/usr/lib/python3/dist-packages/swiftclient/multithreading.py is in python3-swiftclient 1:3.0.0-0ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 | # Copyright (c) 2010-2012 OpenStack, LLC.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import six
import sys
from concurrent.futures import ThreadPoolExecutor
from six.moves.queue import PriorityQueue
class OutputManager(object):
"""
One object to manage and provide helper functions for output.
This object is a context manager and returns itself into the context. When
entering the context, two printing threads are created (see below) and they
are waited on and cleaned up when exiting the context.
Also, thread-safe printing to two streams is provided. The
:meth:`print_msg` method will print to the supplied ``print_stream``
(defaults to ``sys.stdout``) and the :meth:`error` method will print to the
supplied ``error_stream`` (defaults to ``sys.stderr``). Both of these
printing methods will format the given string with any supplied ``*args``
(a la printf). On Python 2, Unicode messages are encoded to utf8.
The attribute :attr:`self.error_count` is incremented once per error
message printed, so an application can tell if any worker threads
encountered exceptions or otherwise called :meth:`error` on this instance.
The swift command-line tool uses this to exit non-zero if any error strings
were printed.
"""
DEFAULT_OFFSET = 14
def __init__(self, print_stream=None, error_stream=None):
"""
:param print_stream: The stream to which :meth:`print_msg` sends
formatted messages.
:param error_stream: The stream to which :meth:`error` sends formatted
messages.
On Python 2, Unicode messages are encoded to utf8.
"""
self.print_stream = print_stream or sys.stdout
self.print_pool = ThreadPoolExecutor(max_workers=1)
self.error_stream = error_stream or sys.stderr
self.error_print_pool = ThreadPoolExecutor(max_workers=1)
self.error_count = 0
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
self.error_print_pool.__exit__(exc_type, exc_value, traceback)
self.print_pool.__exit__(exc_type, exc_value, traceback)
def print_raw(self, data):
self.print_pool.submit(self._write, data, self.print_stream)
def _write(self, data, stream):
if six.PY3:
stream.buffer.write(data)
stream.flush()
if six.PY2:
stream.write(data)
stream.flush()
def print_msg(self, msg, *fmt_args):
if fmt_args:
msg = msg % fmt_args
self.print_pool.submit(self._print, msg)
def print_items(self, items, offset=DEFAULT_OFFSET, skip_missing=False):
template = '%%%ds: %%s' % offset
for k, v in items:
if skip_missing and not v:
continue
self.print_msg((template % (k, v)).rstrip())
def error(self, msg, *fmt_args):
if fmt_args:
msg = msg % fmt_args
self.error_print_pool.submit(self._print_error, msg)
def get_error_count(self):
return self.error_count
def _print(self, item, stream=None):
if stream is None:
stream = self.print_stream
if six.PY2 and isinstance(item, six.text_type):
item = item.encode('utf8')
print(item, file=stream)
def _print_error(self, item, count=1):
self.error_count += count
return self._print(item, stream=self.error_stream)
def warning(self, msg, *fmt_args):
# print to error stream but do not increment error count
if fmt_args:
msg = msg % fmt_args
self.error_print_pool.submit(self._print_error, msg, count=0)
class MultiThreadingManager(object):
"""
One object to manage context for multi-threading. This should make
bin/swift less error-prone and allow us to test this code.
"""
def __init__(self, create_connection, segment_threads=10,
object_dd_threads=10, object_uu_threads=10,
container_threads=10):
"""
:param segment_threads: The number of threads allocated to segment
uploads
:param object_dd_threads: The number of threads allocated to object
download/delete jobs
:param object_uu_threads: The number of threads allocated to object
upload/update based jobs
:param container_threads: The number of threads allocated to
container/account level jobs
"""
self.segment_pool = ConnectionThreadPoolExecutor(
create_connection, max_workers=segment_threads)
self.object_dd_pool = ConnectionThreadPoolExecutor(
create_connection, max_workers=object_dd_threads)
self.object_uu_pool = ConnectionThreadPoolExecutor(
create_connection, max_workers=object_uu_threads)
self.container_pool = ConnectionThreadPoolExecutor(
create_connection, max_workers=container_threads)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
self.segment_pool.__exit__(exc_type, exc_value, traceback)
self.object_dd_pool.__exit__(exc_type, exc_value, traceback)
self.object_uu_pool.__exit__(exc_type, exc_value, traceback)
self.container_pool.__exit__(exc_type, exc_value, traceback)
class ConnectionThreadPoolExecutor(ThreadPoolExecutor):
"""
A wrapper class to maintain a pool of connections alongside the thread
pool. We start by creating a priority queue of connections, and each job
submitted takes one of those connections (initialising if necessary) and
passes it as the first arg to the executed function.
At the end of execution that connection is returned to the queue.
By using a PriorityQueue we avoid creating more connections than required.
We will only create as many connections as are required concurrently.
"""
def __init__(self, create_connection, max_workers):
self._connections = PriorityQueue()
self._create_connection = create_connection
for p in range(0, max_workers):
self._connections.put((p, None))
super(ConnectionThreadPoolExecutor, self).__init__(max_workers)
def submit(self, fn, *args, **kwargs):
def conn_fn():
priority = None
conn = None
try:
# If we get a connection we must put it back later
(priority, conn) = self._connections.get()
if conn is None:
conn = self._create_connection()
conn_args = (conn,) + args
return fn(*conn_args, **kwargs)
finally:
if priority is not None:
self._connections.put((priority, conn))
return super(ConnectionThreadPoolExecutor, self).submit(conn_fn)
|