6, 7, 8):
        chunksize //= 2
    elif optlevel == 9:
        # Reducing the chunksize and enlarging the slicesize is the
        # best way to reduce the entropy with the current algorithm.
        chunksize //= 2
        slicesize *= 2
    return chunksize, slicesize


def ccs_full(optlevel, chunksize, slicesize):
    """Correct the slicesize and the chunksize based on optlevel."""

    if optlevel in (0, 1, 2):
        slicesize //= 2
    elif optlevel in (3, 4, 5):
        pass
    elif optlevel in (6, 7, 8):
        chunksize //= 2
    elif optlevel == 9:
        # Reducing the chunksize and enlarging the slicesize is the
        # best way to reduce the entropy with the current algorithm.
        chunksize //= 2
        slicesize *= 2
    return chunksize, slicesize


def calcoptlevels(nblocks, optlevel, indsize):
    """Compute the optimizations to be done.

    The calculation is based on the number of blocks, optlevel and
    indexing mode.

    """

    if indsize == 2:  # light
        return col_light(nblocks, optlevel)
    elif indsize == 4:  # medium
        return col_medium(nblocks, optlevel)
    elif indsize == 8:  # full
        return col_full(nblocks, optlevel)


def col_light(nblocks, optlevel):
    """Compute the optimizations to be done for light indexes."""

    optmedian, optstarts, optstops, optfull = (False,) * 4

    if 0 < optlevel <= 3:
        optmedian = True
    elif 3 < optlevel <= 6:
        optmedian, optstarts = (True, True)
    elif 6 < optlevel <= 9:
        optmedian, optstarts, optstops = (True, True, True)

    return optmedian, optstarts, optstops, optfull


def col_medium(nblocks, optlevel):
    """Compute the optimizations to be done for medium indexes."""

    optmedian, optstarts, optstops, optfull = (False,) * 4

    # Medium case
    if nblocks <= 1:
        if 0 < optlevel <= 3:
            optmedian = True
        elif 3 < optlevel <= 6:
            optmedian, optstarts = (True, True)
        elif 6 < optlevel <= 9:
            optfull = 1
    else:  # More than a block
        if 0 < optlevel <= 3:
            optfull = 1
        elif 3 < optlevel <= 6:
            optfull = 2
        elif 6 < optlevel <= 9:
            optfull = 3

    return optmedian, optstarts, optstops, optfull


def col_full(nblocks, optlevel):
    """Compute the optimizations to be done for full indexes."""

    optmedian, optstarts, optstops, optfull = (False,) * 4

    # Full case
    if nblocks <= 1:
        if 0 < optlevel <= 3:
            optmedian = True
        elif 3 < optlevel <= 6:
            optmedian, optstarts = (True, True)
        elif 6 < optlevel <= 9:
            optfull = 1
    else:  # More than a block
        if 0 < optlevel <= 3:
            optfull = 1
        elif 3 < optlevel <= 6:
            optfull = 2
        elif 6 < optlevel <= 9:
            optfull = 3

    return optmedian, optstarts, optstops, optfull


def get_reduction_level(indsize, optlevel, slicesize, chunksize):
    """Compute the reduction level based on indsize and optlevel."""
    rlevels = [
        [8, 8, 8, 8, 4, 4, 4, 2, 2, 1],  # 8-bit indices (ultralight)
        [4, 4, 4, 4, 2, 2, 2, 1, 1, 1],  # 16-bit indices (light)
        [2, 2, 2, 2, 1, 1, 1, 1, 1, 1],  # 32-bit indices (medium)
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],  # 64-bit indices (full)
    ]
    isizes = {1: 0, 2: 1, 4: 2, 8: 3}
    rlevel = rlevels[isizes[indsize]][optlevel]
    # The next cases should only happen in tests
    if rlevel >= slicesize:
        rlevel = 1
    if slicesize <= chunksize * rlevel:
        rlevel = 1
    if indsize == 8:
        # Ensure that, for full indexes we will never perform a reduction.
        # This is required because of implementation assumptions.
        assert rlevel == 1
    return rlevel


# Python implementations of NextAfter and NextAfterF
#
# These implementations exist because the standard function
# nextafterf is not available on Microsoft platforms.
#
# These implementations are based on the IEEE representation of
# floats and doubles.
# Author:  Shack Toms - shack@livedata.com
#
# Thanks to Shack Toms shack@livedata.com for NextAfter and NextAfterF
# implementations in Python. 2004-10-01
# epsilon  = math.ldexp(1.0, -53) # smallest double such that
#                                 # 0.5 + epsilon != 0.5
# epsilonF = math.ldexp(1.0, -24) # smallest float such that 0.5 + epsilonF
# != 0.5
# maxFloat = float(2**1024 - 2**971)  # From the IEEE 754 standard
# maxFloatF = float(2**128 - 2**104)  # From the IEEE 754 standard
# minFloat  = math.ldexp(1.0, -1022) # min positive normalized double
# minFloatF = math.ldexp(1.0, -126)  # min positive normalized float
# smallEpsilon  = math.ldexp(1.0, -1074) # smallest increment for
#                                        # doubles < minFloat
# smallEpsilonF = math.ldexp(1.0, -149)  # smallest increment for
#                                        # floats < minFloatF
infinity = math.ldexp(1.0, 1023) * 2
infinityf = math.ldexp(1.0, 128)
# Finf = float("inf")  # Infinite in the IEEE 754 standard (not avail in Win)

