This file is indexed.

/usr/lib/python3/dist-packages/ply/yacc.py is in python3-ply 3.7-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
# -----------------------------------------------------------------------------
# ply: yacc.py
#
# Copyright (C) 2001-2015,
# David M. Beazley (Dabeaz LLC)
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright notice,
#   this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice,
#   this list of conditions and the following disclaimer in the documentation
#   and/or other materials provided with the distribution.
# * Neither the name of the David Beazley or Dabeaz LLC may be used to
#   endorse or promote products derived from this software without
#  specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# -----------------------------------------------------------------------------
#
# This implements an LR parser that is constructed from grammar rules defined
# as Python functions. The grammer is specified by supplying the BNF inside
# Python documentation strings.  The inspiration for this technique was borrowed
# from John Aycock's Spark parsing system.  PLY might be viewed as cross between
# Spark and the GNU bison utility.
#
# The current implementation is only somewhat object-oriented. The
# LR parser itself is defined in terms of an object (which allows multiple
# parsers to co-exist).  However, most of the variables used during table
# construction are defined in terms of global variables.  Users shouldn't
# notice unless they are trying to define multiple parsers at the same
# time using threads (in which case they should have their head examined).
#
# This implementation supports both SLR and LALR(1) parsing.  LALR(1)
# support was originally implemented by Elias Ioup (ezioup@alumni.uchicago.edu),
# using the algorithm found in Aho, Sethi, and Ullman "Compilers: Principles,
# Techniques, and Tools" (The Dragon Book).  LALR(1) has since been replaced
# by the more efficient DeRemer and Pennello algorithm.
#
# :::::::: WARNING :::::::
#
# Construction of LR parsing tables is fairly complicated and expensive.
# To make this module run fast, a *LOT* of work has been put into
# optimization---often at the expensive of readability and what might
# consider to be good Python "coding style."   Modify the code at your
# own risk!
# ----------------------------------------------------------------------------

import re
import types
import sys
import os.path
import inspect
import base64
import warnings

__version__    = '3.7'
__tabversion__ = '3.5'

#-----------------------------------------------------------------------------
#                     === User configurable parameters ===
#
# Change these to modify the default behavior of yacc (if you wish)
#-----------------------------------------------------------------------------

yaccdebug   = True             # Debugging mode.  If set, yacc generates a
                               # a 'parser.out' file in the current directory

debug_file  = 'parser.out'     # Default name of the debugging file
tab_module  = 'parsetab'       # Default name of the table module
default_lr  = 'LALR'           # Default LR table generation method

error_count = 3                # Number of symbols that must be shifted to leave recovery mode

yaccdevel   = False            # Set to True if developing yacc.  This turns off optimized
                               # implementations of certain functions.

resultlimit = 40               # Size limit of results when running in debug mode.

pickle_protocol = 0            # Protocol to use when writing pickle files

# String type-checking compatibility
if sys.version_info[0] < 3:
    string_types = basestring
else:
    string_types = str

MAXINT = sys.maxsize

# This object is a stand-in for a logging object created by the
# logging module.   PLY will use this by default to create things
# such as the parser.out file.  If a user wants more detailed
# information, they can create their own logging object and pass
# it into PLY.

class PlyLogger(object):
    def __init__(self, f):
        self.f = f

    def debug(self, msg, *args, **kwargs):
        self.f.write((msg % args) + '\n')

    info = debug

    def warning(self, msg, *args, **kwargs):
        self.f.write('WARNING: ' + (msg % args) + '\n')

    def error(self, msg, *args, **kwargs):
        self.f.write('ERROR: ' + (msg % args) + '\n')

    critical = debug

# Null logger is used when no output is generated. Does nothing.
class NullLogger(object):
    def __getattribute__(self, name):
        return self

    def __call__(self, *args, **kwargs):
        return self

# Exception raised for yacc-related errors
class YaccError(Exception):
    pass

# Format the result message that the parser produces when running in debug mode.
def format_result(r):
    repr_str = repr(r)
    if '\n' in repr_str:
        repr_str = repr(repr_str)
    if len(repr_str) > resultlimit:
        repr_str = repr_str[:resultlimit] + ' ...'
    result = '<%s @ 0x%x> (%s)' % (type(r).__name__, id(r), repr_str)
    return result

# Format stack entries when the parser is running in debug mode
def format_stack_entry(r):
    repr_str = repr(r)
    if '\n' in repr_str:
        repr_str = repr(repr_str)
    if len(repr_str) < 16:
        return repr_str
    else:
        return '<%s @ 0x%x>' % (type(r).__name__, id(r))

# Panic mode error recovery support.   This feature is being reworked--much of the
# code here is to offer a deprecation/backwards compatible transition

_errok = None
_token = None
_restart = None
_warnmsg = '''PLY: Don't use global functions errok(), token(), and restart() in p_error().
Instead, invoke the methods on the associated parser instance:

    def p_error(p):
        ...
        # Use parser.errok(), parser.token(), parser.restart()
        ...

    parser = yacc.yacc()
'''

def errok():
    warnings.warn(_warnmsg)
    return _errok()

def restart():
    warnings.warn(_warnmsg)
    return _restart()

def token():
    warnings.warn(_warnmsg)
    return _token()

# Utility function to call the p_error() function with some deprecation hacks
def call_errorfunc(errorfunc, token, parser):
    global _errok, _token, _restart
    _errok = parser.errok
    _token = parser.token
    _restart = parser.restart
    r = errorfunc(token)
    try:
        del _errok, _token, _restart
    except NameError:
        pass
    return r

#-----------------------------------------------------------------------------
#                        ===  LR Parsing Engine ===
#
# The following classes are used for the LR parser itself.  These are not
# used during table construction and are independent of the actual LR
# table generation algorithm
#-----------------------------------------------------------------------------

# This class is used to hold non-terminal grammar symbols during parsing.
# It normally has the following attributes set:
#        .type       = Grammar symbol type
#        .value      = Symbol value
#        .lineno     = Starting line number
#        .endlineno  = Ending line number (optional, set automatically)
#        .lexpos     = Starting lex position
#        .endlexpos  = Ending lex position (optional, set automatically)

class YaccSymbol:
    def __str__(self):
        return self.type

    def __repr__(self):
        return str(self)

# This class is a wrapper around the objects actually passed to each
# grammar rule.   Index lookup and assignment actually assign the
# .value attribute of the underlying YaccSymbol object.
# The lineno() method returns the line number of a given
# item (or 0 if not defined).   The linespan() method returns
# a tuple of (startline,endline) representing the range of lines
# for a symbol.  The lexspan() method returns a tuple (lexpos,endlexpos)
# representing the range of positional information for a symbol.

class YaccProduction:
    def __init__(self, s, stack=None):
        self.slice = s
        self.stack = stack
        self.lexer = None
        self.parser = None

    def __getitem__(self, n):
        if isinstance(n, slice):
            return [s.value for s in self.slice[n]]
        elif n >= 0:
            return self.slice[n].value
        else:
            return self.stack[n].value

    def __setitem__(self, n, v):
        self.slice[n].value = v

    def __getslice__(self, i, j):
        return [s.value for s in self.slice[i:j]]

    def __len__(self):
        return len(self.slice)

    def lineno(self, n):
        return getattr(self.slice[n], 'lineno', 0)

    def set_lineno(self, n, lineno):
        self.slice[n].lineno = lineno

    def linespan(self, n):
        startline = getattr(self.slice[n], 'lineno', 0)
        endline = getattr(self.slice[n], 'endlineno', startline)
        return startline, endline

    def lexpos(self, n):
        return getattr(self.slice[n], 'lexpos', 0)

    def lexspan(self, n):
        startpos = getattr(self.slice[n], 'lexpos', 0)
        endpos = getattr(self.slice[n], 'endlexpos', startpos)
        return startpos, endpos

    def error(self):
        raise SyntaxError

# -----------------------------------------------------------------------------
#                               == LRParser ==
#
# The LR Parsing engine.
# -----------------------------------------------------------------------------

class LRParser:
    def __init__(self, lrtab, errorf):
        self.productions = lrtab.lr_productions
        self.action = lrtab.lr_action
        self.goto = lrtab.lr_goto
        self.errorfunc = errorf
        self.set_defaulted_states()
        self.errorok = True

    def errok(self):
        self.errorok = True

    def restart(self):
        del self.statestack[:]
        del self.symstack[:]
        sym = YaccSymbol()
        sym.type = '$end'
        self.symstack.append(sym)
        self.statestack.append(0)

    # Defaulted state support.
    # This method identifies parser states where there is only one possible reduction action.
    # For such states, the parser can make a choose to make a rule reduction without consuming
    # the next look-ahead token.  This delayed invocation of the tokenizer can be useful in
    # certain kinds of advanced parsing situations where the lexer and parser interact with
    # each other or change states (i.e., manipulation of scope, lexer states, etc.).
    #
    # See:  http://www.gnu.org/software/bison/manual/html_node/Default-Reductions.html#Default-Reductions
    def set_defaulted_states(self):
        self.defaulted_states = {}
        for state, actions in self.action.items():
            rules = list(actions.values())
            if len(rules) == 1 and rules[0] < 0:
                self.defaulted_states[state] = rules[0]

    def disable_defaulted_states(self):
        self.defaulted_states = {}

    def parse(self, input=None, lexer=None, debug=False, tracking=False, tokenfunc=None):
        if debug or yaccdevel:
            if isinstance(debug, int):
                debug = PlyLogger(sys.stderr)
            return self.parsedebug(input, lexer, debug, tracking, tokenfunc)
        elif tracking:
            return self.parseopt(input, lexer, debug, tracking, tokenfunc)
        else:
            return self.parseopt_notrack(input, lexer, debug, tracking, tokenfunc)


    # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    # parsedebug().
    #
    # This is the debugging enabled version of parse().  All changes made to the
    # parsing engine should be made here.   Optimized versions of this function
    # are automatically created by the ply/ygen.py script.  This script cuts out
    # sections enclosed in markers such as this:
    #
    #      #--! DEBUG
    #      statements
    #      #--! DEBUG
    #
    # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

    def parsedebug(self, input=None, lexer=None, debug=False, tracking=False, tokenfunc=None):
        #--! parsedebug-start
        lookahead = None                         # Current lookahead symbol
        lookaheadstack = []                      # Stack of lookahead symbols
        actions = self.action                    # Local reference to action table (to avoid lookup on self.)
        goto    = self.goto                      # Local reference to goto table (to avoid lookup on self.)
        prod    = self.productions               # Local reference to production list (to avoid lookup on self.)
        defaulted_states = self.defaulted_states # Local reference to defaulted states
        pslice  = YaccProduction(None)           # Production object passed to grammar rules
        errorcount = 0                           # Used during error recovery

        #--! DEBUG
        debug.info('PLY: PARSE DEBUG START')
        #--! DEBUG

        # If no lexer was given, we will try to use the lex module
        if not lexer:
            from . import lex
            lexer = lex.lexer

        # Set up the lexer and parser objects on pslice
        pslice.lexer = lexer
        pslice.parser = self

        # If input was supplied, pass to lexer
        if input is not None:
            lexer.input(input)

        if tokenfunc is None:
            # Tokenize function
            get_token = lexer.token
        else:
            get_token = tokenfunc

        # Set the parser() token method (sometimes used in error recovery)
        self.token = get_token

        # Set up the state and symbol stacks

        statestack = []                # Stack of parsing states
        self.statestack = statestack
        symstack   = []                # Stack of grammar symbols
        self.symstack = symstack

        pslice.stack = symstack         # Put in the production
        errtoken   = None               # Err token

        # The start state is assumed to be (0,$end)

        statestack.append(0)
        sym = YaccSymbol()
        sym.type = '$end'
        symstack.append(sym)
        state = 0
        while True:
            # Get the next symbol on the input.  If a lookahead symbol
            # is already set, we just use that. Otherwise, we'll pull
            # the next token off of the lookaheadstack or from the lexer

            #--! DEBUG
            debug.debug('')
            debug.debug('State  : %s', state)
            #--! DEBUG

            if state not in defaulted_states:
                if not lookahead:
                    if not lookaheadstack:
                        lookahead = get_token()     # Get the next token
                    else:
                        lookahead = lookaheadstack.pop()
                    if not lookahead:
                        lookahead = YaccSymbol()
                        lookahead.type = '$end'

                # Check the action table
                ltype = lookahead.type
                t = actions[state].get(ltype)
            else:
                t = defaulted_states[state]
                #--! DEBUG
                debug.debug('Defaulted state %s: Reduce using %d', state, -t)
                #--! DEBUG

            #--! DEBUG
            debug.debug('Stack  : %s',
                        ('%s . %s' % (' '.join([xx.type for xx in symstack][1:]), str(lookahead))).lstrip())
            #--! DEBUG

            if t is not None:
                if t > 0:
                    # shift a symbol on the stack
                    statestack.append(t)
                    state = t

                    #--! DEBUG
                    debug.debug('Action : Shift and goto state %s', t)
                    #--! DEBUG

                    symstack.append(lookahead)
                    lookahead = None

                    # Decrease error count on successful shift
                    if errorcount:
                        errorcount -= 1
                    continue

                if t < 0:
                    # reduce a symbol on the stack, emit a production
                    p = prod[-t]
                    pname = p.name
                    plen  = p.len

                    # Get production function
                    sym = YaccSymbol()
                    sym.type = pname       # Production name
                    sym.value = None

                    #--! DEBUG
                    if plen:
                        debug.info('Action : Reduce rule [%s] with %s and goto state %d', p.str,
                                   '['+','.join([format_stack_entry(_v.value) for _v in symstack[-plen:]])+']',
                                   goto[statestack[-1-plen]][pname])
                    else:
                        debug.info('Action : Reduce rule [%s] with %s and goto state %d', p.str, [],
                                   goto[statestack[-1]][pname])

                    #--! DEBUG

                    if plen:
                        targ = symstack[-plen-1:]
                        targ[0] = sym

                        #--! TRACKING
                        if tracking:
                            t1 = targ[1]
                            sym.lineno = t1.lineno
                            sym.lexpos = t1.lexpos
                            t1 = targ[-1]
                            sym.endlineno = getattr(t1, 'endlineno', t1.lineno)
                            sym.endlexpos = getattr(t1, 'endlexpos', t1.lexpos)
                        #--! TRACKING

                        # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
                        # The code enclosed in this section is duplicated
                        # below as a performance optimization.  Make sure
                        # changes get made in both locations.

