/usr/lib/python3/dist-packages/pyresample/plot.py is in python3-pyresample 1.1.6-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 | # pyresample, Resampling of remote sensing image data in python
#
# Copyright (C) 2010-2015
#
# Authors:
# Esben S. Nielsen
# Thomas Lavergne
#
# This program is free software: you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option) any
# later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
# details.
#
# You should have received a copy of the GNU Lesser General Public License along
# with this program. If not, see <http://www.gnu.org/licenses/>.
from __future__ import absolute_import
import numpy as np
def ellps2axis(ellps_name):
"""Get semi-major and semi-minor axis from ellipsis definition
:Parameters:
ellps_name : str
Standard name of ellipsis
:Returns:
(a, b) : semi-major and semi-minor axis
"""
ellps = {'helmert': {'a': 6378200.0, 'b': 6356818.1696278909},
'intl': {'a': 6378388.0, 'b': 6356911.9461279465},
'merit': {'a': 6378137.0, 'b': 6356752.2982159676},
'wgs72': {'a': 6378135.0, 'b': 6356750.5200160937},
'sphere': {'a': 6370997.0, 'b': 6370997.0},
'clrk66': {'a': 6378206.4000000004, 'b': 6356583.7999999998},
'nwl9d': {'a': 6378145.0, 'b': 6356759.7694886839},
'lerch': {'a': 6378139.0, 'b': 6356754.2915103417},
'evrstss': {'a': 6377298.5559999999, 'b': 6356097.5503008962},
'evrst30': {'a': 6377276.3449999997, 'b': 6356075.4131402401},
'mprts': {'a': 6397300.0, 'b': 6363806.2827225132},
'krass': {'a': 6378245.0, 'b': 6356863.0187730473},
'walbeck': {'a': 6376896.0, 'b': 6355834.8466999996},
'kaula': {'a': 6378163.0, 'b': 6356776.9920869097},
'wgs66': {'a': 6378145.0, 'b': 6356759.7694886839},
'evrst56': {'a': 6377301.2429999998, 'b': 6356100.2283681016},
'new_intl': {'a': 6378157.5, 'b': 6356772.2000000002},
'airy': {'a': 6377563.3959999997, 'b': 6356256.9100000001},
'bessel': {'a': 6377397.1550000003, 'b': 6356078.9628181886},
'seasia': {'a': 6378155.0, 'b': 6356773.3205000004},
'aust_sa': {'a': 6378160.0, 'b': 6356774.7191953054},
'wgs84': {'a': 6378137.0, 'b': 6356752.3142451793},
'hough': {'a': 6378270.0, 'b': 6356794.3434343431},
'wgs60': {'a': 6378165.0, 'b': 6356783.2869594367},
'engelis': {'a': 6378136.0499999998, 'b': 6356751.3227215428},
'apl4.9': {'a': 6378137.0, 'b': 6356751.796311819},
'andrae': {'a': 6377104.4299999997, 'b': 6355847.4152333336},
'sgs85': {'a': 6378136.0, 'b': 6356751.301568781},
'delmbr': {'a': 6376428.0, 'b': 6355957.9261637237},
'fschr60m': {'a': 6378155.0, 'b': 6356773.3204827355},
'iau76': {'a': 6378140.0, 'b': 6356755.2881575283},
'plessis': {'a': 6376523.0, 'b': 6355863.0},
'cpm': {'a': 6375738.7000000002, 'b': 6356666.221912113},
'fschr68': {'a': 6378150.0, 'b': 6356768.3372443849},
'mod_airy': {'a': 6377340.1890000002, 'b': 6356034.4460000005},
'grs80': {'a': 6378137.0, 'b': 6356752.3141403561},
'bess_nam': {'a': 6377483.8650000002, 'b': 6356165.3829663256},
'fschr60': {'a': 6378166.0, 'b': 6356784.2836071067},
'clrk80': {'a': 6378249.1449999996, 'b': 6356514.9658284895},
'evrst69': {'a': 6377295.6639999999, 'b': 6356094.6679152036},
'grs67': {'a': 6378160.0, 'b': 6356774.5160907144},
'evrst48': {'a': 6377304.0630000001, 'b': 6356103.0389931547}}
try:
ellps_axis = ellps[ellps_name.lower()]
a = ellps_axis['a']
b = ellps_axis['b']
except KeyError as e:
raise ValueError(('Could not determine semi-major and semi-minor axis '
'of specified ellipsis %s') % ellps_name)
return a, b
def area_def2basemap(area_def, **kwargs):
"""Get Basemap object from AreaDefinition
:Parameters:
area_def : object
geometry.AreaDefinition object
**kwargs: Keyword arguments
Additional initialization arguments for Basemap
:Returns:
bmap : Basemap object
"""
from mpl_toolkits.basemap import Basemap
try:
a, b = ellps2axis(area_def.proj_dict['ellps'])
rsphere = (a, b)
except KeyError:
try:
a = float(area_def.proj_dict['a'])
try:
b = float(area_def.proj_dict['b'])
rsphere = (a, b)
except KeyError:
rsphere = a
except KeyError:
# Default to WGS84 ellipsoid
a, b = ellps2axis('wgs84')
rsphere = (a, b)
# Add projection specific basemap args to args passed to function
basemap_args = kwargs
basemap_args['rsphere'] = rsphere
if area_def.proj_dict['proj'] in ('ortho', 'geos', 'nsper'):
llcrnrx, llcrnry, urcrnrx, urcrnry = area_def.area_extent
basemap_args['llcrnrx'] = llcrnrx
basemap_args['llcrnry'] = llcrnry
basemap_args['urcrnrx'] = urcrnrx
basemap_args['urcrnry'] = urcrnry
else:
llcrnrlon, llcrnrlat, urcrnrlon, urcrnrlat = area_def.area_extent_ll
basemap_args['llcrnrlon'] = llcrnrlon
basemap_args['llcrnrlat'] = llcrnrlat
basemap_args['urcrnrlon'] = urcrnrlon
basemap_args['urcrnrlat'] = urcrnrlat
if area_def.proj_dict['proj'] == 'eqc':
basemap_args['projection'] = 'cyl'
else:
basemap_args['projection'] = area_def.proj_dict['proj']
# Try adding potentially remaining args
for key in ('lon_0', 'lat_0', 'lon_1', 'lat_1', 'lon_2', 'lat_2',
'lat_ts'):
try:
basemap_args[key] = float(area_def.proj_dict[key])
except KeyError:
pass
return Basemap(**basemap_args)
def _get_quicklook(area_def, data, vmin=None, vmax=None,
label='Variable (units)', num_meridians=45,
num_parallels=10, coast_res='c'):
"""Get default Basemap matplotlib plot
"""
if area_def.shape != data.shape:
raise ValueError('area_def shape %s does not match data shape %s' %
(list(area_def.shape), list(data.shape)))
import matplotlib.pyplot as plt
bmap = area_def2basemap(area_def, resolution=coast_res)
bmap.drawcoastlines()
if num_meridians > 0:
bmap.drawmeridians(np.arange(-180, 180, num_meridians))
if num_parallels > 0:
bmap.drawparallels(np.arange(-90, 90, num_parallels))
if not (np.ma.isMaskedArray(data) and data.mask.all()):
col = bmap.imshow(data, origin='upper', vmin=vmin, vmax=vmax)
plt.colorbar(col, shrink=0.5, pad=0.05).set_label(label)
return plt
def show_quicklook(area_def, data, vmin=None, vmax=None,
label='Variable (units)', num_meridians=45,
num_parallels=10, coast_res='c'):
"""Display default quicklook plot
:Parameters:
area_def : object
geometry.AreaDefinition object
data : numpy array | numpy masked array
2D array matching area_def. Use masked array for transparent values
vmin : float, optional
Min value for luminescence scaling
vmax : float, optional
Max value for luminescence scaling
label : str, optional
Label for data
num_meridians : int, optional
Number of meridians to plot on the globe
num_parallels : int, optional
Number of parallels to plot on the globe
coast_res : {'c', 'l', 'i', 'h', 'f'}, optional
Resolution of coastlines
:Returns:
bmap : Basemap object
"""
plt = _get_quicklook(area_def, data, vmin=vmin, vmax=vmax,
label=label, num_meridians=num_meridians,
num_parallels=num_parallels, coast_res=coast_res)
plt.show()
plt.close()
def save_quicklook(filename, area_def, data, vmin=None, vmax=None,
label='Variable (units)', num_meridians=45,
num_parallels=10, coast_res='c', backend='AGG'):
"""Display default quicklook plot
:Parameters:
filename : str
path to output file
area_def : object
geometry.AreaDefinition object
data : numpy array | numpy masked array
2D array matching area_def. Use masked array for transparent values
vmin : float, optional
Min value for luminescence scaling
vmax : float, optional
Max value for luminescence scaling
label : str, optional
Label for data
num_meridians : int, optional
Number of meridians to plot on the globe
num_parallels : int, optional
Number of parallels to plot on the globe
coast_res : {'c', 'l', 'i', 'h', 'f'}, optional
Resolution of coastlines
backend : str, optional
matplotlib backend to use'
"""
import matplotlib
matplotlib.use(backend, warn=False)
plt = _get_quicklook(area_def, data, vmin=vmin, vmax=vmax,
label=label, num_meridians=num_meridians,
num_parallels=num_parallels, coast_res=coast_res)
plt.savefig(filename, bbox_inches='tight')
plt.close()
|