This file is indexed.

/usr/lib/python3/dist-packages/nibabel/spm2analyze.py is in python3-nibabel 2.0.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# emacs: -*- mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
#   See COPYING file distributed along with the NiBabel package for the
#   copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
''' Read / write access to SPM2 version of analyze image format '''
import numpy as np

from .spatialimages import HeaderDataError
from .batteryrunners import Report
from . import spm99analyze as spm99 # module import

image_dimension_dtd = spm99.image_dimension_dtd[:]
image_dimension_dtd[
    image_dimension_dtd.index(('funused2', 'f4'))
    ] = ('scl_inter', 'f4')

# Full header numpy dtype combined across sub-fields
header_dtype = np.dtype(spm99.header_key_dtd +
                        image_dimension_dtd +
                        spm99.data_history_dtd)


class Spm2AnalyzeHeader(spm99.Spm99AnalyzeHeader):
    ''' Class for SPM2 variant of basic Analyze header

    SPM2 variant adds the following to basic Analyze format:

    * voxel origin;
    * slope scaling of data;
    * reading - but not writing - intercept of data.
    '''

    # Copies of module level definitions
    template_dtype = header_dtype

    def get_slope_inter(self):
        ''' Get data scaling (slope) and intercept from header data

        Uses the algorithm from SPM2 spm_vol_ana.m by John Ashburner

        Parameters
        ----------
        self : header
           Mapping with fields:
           * scl_slope - slope
           * scl_inter - possible intercept (SPM2 use - shared by nifti)
           * glmax - the (recorded) maximum value in the data (unscaled)
           * glmin - recorded minimum unscaled value
           * cal_max - the calibrated (scaled) maximum value in the dataset
           * cal_min - ditto minimum value

        Returns
        -------
        scl_slope : None or float
            slope.  None if there is no valid scaling from these fields
        scl_inter : None or float
            intercept.  Also None if there is no valid slope, intercept

        Examples
        --------
        >>> fields = {'scl_slope':1,'scl_inter':0,'glmax':0,'glmin':0,'cal_max':0, 'cal_min':0}
        >>> hdr = Spm2AnalyzeHeader()
        >>> for key, value in fields.items():
        ...     hdr[key] = value
        >>> hdr.get_slope_inter()
        (1.0, 0.0)
        >>> hdr['scl_inter'] = 0.5
        >>> hdr.get_slope_inter()
        (1.0, 0.5)
        >>> hdr['scl_inter'] = np.nan
        >>> hdr.get_slope_inter()
        (1.0, 0.0)

        If 'scl_slope' is 0, nan or inf, cannot use 'scl_slope'.
        Without valid information in the gl / cal fields, we cannot get
        scaling, and return None

        >>> hdr['scl_slope'] = 0
        >>> hdr.get_slope_inter()
        (None, None)
        >>> hdr['scl_slope'] = np.nan
        >>> hdr.get_slope_inter()
        (None, None)

        Valid information in the gl AND cal fields are needed

        >>> hdr['cal_max'] = 0.8
        >>> hdr['cal_min'] = 0.2
        >>> hdr.get_slope_inter()
        (None, None)
        >>> hdr['glmax'] = 110
        >>> hdr['glmin'] = 10
        >>> np.allclose(hdr.get_slope_inter(), [0.6/100, 0.2-0.6/100*10])
        True
        '''
        # get scaling factor from 'scl_slope' (funused1)
        slope = float(self['scl_slope'])
        if np.isfinite(slope) and slope:
            # try to get offset from scl_inter
            inter = float(self['scl_inter'])
            if not np.isfinite(inter):
                inter = 0.0
            return slope, inter
        # no non-zero and finite scaling, try gl/cal fields
        unscaled_range = self['glmax'] - self['glmin']
        scaled_range = self['cal_max'] - self['cal_min']
        if unscaled_range and scaled_range:
            slope = float(scaled_range) / unscaled_range
            inter = self['cal_min'] - slope * self['glmin']
            return slope, inter
        return None, None


class Spm2AnalyzeImage(spm99.Spm99AnalyzeImage):
    """ Class for SPM2 variant of basic Analyze image
    """
    header_class = Spm2AnalyzeHeader


load = Spm2AnalyzeImage.load
save = Spm2AnalyzeImage.instance_to_filename