/usr/lib/python3/dist-packages/nibabel/spatialimages.py is in python3-nibabel 2.0.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 | # emacs: -*- mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the NiBabel package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
''' A simple spatial image class
The image class maintains the association between a 3D (or greater)
array, and an affine transform that maps voxel coordinates to some world space.
It also has a ``header`` - some standard set of meta-data that is specific to
the image format, and ``extra`` - a dictionary container for any other
metadata.
It has attributes:
* extra
methods:
* .get_data()
* .get_affine() (deprecated, use affine property instead)
* .get_header() (deprecated, use header property instead)
* .to_filename(fname) - writes data to filename(s) derived from
``fname``, where the derivation may differ between formats.
* to_file_map() - save image to files with which the image is already
associated.
* .get_shape() (deprecated)
properties:
* shape
* affine
* header
* dataobj
classmethods:
* from_filename(fname) - make instance by loading from filename
* from_file_map(fmap) - make instance from file map
* instance_to_filename(img, fname) - save ``img`` instance to
filename ``fname``.
You cannot slice an image, and trying to slice an image generates an
informative TypeError.
There are several ways of writing data.
=======================================
There is the usual way, which is the default::
img.to_filename(fname)
and that is, to take the data encapsulated by the image and cast it to
the datatype the header expects, setting any available header scaling
into the header to help the data match.
You can load the data into an image from file with::
img.from_filename(fname)
The image stores its associated files in its ``file_map`` attribute. In order
to just save an image, for which you know there is an associated filename, or
other storage, you can do::
img.to_file_map()
You can get the data out again with::
img.get_data()
Less commonly, for some image types that support it, you might want to
fetch out the unscaled array via the object containing the data::
unscaled_data = img.dataoobj.get_unscaled()
Analyze-type images (including nifti) support this, but others may not
(MINC, for example).
Sometimes you might to avoid any loss of precision by making the
data type the same as the input::
hdr = img.header
hdr.set_data_dtype(data.dtype)
img.to_filename(fname)
Files interface
===============
The image has an attribute ``file_map``. This is a mapping, that has keys
corresponding to the file types that an image needs for storage. For
example, the Analyze data format needs an ``image`` and a ``header``
file type for storage:
>>> import nibabel as nib
>>> data = np.arange(24, dtype='f4').reshape((2,3,4))
>>> img = nib.AnalyzeImage(data, np.eye(4))
>>> sorted(img.file_map)
['header', 'image']
The values of ``file_map`` are not in fact files but objects with
attributes ``filename``, ``fileobj`` and ``pos``.
The reason for this interface, is that the contents of files has to
contain enough information so that an existing image instance can save
itself back to the files pointed to in ``file_map``. When a file holder
holds active file-like objects, then these may be affected by the
initial file read; in this case, the contains file-like objects need to
carry the position at which a write (with ``to_files``) should place the
data. The ``file_map`` contents should therefore be such, that this will
work:
>>> # write an image to files
>>> from io import BytesIO
>>> file_map = nib.AnalyzeImage.make_file_map()
>>> file_map['image'].fileobj = BytesIO()
>>> file_map['header'].fileobj = BytesIO()
>>> img = nib.AnalyzeImage(data, np.eye(4))
>>> img.file_map = file_map
>>> img.to_file_map()
>>> # read it back again from the written files
>>> img2 = nib.AnalyzeImage.from_file_map(file_map)
>>> np.all(img2.get_data() == data)
True
>>> # write, read it again
>>> img2.to_file_map()
>>> img3 = nib.AnalyzeImage.from_file_map(file_map)
>>> np.all(img3.get_data() == data)
True
'''
try:
basestring
except NameError: # python 3
basestring = str
import warnings
import numpy as np
from .filename_parser import types_filenames, TypesFilenamesError
from .fileholders import FileHolder
from .volumeutils import shape_zoom_affine
class HeaderDataError(Exception):
''' Class to indicate error in getting or setting header data '''
pass
class HeaderTypeError(Exception):
''' Class to indicate error in parameters into header functions '''
pass
class Header(object):
''' Template class to implement header protocol '''
default_x_flip = True
data_layout = 'F'
def __init__(self,
data_dtype=np.float32,
shape=(0,),
zooms=None):
self.set_data_dtype(data_dtype)
self._zooms = ()
self.set_data_shape(shape)
if not zooms is None:
self.set_zooms(zooms)
@classmethod
def from_header(klass, header=None):
if header is None:
return klass()
# I can't do isinstance here because it is not necessarily true
# that a subclass has exactly the same interface as its parent
# - for example Nifti1Images inherit from Analyze, but have
# different field names
if type(header) == klass:
return header.copy()
return klass(header.get_data_dtype(),
header.get_data_shape(),
header.get_zooms())
@classmethod
def from_fileobj(klass, fileobj):
raise NotImplementedError
def write_to(self, fileobj):
raise NotImplementedError
def __eq__(self, other):
return ((self.get_data_dtype(),
self.get_data_shape(),
self.get_zooms()) ==
(other.get_data_dtype(),
other.get_data_shape(),
other.get_zooms()))
def __ne__(self, other):
return not self == other
def copy(self):
''' Copy object to independent representation
The copy should not be affected by any changes to the original
object.