                        pslice.slice = targ

                        try:
                            # Call the grammar rule with our special slice object
                            del symstack[-plen:]
                            del statestack[-plen:]
                            p.callable(pslice)
                            #--! DEBUG
                            debug.info('Result : %s', format_result(pslice[0]))
                            #--! DEBUG
                            symstack.append(sym)
                            state = goto[statestack[-1]][pname]
                            statestack.append(state)
                        except SyntaxError:
                            # If an error was set. Enter error recovery state
                            lookaheadstack.append(lookahead)
                            symstack.pop()
                            statestack.pop()
                            state = statestack[-1]
                            sym.type = 'error'
                            lookahead = sym
                            errorcount = error_count
                            self.errorok = False
                        continue
                        # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

                    else:

                        #--! TRACKING
                        if tracking:
                            sym.lineno = lexer.lineno
                            sym.lexpos = lexer.lexpos
                        #--! TRACKING

                        targ = [sym]

                        # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
                        # The code enclosed in this section is duplicated
                        # above as a performance optimization.  Make sure
                        # changes get made in both locations.

                        pslice.slice = targ

                        try:
                            # Call the grammar rule with our special slice object
                            p.callable(pslice)
                            #--! DEBUG
                            debug.info('Result : %s', format_result(pslice[0]))
                            #--! DEBUG
                            symstack.append(sym)
                            state = goto[statestack[-1]][pname]
                            statestack.append(state)
                        except SyntaxError:
                            # If an error was set. Enter error recovery state
                            lookaheadstack.append(lookahead)
                            symstack.pop()
                            statestack.pop()
                            state = statestack[-1]
                            sym.type = 'error'
                            lookahead = sym
                            errorcount = error_count
                            self.errorok = False
                        continue
                        # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

                if t == 0:
                    n = symstack[-1]
                    result = getattr(n, 'value', None)
                    #--! DEBUG
                    debug.info('Done   : Returning %s', format_result(result))
                    debug.info('PLY: PARSE DEBUG END')
                    #--! DEBUG
                    return result

            if t is None:

                #--! DEBUG
                debug.error('Error  : %s',
                            ('%s . %s' % (' '.join([xx.type for xx in symstack][1:]), str(lookahead))).lstrip())
                #--! DEBUG

                # We have some kind of parsing error here.  To handle
                # this, we are going to push the current token onto
                # the tokenstack and replace it with an 'error' token.
                # If there are any synchronization rules, they may
                # catch it.
                #
                # In addition to pushing the error token, we call call
                # the user defined p_error() function if this is the
                # first syntax error.  This function is only called if
                # errorcount == 0.
                if errorcount == 0 or self.errorok:
                    errorcount = error_count
                    self.errorok = False
                    errtoken = lookahead
                    if errtoken.type == '$end':
                        errtoken = None               # End of file!
                    if self.errorfunc:
                        if errtoken and not hasattr(errtoken, 'lexer'):
                            errtoken.lexer = lexer
                        tok = call_errorfunc(self.errorfunc, errtoken, self)
                        if self.errorok:
                            # User must have done some kind of panic
                            # mode recovery on their own.  The
                            # returned token is the next lookahead
                            lookahead = tok
                            errtoken = None
                            continue
                    else:
                        if errtoken:
                            if hasattr(errtoken, 'lineno'):
                                lineno = lookahead.lineno
                            else:
                                lineno = 0
                            if lineno:
                                sys.stderr.write('yacc: Syntax error at line %d, token=%s\n' % (lineno, errtoken.type))
                            else:
                                sys.stderr.write('yacc: Syntax error, token=%s' % errtoken.type)
                        else:
                            sys.stderr.write('yacc: Parse error in input. EOF\n')
                            return

                else:
                    errorcount = error_count

                # case 1:  the statestack only has 1 entry on it.  If we're in this state, the
                # entire parse has been rolled back and we're completely hosed.   The token is
                # discarded and we just keep going.

                if len(statestack) <= 1 and lookahead.type != '$end':
                    lookahead = None
                    errtoken = None
                    state = 0
                    # Nuke the pushback stack
                    del lookaheadstack[:]
                    continue

                # case 2: the statestack has a couple of entries on it, but we're
                # at the end of the file. nuke the top entry and generate an error token

                # Start nuking entries on the stack
                if lookahead.type == '$end':
                    # Whoa. We're really hosed here. Bail out
                    return

                if lookahead.type != 'error':
                    sym = symstack[-1]
                    if sym.type == 'error':
                        # Hmmm. Error is on top of stack, we'll just nuke input
                        # symbol and continue
                        #--! TRACKING
                        if tracking:
                            sym.endlineno = getattr(lookahead, 'lineno', sym.lineno)
                            sym.endlexpos = getattr(lookahead, 'lexpos', sym.lexpos)
                        #--! TRACKING
                        lookahead = None
                        continue

                    # Create the error symbol for the first time and make it the new lookahead symbol
                    t = YaccSymbol()
                    t.type = 'error'

                    if hasattr(lookahead, 'lineno'):
                        t.lineno = t.endlineno = lookahead.lineno
                    if hasattr(lookahead, 'lexpos'):
                        t.lexpos = t.endlexpos = lookahead.lexpos
                    t.value = lookahead
                    lookaheadstack.append(lookahead)
                    lookahead = t
                else:
                    sym = symstack.pop()
                    #--! TRACKING
                    if tracking:
                        lookahead.lineno = sym.lineno
                        lookahead.lexpos = sym.lexpos
                    #--! TRACKING
                    statestack.pop()
                    state = statestack[-1]

                continue

            # Call an error function here
            raise RuntimeError('yacc: internal parser error!!!\n')

        #--! parsedebug-end

    # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    # parseopt().
    #
    # Optimized version of parse() method.  DO NOT EDIT THIS CODE DIRECTLY!
    # This code is automatically generated by the ply/ygen.py script. Make
    # changes to the parsedebug() method instead.
    # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

    def parseopt(self, input=None, lexer=None, debug=False, tracking=False, tokenfunc=None):
        #--! parseopt-start
        lookahead = None                         # Current lookahead symbol
        lookaheadstack = []                      # Stack of lookahead symbols
        actions = self.action                    # Local reference to action table (to avoid lookup on self.)
        goto    = self.goto                      # Local reference to goto table (to avoid lookup on self.)
        prod    = self.productions               # Local reference to production list (to avoid lookup on self.)
        defaulted_states = self.defaulted_states # Local reference to defaulted states
        pslice  = YaccProduction(None)           # Production object passed to grammar rules
        errorcount = 0                           # Used during error recovery


        # If no lexer was given, we will try to use the lex module
        if not lexer:
            from . import lex
            lexer = lex.lexer

        # Set up the lexer and parser objects on pslice
        pslice.lexer = lexer
        pslice.parser = self

        # If input was supplied, pass to lexer
        if input is not None:
            lexer.input(input)

        if tokenfunc is None:
            # Tokenize function
            get_token = lexer.token
        else:
            get_token = tokenfunc

        # Set the parser() token method (sometimes used in error recovery)
        self.token = get_token

        # Set up the state and symbol stacks

        statestack = []                # Stack of parsing states
        self.statestack = statestack
        symstack   = []                # Stack of grammar symbols
        self.symstack = symstack

        pslice.stack = symstack         # Put in the production
        errtoken   = None               # Err token

        # The start state is assumed to be (0,$end)

        statestack.append(0)
        sym = YaccSymbol()
        sym.type = '$end'
        symstack.append(sym)
        state = 0
        while True:
            # Get the next symbol on the input.  If a lookahead symbol
            # is already set, we just use that. Otherwise, we'll pull
            # the next token off of the lookaheadstack or from the lexer


            if state not in defaulted_states:
                if not lookahead:
                    if not lookaheadstack:
                        lookahead = get_token()     # Get the next token
                    else:
                        lookahead = lookaheadstack.pop()
                    if not lookahead:
                        lookahead = YaccSymbol()
                        lookahead.type = '$end'

                # Check the action table
                ltype = lookahead.type
                t = actions[state].get(ltype)
            else:
                t = defaulted_states[state]


            if t is not None:
                if t > 0:
                    # shift a symbol on the stack
                    statestack.append(t)
                    state = t


                    symstack.append(lookahead)
                    lookahead = None

                    # Decrease error count on successful shift
                    if errorcount:
                        errorcount -= 1
                    continue

                if t < 0:
                    # reduce a symbol on the stack, emit a production
                    p = prod[-t]
                    pname = p.name
                    plen  = p.len

                    # Get production function
                    sym = YaccSymbol()
                    sym.type = pname       # Production name
                    sym.value = None


                    if plen:
                        targ = symstack[-plen-1:]
                        targ[0] = sym

                        #--! TRACKING
                        if tracking:
                            t1 = targ[1]
                            sym.lineno = t1.lineno
                            sym.lexpos = t1.lexpos
                            t1 = targ[-1]
                            sym.endlineno = getattr(t1, 'endlineno', t1.lineno)
                            sym.endlexpos = getattr(t1, 'endlexpos', t1.lexpos)
                        #--! TRACKING

                        # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
                        # The code enclosed in this section is duplicated
                        # below as a performance optimization.  Make sure
                        # changes get made in both locations.

                        pslice.slice = targ

                        try:
                            # Call the grammar rule with our special slice object
                            del symstack[-plen:]
                            del statestack[-plen:]
                            p.callable(pslice)
                            symstack.append(sym)
                            state = goto[statestack[-1]][pname]
                            statestack.append(state)
                        except SyntaxError:
                            # If an error was set. Enter error recovery state
                            lookaheadstack.append(lookahead)
                            symstack.pop()
                            statestack.pop()
                            state = statestack[-1]
                            sym.type = 'error'
                            lookahead = sym
                            errorcount = error_count
                            self.errorok = False
                        continue
                        # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

                    else:

                        #--! TRACKING
                        if tracking:
                            sym.lineno = lexer.lineno
                            sym.lexpos = lexer.lexpos
                        #--! TRACKING

                        targ = [sym]

                        # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
                        # The code enclosed in this section is duplicated
                        # above as a performance optimization.  Make sure
                        # changes get made in both locations.