# A portable representation of NaN
# if sys.byteorder == "little":
#     testNaN = struct.unpack("d", '\x01\x00\x00\x00\x00\x00\xf0\x7f')[0]
# elif sys.byteorder == "big":
#     testNaN = struct.unpack("d", '\x7f\xf0\x00\x00\x00\x00\x00\x01')[0]
# else:
#     raise ValueError("Byteorder '%s' not supported!" % sys.byteorder)
# This one seems better
# testNaN = infinity - infinity

# "infinity" for several types
infinitymap = {
    'bool': [0, 1],
    'int8': [-2**7, 2**7 - 1],
    'uint8': [0, 2**8 - 1],
    'int16': [-2**15, 2**15 - 1],
    'uint16': [0, 2**16 - 1],
    'int32': [-2**31, 2**31 - 1],
    'uint32': [0, 2**32 - 1],
    'int64': [-2**63, 2**63 - 1],
    'uint64': [0, 2**64 - 1],
    'float32': [-infinityf, infinityf],
    'float64': [-infinity, infinity],
}

if hasattr(numpy, 'float16'):
    infinitymap['float16'] = [-numpy.float16(numpy.inf),
                              numpy.float16(numpy.inf)]
if hasattr(numpy, 'float96'):
    infinitymap['float96'] = [-numpy.float96(numpy.inf),
                              numpy.float96(numpy.inf)]
if hasattr(numpy, 'float128'):
    infinitymap['float128'] = [-numpy.float128(numpy.inf),
                               numpy.float128(numpy.inf)]

# deprecated API
infinityMap = infinitymap
infinityF = infinityf

# Utility functions


def inftype(dtype, itemsize, sign=+1):
    """Return a superior limit for maximum representable data type."""

    assert sign in [-1, +1]

    if dtype.kind == "S":
        if sign < 0:
            return b"\x00" * itemsize
        else:
            return b"\xff" * itemsize
    try:
        return infinitymap[dtype.name][sign >= 0]
    except KeyError:
        raise TypeError("Type %s is not supported" % dtype.name)

infType = previous_api(inftype)


def string_next_after(x, direction, itemsize):
    """Return the next representable neighbor of x in the appropriate
    direction."""

    assert direction in [-1, +1]

    # Pad the string with \x00 chars until itemsize completion
    padsize = itemsize - len(x)
    if padsize > 0:
        x += b"\x00" * padsize
    if sys.version_info[0] < 3:
        xlist = list(x)
    else:
        # int.to_bytes is not available in Python < 3.2
        # xlist = [i.to_bytes(1, sys.byteorder) for i in x]
        xlist = [bytes([i]) for i in x]
    xlist.reverse()
    i = 0
    if direction > 0:
        if xlist == b"\xff" * itemsize:
            # Maximum value, return this
            return b"".join(xlist)
        for xchar in xlist:
            if ord(xchar) < 0xff:
                xlist[i] = chr(ord(xchar) + 1).encode('ascii')
                break
            else:
                xlist[i] = b"\x00"
            i += 1
    else:
        if xlist == b"\x00" * itemsize:
            # Minimum value, return this
            return b"".join(xlist)
        for xchar in xlist:
            if ord(xchar) > 0x00:
                xlist[i] = chr(ord(xchar) - 1).encode('ascii')
                break
            else:
                xlist[i] = b"\xff"
            i += 1
    xlist.reverse()
    return b"".join(xlist)

StringNextAfter = previous_api(string_next_after)


def int_type_next_after(x, direction, itemsize):
    """Return the next representable neighbor of x in the appropriate
    direction."""

    assert direction in [-1, +1]

    # x is guaranteed to be either an int or a float
    if direction < 0:
        if isinstance(x, int):
            return x - 1
        else:
            # return int(PyNextAfter(x, x - 1))
            return int(numpy.nextafter(x, x - 1))
    else:
        if isinstance(x, int):
            return x + 1
        else:
            # return int(PyNextAfter(x,x + 1)) + 1
            return int(numpy.nextafter(x, x + 1)) + 1

IntTypeNextAfter = previous_api(int_type_next_after)


def bool_type_next_after(x, direction, itemsize):
    """Return the next representable neighbor of x in the appropriate
    direction."""

    assert direction in [-1, +1]

    # x is guaranteed to be either a boolean
    if direction < 0:
        return False
    else:
        return True

BoolTypeNextAfter = previous_api(bool_type_next_after)


def nextafter(x, direction, dtype, itemsize):
    """Return the next representable neighbor of x in the appropriate
    direction."""

    assert direction in [-1, 0, +1]
    assert dtype.kind == "S" or type(x) in (bool, int, int, float)

    if direction == 0:
        return x

    if dtype.kind == "S":
        return string_next_after(x, direction, itemsize)

    if dtype.kind in ['b']:
        return bool_type_next_after(x, direction, itemsize)
    elif dtype.kind in ['i', 'u']:
        return int_type_next_after(x, direction, itemsize)
    elif dtype.kind == "f":
        if direction < 0:
            return numpy.nextafter(x, x - 1)
        else:
            return numpy.nextafter(x, x + 1)

    # elif dtype.name == "float32":
    #    if direction < 0:
    #        return PyNextAfterF(x,x-1)
    #    else:
    #        return PyNextAfterF(x,x + 1)
    # elif dtype.name == "float64":
    #    if direction < 0:
    #        return PyNextAfter(x,x-1)
    #    else:
    #        return PyNextAfter(x,x + 1)

    raise TypeError("data type ``%s`` is not supported" % dtype)


## Local Variables:
## mode: python
## py-indent-offset: 4
## tab-width: 4
## fill-column: 72
## End: