/usr/lib/python3/dist-packages/pyresample/image.py is in python3-pyresample 1.1.6-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 | # pyresample, Resampling of remote sensing image data in python
#
# Copyright (C) 2010, 2015 Esben S. Nielsen
#
# This program is free software: you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option) any
# later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
# details.
#
# You should have received a copy of the GNU Lesser General Public License along
# with this program. If not, see <http://www.gnu.org/licenses/>.
"""Handles resampling of images with assigned geometry definitions"""
from __future__ import absolute_import
import numpy as np
from . import geometry, grid, kd_tree
class ImageContainer(object):
"""Holds image with geometry definition.
Allows indexing with linesample arrays.
:Parameters:
image_data : numpy array
Image data
geo_def : object
Geometry definition
fill_value : {int, None} optional
Set undetermined pixels to this value.
If fill_value is None a masked array is returned
with undetermined pixels masked
nprocs : int, optional
Number of processor cores to be used
:Attributes:
image_data : numpy array
Image data
geo_def : object
Geometry definition
fill_value : {int, None}
Resample result fill value
nprocs : int
Number of processor cores to be used for geometry operations
"""
def __init__(self, image_data, geo_def, fill_value=0, nprocs=1):
if not isinstance(image_data, (np.ndarray, np.ma.core.MaskedArray)):
raise TypeError('image_data must be either an ndarray'
' or a masked array')
elif ((image_data.ndim > geo_def.ndim + 1) or
(image_data.ndim < geo_def.ndim)):
raise ValueError(('Unexpected number of dimensions for '
'image_data: ') % image_data.ndim)
for i, size in enumerate(geo_def.shape):
if image_data.shape[i] != size:
raise ValueError(('Size mismatch for image_data. Expected '
'size %s for dimension %s and got %s') %
(size, i, image_data.shape[i]))
self.shape = geo_def.shape
self.size = geo_def.size
self.ndim = geo_def.ndim
self.image_data = image_data
if image_data.ndim > geo_def.ndim:
self.channels = image_data.shape[-1]
else:
self.channels = 1
self.geo_def = geo_def
self.fill_value = fill_value
self.nprocs = nprocs
def __str__(self):
return 'Image:\n %s' % self.image_data.__str__()
def __repr__(self):
return self.image_data.__repr__()
def resample(self, target_geo_def):
"""Base method for resampling"""
raise NotImplementedError('Method "resample" is not implemented '
'in class %s' % self.__class__.__name__)
def get_array_from_linesample(self, row_indices, col_indices):
"""Samples from image based on index arrays.
:Parameters:
row_indices : numpy array
Row indices. Dimensions must match col_indices
col_indices : numpy array
Col indices. Dimensions must match row_indices
:Returns:
image_data : numpy_array
Resampled image data
"""
if self.geo_def.ndim != 2:
raise TypeError('Resampling from linesamples only makes sense '
'on 2D data')
return grid.get_image_from_linesample(row_indices, col_indices,
self.image_data,
self.fill_value)
def get_array_from_neighbour_info(self, *args, **kwargs):
"""Base method for resampling from preprocessed data."""
raise NotImplementedError('Method "get_array_from_neighbour_info" is '
'not implemented in class %s' %
self.__class__.__name__)
class ImageContainerQuick(ImageContainer):
"""Holds image with area definition. '
Allows quick resampling within area.
:Parameters:
image_data : numpy array
Image data
geo_def : object
Area definition as AreaDefinition object
fill_value : {int, None} optional
Set undetermined pixels to this value.
If fill_value is None a masked array is returned
with undetermined pixels masked
nprocs : int, optional
Number of processor cores to be used for geometry operations
segments : {int, None}
Number of segments to use when resampling.
If set to None an estimate will be calculated
:Attributes:
image_data : numpy array
Image data
geo_def : object
Area definition as AreaDefinition object
fill_value : {int, None}
Resample result fill value
If fill_value is None a masked array is returned
with undetermined pixels masked
nprocs : int
Number of processor cores to be used
segments : {int, None}
Number of segments to use when resampling
"""
def __init__(self, image_data, geo_def, fill_value=0, nprocs=1,
segments=None):
if not isinstance(geo_def, geometry.AreaDefinition):
raise TypeError('area_def must be of type '
'geometry.AreaDefinition')
super(ImageContainerQuick, self).__init__(image_data, geo_def,
fill_value=fill_value,
nprocs=nprocs)
self.segments = segments
def resample(self, target_area_def):
"""Resamples image to area definition using nearest neighbour
approach in projection coordinates.
:Parameters:
target_area_def : object
Target area definition as AreaDefinition object
:Returns:
image_container : object
ImageContainerQuick object of resampled area
"""
resampled_image = grid.get_resampled_image(target_area_def,
self.geo_def,
self.image_data,
fill_value=self.fill_value,
nprocs=self.nprocs,
segments=self.segments)
return ImageContainerQuick(resampled_image, target_area_def,
fill_value=self.fill_value,
nprocs=self.nprocs, segments=self.segments)
class ImageContainerNearest(ImageContainer):
"""Holds image with geometry definition.
Allows nearest neighbour resampling to new geometry definition.
:Parameters:
image_data : numpy array
Image data
geo_def : object
Geometry definition
radius_of_influence : float
Cut off distance in meters
epsilon : float, optional
Allowed uncertainty in meters. Increasing uncertainty
reduces execution time
fill_value : {int, None} optional
Set undetermined pixels to this value.
If fill_value is None a masked array is returned
with undetermined pixels masked
reduce_data : bool, optional
Perform coarse data reduction before resampling in order
to reduce execution time
nprocs : int, optional
Number of processor cores to be used for geometry operations
segments : {int, None}
Number of segments to use when resampling.
If set to None an estimate will be calculated
:Attributes:
image_data : numpy array
Image data
geo_def : object
Geometry definition
radius_of_influence : float
Cut off distance in meters
epsilon : float
Allowed uncertainty in meters
fill_value : {int, None}
Resample result fill value
reduce_data : bool
Perform coarse data reduction before resampling
nprocs : int
Number of processor cores to be used
segments : {int, None}
Number of segments to use when resampling
"""
def __init__(self, image_data, geo_def, radius_of_influence, epsilon=0,
fill_value=0, reduce_data=True, nprocs=1, segments=None):
super(ImageContainerNearest, self).__init__(image_data, geo_def,
fill_value=fill_value,
nprocs=nprocs)
self.radius_of_influence = radius_of_influence
self.epsilon = epsilon
self.reduce_data = reduce_data
self.segments = segments
def resample(self, target_geo_def):
"""Resamples image to area definition using nearest neighbour
approach
:Parameters:
target_geo_def : object
Target geometry definition
:Returns:
image_container : object
ImageContainerNearest object of resampled geometry
"""
if self.image_data.ndim > 2 and self.ndim > 1:
image_data = self.image_data.reshape(self.image_data.shape[0] *
self.image_data.shape[1],
self.image_data.shape[2])
else:
image_data = self.image_data.ravel()
resampled_image = \
kd_tree.resample_nearest(self.geo_def,
image_data,
target_geo_def,
self.radius_of_influence,
epsilon=self.epsilon,
fill_value=self.fill_value,
nprocs=self.nprocs,
reduce_data=self.reduce_data,
segments=self.segments)
return ImageContainerNearest(resampled_image, target_geo_def,
self.radius_of_influence,
epsilon=self.epsilon,
fill_value=self.fill_value,
reduce_data=self.reduce_data,
nprocs=self.nprocs,
segments=self.segments)
|