                        pslice.slice = targ

                        try:
                            # Call the grammar rule with our special slice object
                            p.callable(pslice)
                            symstack.append(sym)
                            state = goto[statestack[-1]][pname]
                            statestack.append(state)
                        except SyntaxError:
                            # If an error was set. Enter error recovery state
                            lookaheadstack.append(lookahead)
                            symstack.pop()
                            statestack.pop()
                            state = statestack[-1]
                            sym.type = 'error'
                            lookahead = sym
                            errorcount = error_count
                            self.errorok = False
                        continue
                        # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

                if t == 0:
                    n = symstack[-1]
                    result = getattr(n, 'value', None)
                    return result

            if t is None:


                # We have some kind of parsing error here.  To handle
                # this, we are going to push the current token onto
                # the tokenstack and replace it with an 'error' token.
                # If there are any synchronization rules, they may
                # catch it.
                #
                # In addition to pushing the error token, we call call
                # the user defined p_error() function if this is the
                # first syntax error.  This function is only called if
                # errorcount == 0.
                if errorcount == 0 or self.errorok:
                    errorcount = error_count
                    self.errorok = False
                    errtoken = lookahead
                    if errtoken.type == '$end':
                        errtoken = None               # End of file!
                    if self.errorfunc:
                        if errtoken and not hasattr(errtoken, 'lexer'):
                            errtoken.lexer = lexer
                        tok = call_errorfunc(self.errorfunc, errtoken, self)
                        if self.errorok:
                            # User must have done some kind of panic
                            # mode recovery on their own.  The
                            # returned token is the next lookahead
                            lookahead = tok
                            errtoken = None
                            continue
                    else:
                        if errtoken:
                            if hasattr(errtoken, 'lineno'):
                                lineno = lookahead.lineno
                            else:
                                lineno = 0
                            if lineno:
                                sys.stderr.write('yacc: Syntax error at line %d, token=%s\n' % (lineno, errtoken.type))
                            else:
                                sys.stderr.write('yacc: Syntax error, token=%s' % errtoken.type)
                        else:
                            sys.stderr.write('yacc: Parse error in input. EOF\n')
                            return

                else:
                    errorcount = error_count

                # case 1:  the statestack only has 1 entry on it.  If we're in this state, the
                # entire parse has been rolled back and we're completely hosed.   The token is
                # discarded and we just keep going.

                if len(statestack) <= 1 and lookahead.type != '$end':
                    lookahead = None
                    errtoken = None
                    state = 0
                    # Nuke the pushback stack
                    del lookaheadstack[:]
                    continue

                # case 2: the statestack has a couple of entries on it, but we're
                # at the end of the file. nuke the top entry and generate an error token

                # Start nuking entries on the stack
                if lookahead.type == '$end':
                    # Whoa. We're really hosed here. Bail out
                    return

                if lookahead.type != 'error':
                    sym = symstack[-1]
                    if sym.type == 'error':
                        # Hmmm. Error is on top of stack, we'll just nuke input
                        # symbol and continue
                        #--! TRACKING
                        if tracking:
                            sym.endlineno = getattr(lookahead, 'lineno', sym.lineno)
                            sym.endlexpos = getattr(lookahead, 'lexpos', sym.lexpos)
                        #--! TRACKING
                        lookahead = None
                        continue

                    # Create the error symbol for the first time and make it the new lookahead symbol
                    t = YaccSymbol()
                    t.type = 'error'

                    if hasattr(lookahead, 'lineno'):
                        t.lineno = t.endlineno = lookahead.lineno
                    if hasattr(lookahead, 'lexpos'):
                        t.lexpos = t.endlexpos = lookahead.lexpos
                    t.value = lookahead
                    lookaheadstack.append(lookahead)
                    lookahead = t
                else:
                    sym = symstack.pop()
                    #--! TRACKING
                    if tracking:
                        lookahead.lineno = sym.lineno
                        lookahead.lexpos = sym.lexpos
                    #--! TRACKING
                    statestack.pop()
                    state = statestack[-1]

                continue

            # Call an error function here
            raise RuntimeError('yacc: internal parser error!!!\n')

        #--! parseopt-end

    # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    # parseopt_notrack().
    #
    # Optimized version of parseopt() with line number tracking removed.
    # DO NOT EDIT THIS CODE DIRECTLY. This code is automatically generated
    # by the ply/ygen.py script. Make changes to the parsedebug() method instead.
    # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

    def parseopt_notrack(self, input=None, lexer=None, debug=False, tracking=False, tokenfunc=None):
        #--! parseopt-notrack-start
        lookahead = None                         # Current lookahead symbol
        lookaheadstack = []                      # Stack of lookahead symbols
        actions = self.action                    # Local reference to action table (to avoid lookup on self.)
        goto    = self.goto                      # Local reference to goto table (to avoid lookup on self.)
        prod    = self.productions               # Local reference to production list (to avoid lookup on self.)
        defaulted_states = self.defaulted_states # Local reference to defaulted states
        pslice  = YaccProduction(None)           # Production object passed to grammar rules
        errorcount = 0                           # Used during error recovery


        # If no lexer was given, we will try to use the lex module
        if not lexer:
            from . import lex
            lexer = lex.lexer

        # Set up the lexer and parser objects on pslice
        pslice.lexer = lexer
        pslice.parser = self

        # If input was supplied, pass to lexer
        if input is not None:
            lexer.input(input)

        if tokenfunc is None:
            # Tokenize function
            get_token = lexer.token
        else:
            get_token = tokenfunc

        # Set the parser() token method (sometimes used in error recovery)
        self.token = get_token

        # Set up the state and symbol stacks

        statestack = []                # Stack of parsing states
        self.statestack = statestack
        symstack   = []                # Stack of grammar symbols
        self.symstack = symstack

        pslice.stack = symstack         # Put in the production
        errtoken   = None               # Err token

        # The start state is assumed to be (0,$end)

        statestack.append(0)
        sym = YaccSymbol()
        sym.type = '$end'
        symstack.append(sym)
        state = 0
        while True:
            # Get the next symbol on the input.  If a lookahead symbol
            # is already set, we just use that. Otherwise, we'll pull
            # the next token off of the lookaheadstack or from the lexer


            if state not in defaulted_states:
                if not lookahead:
                    if not lookaheadstack:
                        lookahead = get_token()     # Get the next token
                    else:
                        lookahead = lookaheadstack.pop()
                    if not lookahead:
                        lookahead = YaccSymbol()
                        lookahead.type = '$end'

                # Check the action table
                ltype = lookahead.type
                t = actions[state].get(ltype)
            else:
                t = defaulted_states[state]


            if t is not None:
                if t > 0:
                    # shift a symbol on the stack
                    statestack.append(t)
                    state = t


                    symstack.append(lookahead)
                    lookahead = None

                    # Decrease error count on successful shift
                    if errorcount:
                        errorcount -= 1
                    continue

                if t < 0:
                    # reduce a symbol on the stack, emit a production
                    p = prod[-t]
                    pname = p.name
                    plen  = p.len

                    # Get production function
                    sym = YaccSymbol()
                    sym.type = pname       # Production name
                    sym.value = None


                    if plen:
                        targ = symstack[-plen-1:]
                        targ[0] = sym


                        # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
                        # The code enclosed in this section is duplicated
                        # below as a performance optimization.  Make sure
                        # changes get made in both locations.

                        pslice.slice = targ

                        try:
                            # Call the grammar rule with our special slice object
                            del symstack[-plen:]
                            del statestack[-plen:]
                            p.callable(pslice)
                            symstack.append(sym)
                            state = goto[statestack[-1]][pname]
                            statestack.append(state)
                        except SyntaxError:
                            # If an error was set. Enter error recovery state
                            lookaheadstack.append(lookahead)
                            symstack.pop()
                            statestack.pop()
                            state = statestack[-1]
                            sym.type = 'error'
                            lookahead = sym
                            errorcount = error_count
                            self.errorok = False
                        continue
                        # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

                    else:


                        targ = [sym]

                        # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
                        # The code enclosed in this section is duplicated
                        # above as a performance optimization.  Make sure
                        # changes get made in both locations.

                        pslice.slice = targ

                        try:
                            # Call the grammar rule with our special slice object
                            p.callable(pslice)
                            symstack.append(sym)
                            state = goto[statestack[-1]][pname]
                            statestack.append(state)
                        except SyntaxError:
                            # If an error was set. Enter error recovery state
                            lookaheadstack.append(lookahead)
                            symstack.pop()
                            statestack.pop()
                            state = statestack[-1]
                            sym.type = 'error'
                            lookahead = sym
                            errorcount = error_count
                            self.errorok = False
                        continue
                        # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

                if t == 0:
                    n = symstack[-1]
                    result = getattr(n, 'value', None)
                    return result

            if t is None:


                # We have some kind of parsing error here.  To handle
                # this, we are going to push the current token onto
                # the tokenstack and replace it with an 'error' token.
                # If there are any synchronization rules, they may
                # catch it.
                #
                # In addition to pushing the error token, we call call
                # the user defined p_error() function if this is the
                # first syntax error.  This function is only called if
                # errorcount == 0.
                if errorcount == 0 or self.errorok:
                    errorcount = error_count
                    self.errorok = False
                    errtoken = lookahead
                    if errtoken.type == '$end':
                        errtoken = None               # End of file!
                    if self.errorfunc:
                        if errtoken and not hasattr(errtoken, 'lexer'):
                            errtoken.lexer = lexer
                        tok = call_errorfunc(self.errorfunc, errtoken, self)
                        if self.errorok:
                            # User must have done some kind of panic
                            # mode recovery on their own.  The
                            # returned token is the next lookahead
                            lookahead = tok
                            errtoken = None
                            continue
                    else:
                        if errtoken:
                            if hasattr(errtoken, 'lineno'):
                                lineno = lookahead.lineno
                            else:
                                lineno = 0
                            if lineno:
                                sys.stderr.write('yacc: Syntax error at line %d, token=%s\n' % (lineno, errtoken.type))
                            else:
                                sys.stderr.write('yacc: Syntax error, token=%s' % errtoken.type)
                        else:
                            sys.stderr.write('yacc: Parse error in input. EOF\n')
                            return

                else:
                    errorcount = error_count

                # case 1:  the statestack only has 1 entry on it.  If we're in this state, the
                # entire parse has been rolled back and we're completely hosed.   The token is
                # discarded and we just keep going.

                if len(statestack) <= 1 and lookahead.type != '$end':
                    lookahead = None
                    errtoken = None
                    state = 0
                    # Nuke the pushback stack
                    del lookaheadstack[:]
                    continue

                # case 2: the statestack has a couple of entries on it, but we're
                # at the end of the file. nuke the top entry and generate an error token

                # Start nuking entries on the stack
                if lookahead.type == '$end':
                    # Whoa. We're really hosed here. Bail out
                    return

                if lookahead.type != 'error':
                    sym = symstack[-1]
                    if sym.type == 'error':
                        # Hmmm. Error is on top of stack, we'll just nuke input
                        # symbol and continue
                        lookahead = None
                        continue

                    # Create the error symbol for the first time and make it the new lookahead symbol
                    t = YaccSymbol()
                    t.type = 'error'

                    if hasattr(lookahead, 'lineno'):
                        t.lineno = t.endlineno = lookahead.lineno
                    if hasattr(lookahead, 'lexpos'):
                        t.lexpos = t.endlexpos = lookahead.lexpos
                    t.value = lookahead
                    lookaheadstack.append(lookahead)
                    lookahead = t
                else:
                    sym = symstack.pop()
                    statestack.pop()
                    state = statestack[-1]

                continue

            # Call an error function here
            raise RuntimeError('yacc: internal parser error!!!\n')

        #--! parseopt-notrack-end

# -----------------------------------------------------------------------------
#                          === Grammar Representation ===
#
# The following functions, classes, and variables are used to represent and
# manipulate the rules that make up a grammar.
# -----------------------------------------------------------------------------

# regex matching identifiers
_is_identifier = re.compile(r'^[a-zA-Z0-9_-]+$')

# -----------------------------------------------------------------------------
# class Production:
#
# This class stores the raw information about a single production or grammar rule.
# A grammar rule refers to a specification such as this:
#
#       expr : expr PLUS term
#
# Here are the basic attributes defined on all productions
#
#       name     - Name of the production.  For example 'expr'
#       prod     - A list of symbols on the right side ['expr','PLUS','term']
#       prec     - Production precedence level
#       number   - Production number.
#       func     - Function that executes on reduce
#       file     - File where production function is defined
#       lineno   - Line number where production function is defined
#
# The following attributes are defined or optional.
#
#       len       - Length of the production (number of symbols on right hand side)
#       usyms     - Set of unique symbols found in the production
# -----------------------------------------------------------------------------

class Production(object):
    reduced = 0
    def __init__(self, number, name, prod, precedence=('right', 0), func=None, file='', line=0):
        self.name     = name
        self.prod     = tuple(prod)
        self.number   = number
        self.func     = func
        self.callable = None
        self.file     = file
        self.line     = line
        self.prec     = precedence

        # Internal settings used during table construction

        self.len  = len(self.prod)   # Length of the production

        # Create a list of unique production symbols used in the production
        self.usyms = []
        for s in self.prod:
            if s not in self.usyms:
                self.usyms.append(s)

        # List of all LR items for the production
        self.lr_items = []
        self.lr_next = None

        # Create a string representation
        if self.prod:
            self.str = '%s -> %s' % (self.name, ' '.join(self.prod))
        else:
            self.str = '%s -> <empty>' % self.name

    def __str__(self):
        return self.str

    def __repr__(self):
        return 'Production(' + str(self) + ')'

    def __len__(self):
        return len(self.prod)

    def __nonzero__(self):
        return 1

    def __getitem__(self, index):
        return self.prod[index]

    # Return the nth lr_item from the production (or None if at the end)
    def lr_item(self, n):
        if n > len(self.prod):
            return None
        p = LRItem(self, n)
        # Precompute the list of productions immediately following.
        try:
            p.lr_after = Prodnames[p.prod[n+1]]
        except (IndexError, KeyError):
            p.lr_after = []
        try:
            p.lr_before = p.prod[n-1]
        except IndexError:
            p.lr_before = None
        return p

    # Bind the production function name to a callable
    def bind(self, pdict):
        if self.func:
            self.callable = pdict[self.func]