'''
return self.__class__(self._dtype, self._shape, self._zooms)
def get_data_dtype(self):
return self._dtype
def set_data_dtype(self, dtype):
self._dtype = np.dtype(dtype)
def get_data_shape(self):
return self._shape
def set_data_shape(self, shape):
ndim = len(shape)
if ndim == 0:
self._shape = (0,)
self._zooms = (1.0,)
return
self._shape = tuple([int(s) for s in shape])
# set any unset zooms to 1.0
nzs = min(len(self._zooms), ndim)
self._zooms = self._zooms[:nzs] + (1.0,) * (ndim-nzs)
def get_zooms(self):
return self._zooms
def set_zooms(self, zooms):
zooms = tuple([float(z) for z in zooms])
shape = self.get_data_shape()
ndim = len(shape)
if len(zooms) != ndim:
raise HeaderDataError('Expecting %d zoom values for ndim %d'
% (ndim, ndim))
if len([z for z in zooms if z < 0]):
raise HeaderDataError('zooms must be positive')
self._zooms = zooms
def get_base_affine(self):
shape = self.get_data_shape()
zooms = self.get_zooms()
return shape_zoom_affine(shape, zooms,
self.default_x_flip)
get_best_affine = get_base_affine
def data_to_fileobj(self, data, fileobj, rescale=True):
''' Write array data `data` as binary to `fileobj`
Parameters
----------
data : array-like
data to write
fileobj : file-like object
file-like object implementing 'write'
rescale : {True, False}, optional
Whether to try and rescale data to match output dtype specified by
header. For this minimal header, `rescale` has no effect
'''
data = np.asarray(data)
dtype = self.get_data_dtype()
fileobj.write(data.astype(dtype).tostring(order=self.data_layout))
def data_from_fileobj(self, fileobj):
''' Read binary image data from `fileobj` '''
dtype = self.get_data_dtype()
shape = self.get_data_shape()
data_size = int(np.prod(shape) * dtype.itemsize)
data_bytes = fileobj.read(data_size)
return np.ndarray(shape, dtype, data_bytes, order=self.data_layout)
def supported_np_types(obj):
""" Numpy data types that instance `obj` supports
Parameters
----------
obj : object
Object implementing `get_data_dtype` and `set_data_dtype`. The object
should raise ``HeaderDataError`` for setting unsupported dtypes. The
object will likely be a header or a :class:`SpatialImage`
Returns
-------
np_types : set
set of numpy types that `obj` supports
"""
dt = obj.get_data_dtype()
supported = []
for name, np_types in np.sctypes.items():
for np_type in np_types:
try:
obj.set_data_dtype(np_type)
except HeaderDataError:
continue
# Did set work?
if np.dtype(obj.get_data_dtype()) == np.dtype(np_type):
supported.append(np_type)
# Reset original header dtype
obj.set_data_dtype(dt)
return set(supported)
class ImageDataError(Exception):
pass
class ImageFileError(Exception):
pass
class SpatialImage(object):
header_class = Header
files_types = (('image', None),)
_compressed_exts = ()
''' Template class for images '''
def __init__(self, dataobj, affine, header=None,
extra=None, file_map=None):
''' Initialize image
The image is a combination of (array, affine matrix, header), with
optional metadata in `extra`, and filename / file-like objects contained
in the `file_map` mapping.