# This class serves as a minimal standin for Production objects when
# reading table data from files.   It only contains information
# actually used by the LR parsing engine, plus some additional
# debugging information.
class MiniProduction(object):
    def __init__(self, str, name, len, func, file, line):
        self.name     = name
        self.len      = len
        self.func     = func
        self.callable = None
        self.file     = file
        self.line     = line
        self.str      = str

    def __str__(self):
        return self.str

    def __repr__(self):
        return 'MiniProduction(%s)' % self.str

    # Bind the production function name to a callable
    def bind(self, pdict):
        if self.func:
            self.callable = pdict[self.func]


# -----------------------------------------------------------------------------
# class LRItem
#
# This class represents a specific stage of parsing a production rule.  For
# example:
#
#       expr : expr . PLUS term
#
# In the above, the "." represents the current location of the parse.  Here
# basic attributes:
#
#       name       - Name of the production.  For example 'expr'
#       prod       - A list of symbols on the right side ['expr','.', 'PLUS','term']
#       number     - Production number.
#
#       lr_next      Next LR item. Example, if we are ' expr -> expr . PLUS term'
#                    then lr_next refers to 'expr -> expr PLUS . term'
#       lr_index   - LR item index (location of the ".") in the prod list.
#       lookaheads - LALR lookahead symbols for this item
#       len        - Length of the production (number of symbols on right hand side)
#       lr_after    - List of all productions that immediately follow
#       lr_before   - Grammar symbol immediately before
# -----------------------------------------------------------------------------

class LRItem(object):
    def __init__(self, p, n):
        self.name       = p.name
        self.prod       = list(p.prod)
        self.number     = p.number
        self.lr_index   = n
        self.lookaheads = {}
        self.prod.insert(n, '.')
        self.prod       = tuple(self.prod)
        self.len        = len(self.prod)
        self.usyms      = p.usyms

    def __str__(self):
        if self.prod:
            s = '%s -> %s' % (self.name, ' '.join(self.prod))
        else:
            s = '%s -> <empty>' % self.name
        return s

    def __repr__(self):
        return 'LRItem(' + str(self) + ')'

# -----------------------------------------------------------------------------
# rightmost_terminal()
#
# Return the rightmost terminal from a list of symbols.  Used in add_production()
# -----------------------------------------------------------------------------
def rightmost_terminal(symbols, terminals):
    i = len(symbols) - 1
    while i >= 0:
        if symbols[i] in terminals:
            return symbols[i]
        i -= 1
    return None

# -----------------------------------------------------------------------------
#                           === GRAMMAR CLASS ===
#
# The following class represents the contents of the specified grammar along
# with various computed properties such as first sets, follow sets, LR items, etc.
# This data is used for critical parts of the table generation process later.
# -----------------------------------------------------------------------------

class GrammarError(YaccError):
    pass

class Grammar(object):
    def __init__(self, terminals):
        self.Productions  = [None]  # A list of all of the productions.  The first
                                    # entry is always reserved for the purpose of
                                    # building an augmented grammar

        self.Prodnames    = {}      # A dictionary mapping the names of nonterminals to a list of all
                                    # productions of that nonterminal.

        self.Prodmap      = {}      # A dictionary that is only used to detect duplicate
                                    # productions.

        self.Terminals    = {}      # A dictionary mapping the names of terminal symbols to a
                                    # list of the rules where they are used.

        for term in terminals:
            self.Terminals[term] = []

        self.Terminals['error'] = []

        self.Nonterminals = {}      # A dictionary mapping names of nonterminals to a list
                                    # of rule numbers where they are used.

        self.First        = {}      # A dictionary of precomputed FIRST(x) symbols

        self.Follow       = {}      # A dictionary of precomputed FOLLOW(x) symbols

        self.Precedence   = {}      # Precedence rules for each terminal. Contains tuples of the
                                    # form ('right',level) or ('nonassoc', level) or ('left',level)

        self.UsedPrecedence = set() # Precedence rules that were actually used by the grammer.
                                    # This is only used to provide error checking and to generate
                                    # a warning about unused precedence rules.

        self.Start = None           # Starting symbol for the grammar


    def __len__(self):
        return len(self.Productions)

    def __getitem__(self, index):
        return self.Productions[index]

    # -----------------------------------------------------------------------------
    # set_precedence()
    #
    # Sets the precedence for a given terminal. assoc is the associativity such as
    # 'left','right', or 'nonassoc'.  level is a numeric level.
    #
    # -----------------------------------------------------------------------------

    def set_precedence(self, term, assoc, level):
        assert self.Productions == [None], 'Must call set_precedence() before add_production()'
        if term in self.Precedence:
            raise GrammarError('Precedence already specified for terminal %r' % term)
        if assoc not in ['left', 'right', 'nonassoc']:
            raise GrammarError("Associativity must be one of 'left','right', or 'nonassoc'")
        self.Precedence[term] = (assoc, level)

    # -----------------------------------------------------------------------------
    # add_production()
    #
    # Given an action function, this function assembles a production rule and
    # computes its precedence level.
    #
    # The production rule is supplied as a list of symbols.   For example,
    # a rule such as 'expr : expr PLUS term' has a production name of 'expr' and
    # symbols ['expr','PLUS','term'].
    #
    # Precedence is determined by the precedence of the right-most non-terminal
    # or the precedence of a terminal specified by %prec.
    #
    # A variety of error checks are performed to make sure production symbols
    # are valid and that %prec is used correctly.
    # -----------------------------------------------------------------------------

    def add_production(self, prodname, syms, func=None, file='', line=0):

        if prodname in self.Terminals:
            raise GrammarError('%s:%d: Illegal rule name %r. Already defined as a token' % (file, line, prodname))
        if prodname == 'error':
            raise GrammarError('%s:%d: Illegal rule name %r. error is a reserved word' % (file, line, prodname))
        if not _is_identifier.match(prodname):
            raise GrammarError('%s:%d: Illegal rule name %r' % (file, line, prodname))

        # Look for literal tokens
        for n, s in enumerate(syms):
            if s[0] in "'\"":
                try:
                    c = eval(s)
                    if (len(c) > 1):
                        raise GrammarError('%s:%d: Literal token %s in rule %r may only be a single character' %
                                           (file, line, s, prodname))
                    if c not in self.Terminals:
                        self.Terminals[c] = []
                    syms[n] = c
                    continue
                except SyntaxError:
                    pass
            if not _is_identifier.match(s) and s != '%prec':
                raise GrammarError('%s:%d: Illegal name %r in rule %r' % (file, line, s, prodname))

        # Determine the precedence level
        if '%prec' in syms:
            if syms[-1] == '%prec':
                raise GrammarError('%s:%d: Syntax error. Nothing follows %%prec' % (file, line))
            if syms[-2] != '%prec':
                raise GrammarError('%s:%d: Syntax error. %%prec can only appear at the end of a grammar rule' %
                                   (file, line))
            precname = syms[-1]
            prodprec = self.Precedence.get(precname)
            if not prodprec:
                raise GrammarError('%s:%d: Nothing known about the precedence of %r' % (file, line, precname))
            else:
                self.UsedPrecedence.add(precname)
            del syms[-2:]     # Drop %prec from the rule
        else:
            # If no %prec, precedence is determined by the rightmost terminal symbol
            precname = rightmost_terminal(syms, self.Terminals)
            prodprec = self.Precedence.get(precname, ('right', 0))

        # See if the rule is already in the rulemap
        map = '%s -> %s' % (prodname, syms)
        if map in self.Prodmap:
            m = self.Prodmap[map]
            raise GrammarError('%s:%d: Duplicate rule %s. ' % (file, line, m) +
                               'Previous definition at %s:%d' % (m.file, m.line))

        # From this point on, everything is valid.  Create a new Production instance
        pnumber  = len(self.Productions)
        if prodname not in self.Nonterminals:
            self.Nonterminals[prodname] = []

        # Add the production number to Terminals and Nonterminals
        for t in syms:
            if t in self.Terminals:
                self.Terminals[t].append(pnumber)
            else:
                if t not in self.Nonterminals:
                    self.Nonterminals[t] = []
                self.Nonterminals[t].append(pnumber)

        # Create a production and add it to the list of productions
        p = Production(pnumber, prodname, syms, prodprec, func, file, line)
        self.Productions.append(p)
        self.Prodmap[map] = p

        # Add to the global productions list
        try:
            self.Prodnames[prodname].append(p)
        except KeyError:
            self.Prodnames[prodname] = [p]

    # -----------------------------------------------------------------------------
    # set_start()
    #
    # Sets the starting symbol and creates the augmented grammar.  Production
    # rule 0 is S' -> start where start is the start symbol.
    # -----------------------------------------------------------------------------

    def set_start(self, start=None):
        if not start:
            start = self.Productions[1].name
        if start not in self.Nonterminals:
            raise GrammarError('start symbol %s undefined' % start)
        self.Productions[0] = Production(0, "S'", [start])
        self.Nonterminals[start].append(0)
        self.Start = start

    # -----------------------------------------------------------------------------
    # find_unreachable()
    #
    # Find all of the nonterminal symbols that can't be reached from the starting
    # symbol.  Returns a list of nonterminals that can't be reached.
    # -----------------------------------------------------------------------------

    def find_unreachable(self):

        # Mark all symbols that are reachable from a symbol s
        def mark_reachable_from(s):
            if s in reachable:
                return
            reachable.add(s)
            for p in self.Prodnames.get(s, []):
                for r in p.prod:
                    mark_reachable_from(r)

        reachable = set()
        mark_reachable_from(self.Productions[0].prod[0])
        return [s for s in self.Nonterminals if s not in reachable]

    # -----------------------------------------------------------------------------
    # infinite_cycles()
    #
    # This function looks at the various parsing rules and tries to detect
    # infinite recursion cycles (grammar rules where there is no possible way
    # to derive a string of only terminals).
    # -----------------------------------------------------------------------------

    def infinite_cycles(self):
        terminates = {}

        # Terminals:
        for t in self.Terminals:
            terminates[t] = True

        terminates['$end'] = True

        # Nonterminals:

        # Initialize to false:
        for n in self.Nonterminals:
            terminates[n] = False

        # Then propagate termination until no change:
        while True:
            some_change = False
            for (n, pl) in self.Prodnames.items():
                # Nonterminal n terminates iff any of its productions terminates.
                for p in pl:
                    # Production p terminates iff all of its rhs symbols terminate.
                    for s in p.prod:
                        if not terminates[s]:
                            # The symbol s does not terminate,
                            # so production p does not terminate.
                            p_terminates = False
                            break
                    else:
                        # didn't break from the loop,
                        # so every symbol s terminates
                        # so production p terminates.
                        p_terminates = True

                    if p_terminates:
                        # symbol n terminates!
                        if not terminates[n]:
                            terminates[n] = True
                            some_change = True
                        # Don't need to consider any more productions for this n.
                        break

            if not some_change:
                break

        infinite = []
        for (s, term) in terminates.items():
            if not term:
                if s not in self.Prodnames and s not in self.Terminals and s != 'error':
                    # s is used-but-not-defined, and we've already warned of that,
                    # so it would be overkill to say that it's also non-terminating.
                    pass
                else:
                    infinite.append(s)

        return infinite

    # -----------------------------------------------------------------------------
    # undefined_symbols()
    #
    # Find all symbols that were used the grammar, but not defined as tokens or
    # grammar rules.  Returns a list of tuples (sym, prod) where sym in the symbol
    # and prod is the production where the symbol was used.
    # -----------------------------------------------------------------------------
    def undefined_symbols(self):
        result = []
        for p in self.Productions:
            if not p:
                continue

            for s in p.prod:
                if s not in self.Prodnames and s not in self.Terminals and s != 'error':
                    result.append((s, p))
        return result

    # -----------------------------------------------------------------------------
    # unused_terminals()
    #
    # Find all terminals that were defined, but not used by the grammar.  Returns
    # a list of all symbols.
    # -----------------------------------------------------------------------------
    def unused_terminals(self):
        unused_tok = []
        for s, v in self.Terminals.items():
            if s != 'error' and not v:
                unused_tok.append(s)

        return unused_tok

    # ------------------------------------------------------------------------------
    # unused_rules()
    #
    # Find all grammar rules that were defined,  but not used (maybe not reachable)
    # Returns a list of productions.
    # ------------------------------------------------------------------------------

    def unused_rules(self):
        unused_prod = []
        for s, v in self.Nonterminals.items():
            if not v:
                p = self.Prodnames[s][0]
                unused_prod.append(p)
        return unused_prod

    # -----------------------------------------------------------------------------
    # unused_precedence()
    #
    # Returns a list of tuples (term,precedence) corresponding to precedence
    # rules that were never used by the grammar.  term is the name of the terminal
    # on which precedence was applied and precedence is a string such as 'left' or
    # 'right' corresponding to the type of precedence.
    # -----------------------------------------------------------------------------

    def unused_precedence(self):
        unused = []
        for termname in self.Precedence:
            if not (termname in self.Terminals or termname in self.UsedPrecedence):
                unused.append((termname, self.Precedence[termname][0]))

        return unused

    # -------------------------------------------------------------------------
    # _first()
    #
    # Compute the value of FIRST1(beta) where beta is a tuple of symbols.
    #
    # During execution of compute_first1, the result may be incomplete.
    # Afterward (e.g., when called from compute_follow()), it will be complete.
    # -------------------------------------------------------------------------
    def _first(self, beta):

        # We are computing First(x1,x2,x3,...,xn)
        result = []
        for x in beta:
            x_produces_empty = False

            # Add all the non-<empty> symbols of First[x] to the result.
            for f in self.First[x]:
                if f == '<empty>':
                    x_produces_empty = True
                else:
                    if f not in result:
                        result.append(f)

            if x_produces_empty:
                # We have to consider the next x in beta,
                # i.e. stay in the loop.
                pass
            else:
                # We don't have to consider any further symbols in beta.
                break
        else:
            # There was no 'break' from the loop,
            # so x_produces_empty was true for all x in beta,
            # so beta produces empty as well.
            result.append('<empty>')

        return result

    # -------------------------------------------------------------------------
    # compute_first()
    #
    # Compute the value of FIRST1(X) for all symbols
    # -------------------------------------------------------------------------
    def compute_first(self):
        if self.First:
            return self.First

        # Terminals:
        for t in self.Terminals:
            self.First[t] = [t]

        self.First['$end'] = ['$end']

        # Nonterminals:

        # Initialize to the empty set:
        for n in self.Nonterminals:
            self.First[n] = []

        # Then propagate symbols until no change:
        while True:
            some_change = False
            for n in self.Nonterminals:
                for p in self.Prodnames[n]:
                    for f in self._first(p.prod):
                        if f not in self.First[n]:
                            self.First[n].append(f)
                            some_change = True
            if not some_change:
                break

        return self.First

    # ---------------------------------------------------------------------
    # compute_follow()
    #
    # Computes all of the follow sets for every non-terminal symbol.  The
    # follow set is the set of all symbols that might follow a given
    # non-terminal.  See the Dragon book, 2nd Ed. p. 189.
    # ---------------------------------------------------------------------
    def compute_follow(self, start=None):
        # If already computed, return the result
        if self.Follow:
            return self.Follow

        # If first sets not computed yet, do that first.
        if not self.First:
            self.compute_first()

        # Add '$end' to the follow list of the start symbol
        for k in self.Nonterminals:
            self.Follow[k] = []

        if not start:
            start = self.Productions[1].name

        self.Follow[start] = ['$end']

        while True:
            didadd = False
            for p in self.Productions[1:]:
                # Here is the production set
                for i, B in enumerate(p.prod):
                    if B in self.Nonterminals:
                        # Okay. We got a non-terminal in a production
                        fst = self._first(p.prod[i+1:])
                        hasempty = False
                        for f in fst:
                            if f != '<empty>' and f not in self.Follow[B]:
                                self.Follow[B].append(f)
                                didadd = True
                            if f == '<empty>':
                                hasempty = True
                        if hasempty or i == (len(p.prod)-1):
                            # Add elements of follow(a) to follow(b)
                            for f in self.Follow[p.name]:
                                if f not in self.Follow[B]:
                                    self.Follow[B].append(f)
                                    didadd = True
            if not didadd:
                break
        return self.Follow


    # -----------------------------------------------------------------------------
    # build_lritems()
    #
    # This function walks the list of productions and builds a complete set of the
    # LR items.  The LR items are stored in two ways:  First, they are uniquely
    # numbered and placed in the list _lritems.  Second, a linked list of LR items
    # is built for each production.  For example:
    #
    #   E -> E PLUS E
    #
    # Creates the list
    #
    #  [E -> . E PLUS E, E -> E . PLUS E, E -> E PLUS . E, E -> E PLUS E . ]
    # -----------------------------------------------------------------------------

    def build_lritems(self):
        for p in self.Productions:
            lastlri = p
            i = 0
            lr_items = []
            while True:
                if i > len(p):
                    lri = None
                else:
                    lri = LRItem(p, i)
                    # Precompute the list of productions immediately following
                    try:
                        lri.lr_after = self.Prodnames[lri.prod[i+1]]
                    except (IndexError, KeyError):
                        lri.lr_after = []
                    try:
                        lri.lr_before = lri.prod[i-1]
                    except IndexError:
                        lri.lr_before = None

                lastlri.lr_next = lri
                if not lri:
                    break
                lr_items.append(lri)
                lastlri = lri
                i += 1
            p.lr_items = lr_items

# -----------------------------------------------------------------------------
#                            == Class LRTable ==
#
# This basic class represents a basic table of LR parsing information.
# Methods for generating the tables are not defined here.  They are defined
# in the derived class LRGeneratedTable.
# -----------------------------------------------------------------------------

class VersionError(YaccError):
    pass

class LRTable(object):
    def __init__(self):
        self.lr_action = None
        self.lr_goto = None
        self.lr_productions = None
        self.lr_method = None

    def read_table(self, module):
        if isinstance(module, types.ModuleType):
            parsetab = module
        else:
            exec('import %s' % module)
            parsetab = sys.modules[module]

        if parsetab._tabversion != __tabversion__:
            raise VersionError('yacc table file version is out of date')

        self.lr_action = parsetab._lr_action
        self.lr_goto = parsetab._lr_goto

        self.lr_productions = []
        for p in parsetab._lr_productions:
            self.lr_productions.append(MiniProduction(*p))

        self.lr_method = parsetab._lr_method
        return parsetab._lr_signature

    def read_pickle(self, filename):
        try:
            import cPickle as pickle
        except ImportError:
            import pickle
        
        if not os.path.exists(filename):
          raise ImportError

        in_f = open(filename, 'rb')

        tabversion = pickle.load(in_f)
        if tabversion != __tabversion__:
            raise VersionError('yacc table file version is out of date')
        self.lr_method = pickle.load(in_f)
        signature      = pickle.load(in_f)
        self.lr_action = pickle.load(in_f)
        self.lr_goto   = pickle.load(in_f)
        productions    = pickle.load(in_f)

        self.lr_productions = []
        for p in productions:
            self.lr_productions.append(MiniProduction(*p))

        in_f.close()
        return signature

    # Bind all production function names to callable objects in pdict
    def bind_callables(self, pdict):
        for p in self.lr_productions:
            p.bind(pdict)


# -----------------------------------------------------------------------------
#                           === LR Generator ===
#
# The following classes and functions are used to generate LR parsing tables on
# a grammar.
# -----------------------------------------------------------------------------

# -----------------------------------------------------------------------------
# digraph()
# traverse()
#
# The following two functions are used to compute set valued functions
# of the form:
#
#     F(x) = F'(x) U U{F(y) | x R y}
#
# This is used to compute the values of Read() sets as well as FOLLOW sets
# in LALR(1) generation.
#
# Inputs:  X    - An input set
#          R    - A relation
#          FP   - Set-valued function
# ------------------------------------------------------------------------------

def digraph(X, R, FP):
    N = {}
    for x in X:
        N[x] = 0
    stack = []
    F = {}
    for x in X:
        if N[x] == 0:
            traverse(x, N, stack, F, X, R, FP)
    return F

def traverse(x, N, stack, F, X, R, FP):
    stack.append(x)
    d = len(stack)
    N[x] = d
    F[x] = FP(x)             # F(X) <- F'(x)

    rel = R(x)               # Get y's related to x
    for y in rel:
        if N[y] == 0:
            traverse(y, N, stack, F, X, R, FP)
        N[x] = min(N[x], N[y])
        for a in F.get(y, []):
            if a not in F[x]:
                F[x].append(a)
    if N[x] == d:
        N[stack[-1]] = MAXINT
        F[stack[-1]] = F[x]
        element = stack.pop()
        while element != x:
            N[stack[-1]] = MAXINT
            F[stack[-1]] = F[x]
            element = stack.pop()

class LALRError(YaccError):
    pass

# -----------------------------------------------------------------------------
#                             == LRGeneratedTable ==
#
# This class implements the LR table generation algorithm.  There are no
# public methods except for write()
# -----------------------------------------------------------------------------

class LRGeneratedTable(LRTable):
    def __init__(self, grammar, method='LALR', log=None):
        if method not in ['SLR', 'LALR']:
            raise LALRError('Unsupported method %s' % method)

        self.grammar = grammar
        self.lr_method = method

        # Set up the logger
        if not log:
            log = NullLogger()
        self.log = log

        # Internal attributes
        self.lr_action     = {}        # Action table
        self.lr_goto       = {}        # Goto table
        self.lr_productions  = grammar.Productions    # Copy of grammar Production array
        self.lr_goto_cache = {}        # Cache of computed gotos
        self.lr0_cidhash   = {}        # Cache of closures

        self._add_count    = 0         # Internal counter used to detect cycles

        # Diagonistic information filled in by the table generator
        self.sr_conflict   = 0
        self.rr_conflict   = 0
        self.conflicts     = []        # List of conflicts

        self.sr_conflicts  = []
        self.rr_conflicts  = []

        # Build the tables
        self.grammar.build_lritems()
        self.grammar.compute_first()
        self.grammar.compute_follow()
        self.lr_parse_table()

    # Compute the LR(0) closure operation on I, where I is a set of LR(0) items.

    def lr0_closure(self, I):
        self._add_count += 1

        # Add everything in I to J
        J = I[:]
        didadd = True
        while didadd:
            didadd = False
            for j in J:
                for x in j.lr_after:
                    if getattr(x, 'lr0_added', 0) == self._add_count:
                        continue
                    # Add B --> .G to J
                    J.append(x.lr_next)
                    x.lr0_added = self._add_count
                    didadd = True

        return J

    # Compute the LR(0) goto function goto(I,X) where I is a set
    # of LR(0) items and X is a grammar symbol.   This function is written
    # in a way that guarantees uniqueness of the generated goto sets
    # (i.e. the same goto set will never be returned as two different Python
    # objects).  With uniqueness, we can later do fast set comparisons using
    # id(obj) instead of element-wise comparison.

    def lr0_goto(self, I, x):
        # First we look for a previously cached entry
        g = self.lr_goto_cache.get((id(I), x))
        if g:
            return g

        # Now we generate the goto set in a way that guarantees uniqueness
        # of the result

        s = self.lr_goto_cache.get(x)
        if not s:
            s = {}
            self.lr_goto_cache[x] = s

        gs = []
        for p in I:
            n = p.lr_next
            if n and n.lr_before == x:
                s1 = s.get(id(n))
                if not s1:
                    s1 = {}
                    s[id(n)] = s1
                gs.append(n)
                s = s1
        g = s.get('$end')
        if not g:
            if gs:
                g = self.lr0_closure(gs)
                s['$end'] = g
            else:
                s['$end'] = gs
        self.lr_goto_cache[(id(I), x)] = g
        return g

    # Compute the LR(0) sets of item function
    def lr0_items(self):
        C = [self.lr0_closure([self.grammar.Productions[0].lr_next])]
        i = 0
        for I in C:
            self.lr0_cidhash[id(I)] = i
            i += 1

        # Loop over the items in C and each grammar symbols
        i = 0
        while i < len(C):
            I = C[i]
            i += 1

            # Collect all of the symbols that could possibly be in the goto(I,X) sets
            asyms = {}
            for ii in I:
                for s in ii.usyms:
                    asyms[s] = None

            for x in asyms:
                g = self.lr0_goto(I, x)
                if not g or id(g) in self.lr0_cidhash:
                    continue
                self.lr0_cidhash[id(g)] = len(C)
                C.append(g)

        return C

    # -----------------------------------------------------------------------------
    #                       ==== LALR(1) Parsing ====
    #
    # LALR(1) parsing is almost exactly the same as SLR except that instead of
    # relying upon Follow() sets when performing reductions, a more selective
    # lookahead set that incorporates the state of the LR(0) machine is utilized.
    # Thus, we mainly just have to focus on calculating the lookahead sets.
    #
    # The method used here is due to DeRemer and Pennelo (1982).
    #
    # DeRemer, F. L., and T. J. Pennelo: "Efficient Computation of LALR(1)
    #     Lookahead Sets", ACM Transactions on Programming Languages and Systems,
    #     Vol. 4, No. 4, Oct. 1982, pp. 615-649
    #
    # Further details can also be found in:
    #
    #  J. Tremblay and P. Sorenson, "The Theory and Practice of Compiler Writing",
    #      McGraw-Hill Book Company, (1985).
    #
    # -----------------------------------------------------------------------------

    # -----------------------------------------------------------------------------
    # compute_nullable_nonterminals()
    #
    # Creates a dictionary containing all of the non-terminals that might produce
    # an empty production.
    # -----------------------------------------------------------------------------

    def compute_nullable_nonterminals(self):
        nullable = set()
        num_nullable = 0
        while True:
            for p in self.grammar.Productions[1:]:
                if p.len == 0:
                    nullable.add(p.name)
                    continue
                for t in p.prod:
                    if t not in nullable:
                        break
                else:
                    nullable.add(p.name)
            if len(nullable) == num_nullable:
                break
            num_nullable = len(nullable)
        return nullable

    # -----------------------------------------------------------------------------
    # find_nonterminal_trans(C)
    #
    # Given a set of LR(0) items, this functions finds all of the non-terminal
    # transitions.    These are transitions in which a dot appears immediately before
    # a non-terminal.   Returns a list of tuples of the form (state,N) where state
    # is the state number and N is the nonterminal symbol.
    #
    # The input C is the set of LR(0) items.
    # -----------------------------------------------------------------------------

    def find_nonterminal_transitions(self, C):
        trans = []
        for stateno, state in enumerate(C):
            for p in state:
                if p.lr_index < p.len - 1:
                    t = (stateno, p.prod[p.lr_index+1])
                    if t[1] in self.grammar.Nonterminals:
                        if t not in trans:
                            trans.append(t)
        return trans

    # -----------------------------------------------------------------------------
    # dr_relation()
    #
    # Computes the DR(p,A) relationships for non-terminal transitions.  The input
    # is a tuple (state,N) where state is a number and N is a nonterminal symbol.
    #
    # Returns a list of terminals.
    # -----------------------------------------------------------------------------

    def dr_relation(self, C, trans, nullable):
        dr_set = {}
        state, N = trans
        terms = []

        g = self.lr0_goto(C[state], N)
        for p in g:
            if p.lr_index < p.len - 1:
                a = p.prod[p.lr_index+1]
                if a in self.grammar.Terminals:
                    if a not in terms:
                        terms.append(a)

        # This extra bit is to handle the start state
        if state == 0 and N == self.grammar.Productions[0].prod[0]:
            terms.append('$end')

        return terms

    # -----------------------------------------------------------------------------
    # reads_relation()
    #
    # Computes the READS() relation (p,A) READS (t,C).
    # -----------------------------------------------------------------------------

    def reads_relation(self, C, trans, empty):
        # Look for empty transitions
        rel = []
        state, N = trans

        g = self.lr0_goto(C[state], N)
        j = self.lr0_cidhash.get(id(g), -1)
        for p in g:
            if p.lr_index < p.len - 1:
                a = p.prod[p.lr_index + 1]
                if a in empty:
                    rel.append((j, a))

        return rel

    # -----------------------------------------------------------------------------
    # compute_lookback_includes()
    #
    # Determines the lookback and includes relations
    #
    # LOOKBACK:
    #
    # This relation is determined by running the LR(0) state machine forward.
    # For example, starting with a production "N : . A B C", we run it forward
    # to obtain "N : A B C ."   We then build a relationship between this final
    # state and the starting state.   These relationships are stored in a dictionary
    # lookdict.
    #
    # INCLUDES:
    #
    # Computes the INCLUDE() relation (p,A) INCLUDES (p',B).
    #
    # This relation is used to determine non-terminal transitions that occur
    # inside of other non-terminal transition states.   (p,A) INCLUDES (p', B)
    # if the following holds:
    #
    #       B -> LAT, where T -> epsilon and p' -L-> p
    #
    # L is essentially a prefix (which may be empty), T is a suffix that must be
    # able to derive an empty string.  State p' must lead to state p with the string L.
    #
    # -----------------------------------------------------------------------------

    def compute_lookback_includes(self, C, trans, nullable):
        lookdict = {}          # Dictionary of lookback relations
        includedict = {}       # Dictionary of include relations

        # Make a dictionary of non-terminal transitions
        dtrans = {}
        for t in trans:
            dtrans[t] = 1

        # Loop over all transitions and compute lookbacks and includes
        for state, N in trans:
            lookb = []
            includes = []
            for p in C[state]:
                if p.name != N:
                    continue

                # Okay, we have a name match.  We now follow the production all the way
                # through the state machine until we get the . on the right hand side

                lr_index = p.lr_index
                j = state
                while lr_index < p.len - 1:
                    lr_index = lr_index + 1
                    t = p.prod[lr_index]

                    # Check to see if this symbol and state are a non-terminal transition
                    if (j, t) in dtrans:
                        # Yes.  Okay, there is some chance that this is an includes relation
                        # the only way to know for certain is whether the rest of the
                        # production derives empty

                        li = lr_index + 1
                        while li < p.len:
                            if p.prod[li] in self.grammar.Terminals:
                                break      # No forget it
                            if p.prod[li] not in nullable:
                                break
                            li = li + 1
                        else:
                            # Appears to be a relation between (j,t) and (state,N)
                            includes.append((j, t))

                    g = self.lr0_goto(C[j], t)               # Go to next set
                    j = self.lr0_cidhash.get(id(g), -1)      # Go to next state

                # When we get here, j is the final state, now we have to locate the production
                for r in C[j]:
                    if r.name != p.name:
                        continue
                    if r.len != p.len:
                        continue
                    i = 0
                    # This look is comparing a production ". A B C" with "A B C ."
                    while i < r.lr_index:
                        if r.prod[i] != p.prod[i+1]:
                            break
                        i = i + 1
                    else:
                        lookb.append((j, r))
            for i in includes:
                if i not in includedict:
                    includedict[i] = []
                includedict[i].append((state, N))
            lookdict[(state, N)] = lookb

        return lookdict, includedict

    # -----------------------------------------------------------------------------
    # compute_read_sets()
    #
    # Given a set of LR(0) items, this function computes the read sets.
    #
    # Inputs:  C        =  Set of LR(0) items
    #          ntrans   = Set of nonterminal transitions
    #          nullable = Set of empty transitions
    #
    # Returns a set containing the read sets
    # -----------------------------------------------------------------------------

    def compute_read_sets(self, C, ntrans, nullable):
        FP = lambda x: self.dr_relation(C, x, nullable)
        R =  lambda x: self.reads_relation(C, x, nullable)
        F = digraph(ntrans, R, FP)
        return F

    # -----------------------------------------------------------------------------
    # compute_follow_sets()
    #
    # Given a set of LR(0) items, a set of non-terminal transitions, a readset,
    # and an include set, this function computes the follow sets
    #
    # Follow(p,A) = Read(p,A) U U {Follow(p',B) | (p,A) INCLUDES (p',B)}
    #
    # Inputs:
    #            ntrans     = Set of nonterminal transitions
    #            readsets   = Readset (previously computed)
    #            inclsets   = Include sets (previously computed)
    #
    # Returns a set containing the follow sets
    # -----------------------------------------------------------------------------

    def compute_follow_sets(self, ntrans, readsets, inclsets):
        FP = lambda x: readsets[x]
        R  = lambda x: inclsets.get(x, [])
        F = digraph(ntrans, R, FP)
        return F

    # -----------------------------------------------------------------------------
    # add_lookaheads()
    #
    # Attaches the lookahead symbols to grammar rules.
    #
    # Inputs:    lookbacks         -  Set of lookback relations
    #            followset         -  Computed follow set
    #
    # This function directly attaches the lookaheads to productions contained
    # in the lookbacks set
    # -----------------------------------------------------------------------------

    def add_lookaheads(self, lookbacks, followset):
        for trans, lb in lookbacks.items():
            # Loop over productions in lookback
            for state, p in lb:
                if state not in p.lookaheads:
                    p.lookaheads[state] = []
                f = followset.get(trans, [])
                for a in f:
                    if a not in p.lookaheads[state]:
                        p.lookaheads[state].append(a)

    # -----------------------------------------------------------------------------
    # add_lalr_lookaheads()
    #
    # This function does all of the work of adding lookahead information for use
    # with LALR parsing
    # -----------------------------------------------------------------------------

    def add_lalr_lookaheads(self, C):
        # Determine all of the nullable nonterminals
        nullable = self.compute_nullable_nonterminals()

        # Find all non-terminal transitions
        trans = self.find_nonterminal_transitions(C)

        # Compute read sets
        readsets = self.compute_read_sets(C, trans, nullable)

        # Compute lookback/includes relations
        lookd, included = self.compute_lookback_includes(C, trans, nullable)

        # Compute LALR FOLLOW sets
        followsets = self.compute_follow_sets(trans, readsets, included)

        # Add all of the lookaheads
        self.add_lookaheads(lookd, followsets)

    # -----------------------------------------------------------------------------
    # lr_parse_table()
    #
    # This function constructs the parse tables for SLR or LALR
    # -----------------------------------------------------------------------------
    def lr_parse_table(self):
        Productions = self.grammar.Productions
        Precedence  = self.grammar.Precedence
        goto   = self.lr_goto         # Goto array
        action = self.lr_action       # Action array
        log    = self.log             # Logger for output

        actionp = {}                  # Action production array (temporary)

        log.info('Parsing method: %s', self.lr_method)

        # Step 1: Construct C = { I0, I1, ... IN}, collection of LR(0) items
        # This determines the number of states

        C = self.lr0_items()

        if self.lr_method == 'LALR':
            self.add_lalr_lookaheads(C)

        # Build the parser table, state by state
        st = 0
        for I in C:
            # Loop over each production in I
            actlist = []              # List of actions
            st_action  = {}
            st_actionp = {}
            st_goto    = {}
            log.info('')
            log.info('state %d', st)
            log.info('')
            for p in I:
                log.info('    (%d) %s', p.number, p)
            log.info('')

            for p in I:
                    if p.len == p.lr_index + 1:
                        if p.name == "S'":
                            # Start symbol. Accept!
                            st_action['$end'] = 0
                            st_actionp['$end'] = p
                        else:
                            # We are at the end of a production.  Reduce!
                            if self.lr_method == 'LALR':
                                laheads = p.lookaheads[st]
                            else:
                                laheads = self.grammar.Follow[p.name]
                            for a in laheads:
                                actlist.append((a, p, 'reduce using rule %d (%s)' % (p.number, p)))
                                r = st_action.get(a)
                                if r is not None:
                                    # Whoa. Have a shift/reduce or reduce/reduce conflict
                                    if r > 0:
                                        # Need to decide on shift or reduce here
                                        # By default we favor shifting. Need to add
                                        # some precedence rules here.
                                        sprec, slevel = Productions[st_actionp[a].number].prec
                                        rprec, rlevel = Precedence.get(a, ('right', 0))
                                        if (slevel < rlevel) or ((slevel == rlevel) and (rprec == 'left')):
                                            # We really need to reduce here.
                                            st_action[a] = -p.number
                                            st_actionp[a] = p
                                            if not slevel and not rlevel:
                                                log.info('  ! shift/reduce conflict for %s resolved as reduce', a)
                                                self.sr_conflicts.append((st, a, 'reduce'))
                                            Productions[p.number].reduced += 1
                                        elif (slevel == rlevel) and (rprec == 'nonassoc'):
                                            st_action[a] = None
                                        else:
                                            # Hmmm. Guess we'll keep the shift
                                            if not rlevel:
                                                log.info('  ! shift/reduce conflict for %s resolved as shift', a)
                                                self.sr_conflicts.append((st, a, 'shift'))
                                    elif r < 0:
                                        # Reduce/reduce conflict.   In this case, we favor the rule
                                        # that was defined first in the grammar file
                                        oldp = Productions[-r]
                                        pp = Productions[p.number]
                                        if oldp.line > pp.line:
                                            st_action[a] = -p.number
                                            st_actionp[a] = p
                                            chosenp, rejectp = pp, oldp
                                            Productions[p.number].reduced += 1
                                            Productions[oldp.number].reduced -= 1
                                        else:
                                            chosenp, rejectp = oldp, pp
                                        self.rr_conflicts.append((st, chosenp, rejectp))
                                        log.info('  ! reduce/reduce conflict for %s resolved using rule %d (%s)',
                                                 a, st_actionp[a].number, st_actionp[a])
                                    else:
                                        raise LALRError('Unknown conflict in state %d' % st)
                                else:
                                    st_action[a] = -p.number
                                    st_actionp[a] = p
                                    Productions[p.number].reduced += 1
                    else:
                        i = p.lr_index
                        a = p.prod[i+1]       # Get symbol right after the "."
                        if a in self.grammar.Terminals:
                            g = self.lr0_goto(I, a)
                            j = self.lr0_cidhash.get(id(g), -1)
                            if j >= 0:
                                # We are in a shift state
                                actlist.append((a, p, 'shift and go to state %d' % j))
                                r = st_action.get(a)
                                if r is not None:
                                    # Whoa have a shift/reduce or shift/shift conflict
                                    if r > 0:
                                        if r != j:
                                            raise LALRError('Shift/shift conflict in state %d' % st)
                                    elif r < 0:
                                        # Do a precedence check.
                                        #   -  if precedence of reduce rule is higher, we reduce.
                                        #   -  if precedence of reduce is same and left assoc, we reduce.
                                        #   -  otherwise we shift
                                        rprec, rlevel = Productions[st_actionp[a].number].prec
                                        sprec, slevel = Precedence.get(a, ('right', 0))
                                        if (slevel > rlevel) or ((slevel == rlevel) and (rprec == 'right')):
                                            # We decide to shift here... highest precedence to shift
                                            Productions[st_actionp[a].number].reduced -= 1
                                            st_action[a] = j
                                            st_actionp[a] = p
                                            if not rlevel:
                                                log.info('  ! shift/reduce conflict for %s resolved as shift', a)
                                                self.sr_conflicts.append((st, a, 'shift'))
                                        elif (slevel == rlevel) and (rprec == 'nonassoc'):
                                            st_action[a] = None
                                        else:
                                            # Hmmm. Guess we'll keep the reduce
                                            if not slevel and not rlevel:
                                                log.info('  ! shift/reduce conflict for %s resolved as reduce', a)
                                                self.sr_conflicts.append((st, a, 'reduce'))

                                    else:
                                        raise LALRError('Unknown conflict in state %d' % st)
                                else:
                                    st_action[a] = j
                                    st_actionp[a] = p

            # Print the actions associated with each terminal
            _actprint = {}
            for a, p, m in actlist:
                if a in st_action:
                    if p is st_actionp[a]:
                        log.info('    %-15s %s', a, m)
                        _actprint[(a, m)] = 1
            log.info('')
            # Print the actions that were not used. (debugging)
            not_used = 0
            for a, p, m in actlist:
                if a in st_action:
                    if p is not st_actionp[a]:
                        if not (a, m) in _actprint:
                            log.debug('  ! %-15s [ %s ]', a, m)
                            not_used = 1
                            _actprint[(a, m)] = 1
            if not_used:
                log.debug('')

            # Construct the goto table for this state

            nkeys = {}
            for ii in I:
                for s in ii.usyms:
                    if s in self.grammar.Nonterminals:
                        nkeys[s] = None
            for n in nkeys:
                g = self.lr0_goto(I, n)
                j = self.lr0_cidhash.get(id(g), -1)
                if j >= 0:
                    st_goto[n] = j
                    log.info('    %-30s shift and go to state %d', n, j)

            action[st] = st_action
            actionp[st] = st_actionp
            goto[st] = st_goto
            st += 1

    # -----------------------------------------------------------------------------
    # write()
    #
    # This function writes the LR parsing tables to a file
    # -----------------------------------------------------------------------------

    def write_table(self, tabmodule, outputdir='', signature=''):
        if isinstance(tabmodule, types.ModuleType):
            raise IOError("Won't overwrite existing tabmodule")

        basemodulename = tabmodule.split('.')[-1]
        filename = os.path.join(outputdir, basemodulename) + '.py'
        try:
            f = open(filename, 'w')

            f.write('''
# %s
# This file is automatically generated. Do not edit.
_tabversion = %r

_lr_method = %r

_lr_signature = %r
    ''' % (os.path.basename(filename), __tabversion__, self.lr_method, signature))

            # Change smaller to 0 to go back to original tables
            smaller = 1

            # Factor out names to try and make smaller
            if smaller:
                items = {}

                for s, nd in self.lr_action.items():
                    for name, v in nd.items():
                        i = items.get(name)
                        if not i:
                            i = ([], [])
                            items[name] = i
                        i[0].append(s)
                        i[1].append(v)

                f.write('\n_lr_action_items = {')
                for k, v in items.items():
                    f.write('%r:([' % k)
                    for i in v[0]:
                        f.write('%r,' % i)
                    f.write('],[')
                    for i in v[1]:
                        f.write('%r,' % i)

                    f.write(']),')
                f.write('}\n')

                f.write('''
_lr_action = {}
for _k, _v in _lr_action_items.items():
   for _x,_y in zip(_v[0],_v[1]):
      if not _x in _lr_action:  _lr_action[_x] = {}
      _lr_action[_x][_k] = _y
del _lr_action_items
''')

            else:
                f.write('\n_lr_action = { ')
                for k, v in self.lr_action.items():
                    f.write('(%r,%r):%r,' % (k[0], k[1], v))
                f.write('}\n')

            if smaller:
                # Factor out names to try and make smaller
                items = {}

                for s, nd in self.lr_goto.items():
                    for name, v in nd.items():
                        i = items.get(name)
                        if not i:
                            i = ([], [])
                            items[name] = i
                        i[0].append(s)
                        i[1].append(v)

                f.write('\n_lr_goto_items = {')
                for k, v in items.items():
                    f.write('%r:([' % k)
                    for i in v[0]:
                        f.write('%r,' % i)
                    f.write('],[')
                    for i in v[1]:
                        f.write('%r,' % i)

                    f.write(']),')
                f.write('}\n')

                f.write('''
_lr_goto = {}
for _k, _v in _lr_goto_items.items():
   for _x, _y in zip(_v[0], _v[1]):
       if not _x in _lr_goto: _lr_goto[_x] = {}
       _lr_goto[_x][_k] = _y
del _lr_goto_items
''')
            else:
                f.write('\n_lr_goto = { ')
                for k, v in self.lr_goto.items():
                    f.write('(%r,%r):%r,' % (k[0], k[1], v))
                f.write('}\n')

            # Write production table
            f.write('_lr_productions = [\n')
            for p in self.lr_productions:
                if p.func:
                    f.write('  (%r,%r,%d,%r,%r,%d),\n' % (p.str, p.name, p.len,
                                                          p.func, os.path.basename(p.file), p.line))
                else:
                    f.write('  (%r,%r,%d,None,None,None),\n' % (str(p), p.name, p.len))
            f.write(']\n')
            f.close()

        except IOError as e:
            raise


    # -----------------------------------------------------------------------------
    # pickle_table()
    #
    # This function pickles the LR parsing tables to a supplied file object
    # -----------------------------------------------------------------------------

    def pickle_table(self, filename, signature=''):
        try:
            import cPickle as pickle
        except ImportError:
            import pickle
        with open(filename, 'wb') as outf:
            pickle.dump(__tabversion__, outf, pickle_protocol)
            pickle.dump(self.lr_method, outf, pickle_protocol)
            pickle.dump(signature, outf, pickle_protocol)
            pickle.dump(self.lr_action, outf, pickle_protocol)
            pickle.dump(self.lr_goto, outf, pickle_protocol)

            outp = []
            for p in self.lr_productions:
                if p.func:
                    outp.append((p.str, p.name, p.len, p.func, os.path.basename(p.file), p.line))
                else:
                    outp.append((str(p), p.name, p.len, None, None, None))
            pickle.dump(outp, outf, pickle_protocol)

# -----------------------------------------------------------------------------
#                            === INTROSPECTION ===
#
# The following functions and classes are used to implement the PLY
# introspection features followed by the yacc() function itself.
# -----------------------------------------------------------------------------

# -----------------------------------------------------------------------------
# get_caller_module_dict()
#
# This function returns a dictionary containing all of the symbols defined within
# a caller further down the call stack.  This is used to get the environment
# associated with the yacc() call if none was provided.
# -----------------------------------------------------------------------------

def get_caller_module_dict(levels):
    f = sys._getframe(levels)
    ldict = f.f_globals.copy()
    if f.f_globals != f.f_locals:
        ldict.update(f.f_locals)
    return ldict

# -----------------------------------------------------------------------------
# parse_grammar()
#
# This takes a raw grammar rule string and parses it into production data
# -----------------------------------------------------------------------------
def parse_grammar(doc, file, line):
    grammar = []
    # Split the doc string into lines
    pstrings = doc.splitlines()
    lastp = None
    dline = line
    for ps in pstrings:
        dline += 1
        p = ps.split()
        if not p:
            continue
        try:
            if p[0] == '|':
                # This is a continuation of a previous rule
                if not lastp:
                    raise SyntaxError("%s:%d: Misplaced '|'" % (file, dline))
                prodname = lastp
                syms = p[1:]
            else:
                prodname = p[0]
                lastp = prodname
                syms   = p[2:]
                assign = p[1]
                if assign != ':' and assign != '::=':
                    raise SyntaxError("%s:%d: Syntax error. Expected ':'" % (file, dline))

            grammar.append((file, dline, prodname, syms))
        except SyntaxError:
            raise
        except Exception:
            raise SyntaxError('%s:%d: Syntax error in rule %r' % (file, dline, ps.strip()))

    return grammar

# -----------------------------------------------------------------------------
# ParserReflect()
#
# This class represents information extracted for building a parser including
# start symbol, error function, tokens, precedence list, action functions,
# etc.
# -----------------------------------------------------------------------------
class ParserReflect(object):
    def __init__(self, pdict, log=None):
        self.pdict      = pdict
        self.start      = None
        self.error_func = None
        self.tokens     = None
        self.modules    = set()
        self.grammar    = []
        self.error      = False

        if log is None:
            self.log = PlyLogger(sys.stderr)
        else:
            self.log = log

    # Get all of the basic information
    def get_all(self):
        self.get_start()
        self.get_error_func()
        self.get_tokens()
        self.get_precedence()
        self.get_pfunctions()

    # Validate all of the information
    def validate_all(self):
        self.validate_start()
        self.validate_error_func()
        self.validate_tokens()
        self.validate_precedence()
        self.validate_pfunctions()
        self.validate_modules()
        return self.error

    # Compute a signature over the grammar
    def signature(self):
        try:
            from hashlib import md5
        except ImportError:
            from md5 import md5
        try:
            sig = md5()
            if self.start:
                sig.update(self.start.encode('latin-1'))
            if self.prec:
                sig.update(''.join([''.join(p) for p in self.prec]).encode('latin-1'))
            if self.tokens:
                sig.update(' '.join(self.tokens).encode('latin-1'))
            for f in self.pfuncs:
                if f[3]:
                    sig.update(f[3].encode('latin-1'))
        except (TypeError, ValueError):
            pass

        digest = base64.b16encode(sig.digest())
        if sys.version_info[0] >= 3:
            digest = digest.decode('latin-1')
        return digest

    # -----------------------------------------------------------------------------
    # validate_modules()
    #
    # This method checks to see if there are duplicated p_rulename() functions
    # in the parser module file.  Without this function, it is really easy for
    # users to make mistakes by cutting and pasting code fragments (and it's a real
    # bugger to try and figure out why the resulting parser doesn't work).  Therefore,
    # we just do a little regular expression pattern matching of def statements
    # to try and detect duplicates.
    # -----------------------------------------------------------------------------

    def validate_modules(self):
        # Match def p_funcname(
        fre = re.compile(r'\s*def\s+(p_[a-zA-Z_0-9]*)\(')

        for module in self.modules:
            lines, linen = inspect.getsourcelines(module)

            counthash = {}
            for linen, line in enumerate(lines):
                linen += 1
                m = fre.match(line)
                if m:
                    name = m.group(1)
                    prev = counthash.get(name)
                    if not prev:
                        counthash[name] = linen
                    else:
                        filename = inspect.getsourcefile(module)
                        self.log.warning('%s:%d: Function %s redefined. Previously defined on line %d',
                                         filename, linen, name, prev)

    # Get the start symbol
    def get_start(self):
        self.start = self.pdict.get('start')

    # Validate the start symbol
    def validate_start(self):
        if self.start is not None:
            if not isinstance(self.start, string_types):
                self.log.error("'start' must be a string")

    # Look for error handler
    def get_error_func(self):
        self.error_func = self.pdict.get('p_error')

    # Validate the error function
    def validate_error_func(self):
        if self.error_func:
            if isinstance(self.error_func, types.FunctionType):
                ismethod = 0
            elif isinstance(self.error_func, types.MethodType):
                ismethod = 1
            else:
                self.log.error("'p_error' defined, but is not a function or method")
                self.error = True
                return

            eline = self.error_func.__code__.co_firstlineno
            efile = self.error_func.__code__.co_filename
            module = inspect.getmodule(self.error_func)
            self.modules.add(module)

            argcount = self.error_func.__code__.co_argcount - ismethod
            if argcount != 1:
                self.log.error('%s:%d: p_error() requires 1 argument', efile, eline)
                self.error = True

    # Get the tokens map
    def get_tokens(self):
        tokens = self.pdict.get('tokens')
        if not tokens:
            self.log.error('No token list is defined')
            self.error = True
            return

        if not isinstance(tokens, (list, tuple)):
            self.log.error('tokens must be a list or tuple')
            self.error = True
            return

        if not tokens:
            self.log.error('tokens is empty')
            self.error = True
            return

        self.tokens = tokens

    # Validate the tokens
    def validate_tokens(self):
        # Validate the tokens.
        if 'error' in self.tokens:
            self.log.error("Illegal token name 'error'. Is a reserved word")
            self.error = True
            return

        terminals = set()
        for n in self.tokens:
            if n in terminals:
                self.log.warning('Token %r multiply defined', n)
            terminals.add(n)

    # Get the precedence map (if any)
    def get_precedence(self):
        self.prec = self.pdict.get('precedence')

    # Validate and parse the precedence map
    def validate_precedence(self):
        preclist = []
        if self.prec:
            if not isinstance(self.prec, (list, tuple)):
                self.log.error('precedence must be a list or tuple')
                self.error = True
                return
            for level, p in enumerate(self.prec):
                if not isinstance(p, (list, tuple)):
                    self.log.error('Bad precedence table')
                    self.error = True
                    return

                if len(p) < 2:
                    self.log.error('Malformed precedence entry %s. Must be (assoc, term, ..., term)', p)
                    self.error = True
                    return
                assoc = p[0]
                if not isinstance(assoc, string_types):
                    self.log.error('precedence associativity must be a string')
                    self.error = True
                    return
                for term in p[1:]:
                    if not isinstance(term, string_types):
                        self.log.error('precedence items must be strings')
                        self.error = True
                        return
                    preclist.append((term, assoc, level+1))
        self.preclist = preclist

    # Get all p_functions from the grammar
    def get_pfunctions(self):
        p_functions = []
        for name, item in self.pdict.items():
            if not name.startswith('p_') or name == 'p_error':
                continue
            if isinstance(item, (types.FunctionType, types.MethodType)):
                line = item.__code__.co_firstlineno
                module = inspect.getmodule(item)
                p_functions.append((line, module, name, item.__doc__))

        # Sort all of the actions by line number; make sure to stringify
        # modules to make them sortable, since `line` may not uniquely sort all
        # p functions
        p_functions.sort(key=lambda p_function: (
            p_function[0],
            str(p_function[1]),
            p_function[2],
            p_function[3]))
        self.pfuncs = p_functions

    # Validate all of the p_functions
    def validate_pfunctions(self):
        grammar = []
        # Check for non-empty symbols
        if len(self.pfuncs) == 0:
            self.log.error('no rules of the form p_rulename are defined')
            self.error = True
            return

        for line, module, name, doc in self.pfuncs:
            file = inspect.getsourcefile(module)
            func = self.pdict[name]
            if isinstance(func, types.MethodType):
                reqargs = 2
            else:
                reqargs = 1
            if func.__code__.co_argcount > reqargs:
                self.log.error('%s:%d: Rule %r has too many arguments', file, line, func.__name__)
                self.error = True
            elif func.__code__.co_argcount < reqargs:
                self.log.error('%s:%d: Rule %r requires an argument', file, line, func.__name__)
                self.error = True
            elif not func.__doc__:
                self.log.warning('%s:%d: No documentation string specified in function %r (ignored)',
                                 file, line, func.__name__)
            else:
                try:
                    parsed_g = parse_grammar(doc, file, line)
                    for g in parsed_g:
                        grammar.append((name, g))
                except SyntaxError as e:
                    self.log.error(str(e))
                    self.error = True

                # Looks like a valid grammar rule
                # Mark the file in which defined.
                self.modules.add(module)

        # Secondary validation step that looks for p_ definitions that are not functions
        # or functions that look like they might be grammar rules.

        for n, v in self.pdict.items():
            if n.startswith('p_') and isinstance(v, (types.FunctionType, types.MethodType)):
                continue
            if n.startswith('t_'):
                continue
            if n.startswith('p_') and n != 'p_error':
                self.log.warning('%r not defined as a function', n)
            if ((isinstance(v, types.FunctionType) and v.__code__.co_argcount == 1) or
                   (isinstance(v, types.MethodType) and v.__func__.__code__.co_argcount == 2)):
                if v.__doc__:
                    try:
                        doc = v.__doc__.split(' ')
                        if doc[1] == ':':
                            self.log.warning('%s:%d: Possible grammar rule %r defined without p_ prefix',
                                             v.__code__.co_filename, v.__code__.co_firstlineno, n)
                    except IndexError:
                        pass

        self.grammar = grammar

# -----------------------------------------------------------------------------
# yacc(module)
#
# Build a parser
# -----------------------------------------------------------------------------

def yacc(method='LALR', debug=yaccdebug, module=None, tabmodule=tab_module, start=None,
         check_recursion=True, optimize=False, write_tables=True, debugfile=debug_file,
         outputdir=None, debuglog=None, errorlog=None, picklefile=None):

    if tabmodule is None:
        tabmodule = tab_module

    # Reference to the parsing method of the last built parser
    global parse

    # If pickling is enabled, table files are not created
    if picklefile:
        write_tables = 0

    if errorlog is None:
        errorlog = PlyLogger(sys.stderr)

    # Get the module dictionary used for the parser
    if module:
        _items = [(k, getattr(module, k)) for k in dir(module)]
        pdict = dict(_items)
        # If no __file__ attribute is available, try to obtain it from the __module__ instead
        if '__file__' not in pdict:
            pdict['__file__'] = sys.modules[pdict['__module__']].__file__
    else:
        pdict = get_caller_module_dict(2)

    if outputdir is None:
        # If no output directory is set, the location of the output files
        # is determined according to the following rules:
        #     - If tabmodule specifies a package, files go into that package directory
        #     - Otherwise, files go in the same directory as the specifying module
        if isinstance(tabmodule, types.ModuleType):
            srcfile = tabmodule.__file__
        else:
            if '.' not in tabmodule:
                srcfile = pdict['__file__']
            else:
                parts = tabmodule.split('.')
                pkgname = '.'.join(parts[:-1])
                exec('import %s' % pkgname)
                srcfile = getattr(sys.modules[pkgname], '__file__', '')
        outputdir = os.path.dirname(srcfile)

    # Determine if the module is package of a package or not.
    # If so, fix the tabmodule setting so that tables load correctly
    pkg = pdict.get('__package__')
    if pkg and isinstance(tabmodule, str):
        if '.' not in tabmodule:
            tabmodule = pkg + '.' + tabmodule



    # Set start symbol if it's specified directly using an argument
    if start is not None:
        pdict['start'] = start

    # Collect parser information from the dictionary
    pinfo = ParserReflect(pdict, log=errorlog)
    pinfo.get_all()

    if pinfo.error:
        raise YaccError('Unable to build parser')

    # Check signature against table files (if any)
    signature = pinfo.signature()

    # Read the tables
    try:
        lr = LRTable()
        if picklefile:
            read_signature = lr.read_pickle(picklefile)
        else:
            read_signature = lr.read_table(tabmodule)
        if optimize or (read_signature == signature):
            try:
                lr.bind_callables(pinfo.pdict)
                parser = LRParser(lr, pinfo.error_func)
                parse = parser.parse
                return parser
            except Exception as e:
                errorlog.warning('There was a problem loading the table file: %r', e)
    except VersionError as e:
        errorlog.warning(str(e))
    except ImportError:
        pass

    if debuglog is None:
        if debug:
            try:
                debuglog = PlyLogger(open(os.path.join(outputdir, debugfile), 'w'))
            except IOError as e:
                errorlog.warning("Couldn't open %r. %s" % (debugfile, e))
                debuglog = NullLogger()
        else:
            debuglog = NullLogger()

    debuglog.info('Created by PLY version %s (http://www.dabeaz.com/ply)', __version__)

    errors = False

    # Validate the parser information
    if pinfo.validate_all():
        raise YaccError('Unable to build parser')

    if not pinfo.error_func:
        errorlog.warning('no p_error() function is defined')

    # Create a grammar object
    grammar = Grammar(pinfo.tokens)

    # Set precedence level for terminals
    for term, assoc, level in pinfo.preclist:
        try:
            grammar.set_precedence(term, assoc, level)
        except GrammarError as e:
            errorlog.warning('%s', e)

    # Add productions to the grammar
    for funcname, gram in pinfo.grammar:
        file, line, prodname, syms = gram
        try:
            grammar.add_production(prodname, syms, funcname, file, line)
        except GrammarError as e:
            errorlog.error('%s', e)
            errors = True

    # Set the grammar start symbols
    try:
        if start is None:
            grammar.set_start(pinfo.start)
        else:
            grammar.set_start(start)
    except GrammarError as e:
        errorlog.error(str(e))
        errors = True

    if errors:
        raise YaccError('Unable to build parser')

    # Verify the grammar structure
    undefined_symbols = grammar.undefined_symbols()
    for sym, prod in undefined_symbols:
        errorlog.error('%s:%d: Symbol %r used, but not defined as a token or a rule', prod.file, prod.line, sym)
        errors = True

    unused_terminals = grammar.unused_terminals()
    if unused_terminals:
        debuglog.info('')
        debuglog.info('Unused terminals:')
        debuglog.info('')
        for term in unused_terminals:
            errorlog.warning('Token %r defined, but not used', term)
            debuglog.info('    %s', term)

    # Print out all productions to the debug log
    if debug:
        debuglog.info('')
        debuglog.info('Grammar')
        debuglog.info('')
        for n, p in enumerate(grammar.Productions):
            debuglog.info('Rule %-5d %s', n, p)

    # Find unused non-terminals
    unused_rules = grammar.unused_rules()
    for prod in unused_rules:
        errorlog.warning('%s:%d: Rule %r defined, but not used', prod.file, prod.line, prod.name)

    if len(unused_terminals) == 1:
        errorlog.warning('There is 1 unused token')
    if len(unused_terminals) > 1:
        errorlog.warning('There are %d unused tokens', len(unused_terminals))

    if len(unused_rules) == 1:
        errorlog.warning('There is 1 unused rule')
    if len(unused_rules) > 1:
        errorlog.warning('There are %d unused rules', len(unused_rules))

    if debug:
        debuglog.info('')
        debuglog.info('Terminals, with rules where they appear')
        debuglog.info('')
        terms = list(grammar.Terminals)
        terms.sort()
        for term in terms:
            debuglog.info('%-20s : %s', term, ' '.join([str(s) for s in grammar.Terminals[term]]))

        debuglog.info('')
        debuglog.info('Nonterminals, with rules where they appear')
        debuglog.info('')
        nonterms = list(grammar.Nonterminals)
        nonterms.sort()
        for nonterm in nonterms:
            debuglog.info('%-20s : %s', nonterm, ' '.join([str(s) for s in grammar.Nonterminals[nonterm]]))
        debuglog.info('')

    if check_recursion:
        unreachable = grammar.find_unreachable()
        for u in unreachable:
            errorlog.warning('Symbol %r is unreachable', u)

        infinite = grammar.infinite_cycles()
        for inf in infinite:
            errorlog.error('Infinite recursion detected for symbol %r', inf)
            errors = True

    unused_prec = grammar.unused_precedence()
    for term, assoc in unused_prec:
        errorlog.error('Precedence rule %r defined for unknown symbol %r', assoc, term)
        errors = True

    if errors:
        raise YaccError('Unable to build parser')

    # Run the LRGeneratedTable on the grammar
    if debug:
        errorlog.debug('Generating %s tables', method)

    lr = LRGeneratedTable(grammar, method, debuglog)

    if debug:
        num_sr = len(lr.sr_conflicts)

        # Report shift/reduce and reduce/reduce conflicts
        if num_sr == 1:
            errorlog.warning('1 shift/reduce conflict')
        elif num_sr > 1:
            errorlog.warning('%d shift/reduce conflicts', num_sr)

        num_rr = len(lr.rr_conflicts)
        if num_rr == 1:
            errorlog.warning('1 reduce/reduce conflict')
        elif num_rr > 1:
            errorlog.warning('%d reduce/reduce conflicts', num_rr)

    # Write out conflicts to the output file
    if debug and (lr.sr_conflicts or lr.rr_conflicts):
        debuglog.warning('')
        debuglog.warning('Conflicts:')
        debuglog.warning('')

        for state, tok, resolution in lr.sr_conflicts:
            debuglog.warning('shift/reduce conflict for %s in state %d resolved as %s',  tok, state, resolution)

        already_reported = set()
        for state, rule, rejected in lr.rr_conflicts:
            if (state, id(rule), id(rejected)) in already_reported:
                continue
            debuglog.warning('reduce/reduce conflict in state %d resolved using rule (%s)', state, rule)
            debuglog.warning('rejected rule (%s) in state %d', rejected, state)
            errorlog.warning('reduce/reduce conflict in state %d resolved using rule (%s)', state, rule)
            errorlog.warning('rejected rule (%s) in state %d', rejected, state)
            already_reported.add((state, id(rule), id(rejected)))

        warned_never = []
        for state, rule, rejected in lr.rr_conflicts:
            if not rejected.reduced and (rejected not in warned_never):
                debuglog.warning('Rule (%s) is never reduced', rejected)
                errorlog.warning('Rule (%s) is never reduced', rejected)
                warned_never.append(rejected)

    # Write the table file if requested
    if write_tables:
        try:
            lr.write_table(tabmodule, outputdir, signature)
        except IOError as e:
            errorlog.warning("Couldn't create %r. %s" % (tabmodule, e))

    # Write a pickled version of the tables
    if picklefile:
        try:
            lr.pickle_table(picklefile, signature)
        except IOError as e:
            errorlog.warning("Couldn't create %r. %s" % (picklefile, e))

    # Build the parser
    lr.bind_callables(pinfo.pdict)
    parser = LRParser(lr, pinfo.error_func)

    parse = parser.parse
    return parser