Parameters
----------
dataobj : object
Object containg image data. It should be some object that retuns an
array from ``np.asanyarray``. It should have a ``shape`` attribute
or property
affine : None or (4,4) array-like
homogenous affine giving relationship between voxel coordinates and
world coordinates. Affine can also be None. In this case,
``obj.affine`` also returns None, and the affine as written to disk
will depend on the file format.
header : None or mapping or header instance, optional
metadata for this image format
extra : None or mapping, optional
metadata to associate with image that cannot be stored in the
metadata of this image type
file_map : mapping, optional
mapping giving file information for this image format
'''
self._dataobj = dataobj
if not affine is None:
# Check that affine is array-like 4,4. Maybe this is too strict at
# this abstract level, but so far I think all image formats we know
# do need 4,4.
# Copy affine to isolate from environment. Specify float type to
# avoid surprising integer rounding when setting values into affine
affine = np.array(affine, dtype=np.float64, copy=True)
if not affine.shape == (4,4):
raise ValueError('Affine should be shape 4,4')
self._affine = affine
if extra is None:
extra = {}
self.extra = extra
self._header = self.header_class.from_header(header)
# if header not specified, get data type from input array
if header is None:
if hasattr(dataobj, 'dtype'):
self._header.set_data_dtype(dataobj.dtype)
# make header correspond with image and affine
self.update_header()
if file_map is None:
file_map = self.__class__.make_file_map()
self.file_map = file_map
self._load_cache = None
self._data_cache = None
@property
def _data(self):
warnings.warn('Please use ``dataobj`` instead of ``_data``; '
'We will remove this wrapper for ``_data`` soon',
FutureWarning,
stacklevel=2)
return self._dataobj
@property
def dataobj(self):
return self._dataobj
@property
def affine(self):
return self._affine
@property
def header(self):
return self._header
def update_header(self):
''' Harmonize header with image data and affine
>>> data = np.zeros((2,3,4))
>>> affine = np.diag([1.0,2.0,3.0,1.0])
>>> img = SpatialImage(data, affine)
>>> img.shape == (2, 3, 4)
True
>>> img.update_header()
>>> img.header.get_data_shape() == (2, 3, 4)
True
>>> img.header.get_zooms()
(1.0, 2.0, 3.0)
'''
hdr = self._header
shape = self._dataobj.shape
# We need to update the header if the data shape has changed. It's a
# bit difficult to change the data shape using the standard API, but
# maybe it happened
if hdr.get_data_shape() != shape:
hdr.set_data_shape(shape)
# If the affine is not None, and it is different from the main affine in
# the header, update the heaader
if self._affine is None:
return
if np.allclose(self._affine, hdr.get_best_affine()):
return
self._affine2header()
def _affine2header(self):
""" Unconditionally set affine into the header """
RZS = self._affine[:3, :3]
vox = np.sqrt(np.sum(RZS * RZS, axis=0))
hdr = self._header
zooms = list(hdr.get_zooms())
n_to_set = min(len(zooms), 3)
zooms[:n_to_set] = vox[:n_to_set]
hdr.set_zooms(zooms)
def __str__(self):
shape = self.shape
affine = self.affine
return '\n'.join((
str(self.__class__),
'data shape %s' % (shape,),
'affine: ',
'%s' % affine,
'metadata:',
'%s' % self._header))
def get_data(self, caching='fill'):
""" Return image data from image with any necessary scalng applied
The image ``dataobj`` property can be an array proxy or an array. An
array proxy is an object that knows how to load the image data from
disk. An image with an array proxy ``dataobj`` is a *proxy image*; an
image with an array in ``dataobj`` is an *array image*.
The default behavior for ``get_data()`` on a proxy image is to read the
data from the proxy, and store in an internal cache. Future calls to
``get_data`` will return the cached array. This is the behavior
selected with `caching` == "fill".
Once the data has been cached and returned from an array proxy, if you
modify the returned array, you will also modify the cached array
(because they are the same array). Regardless of the `caching` flag,
this is always true of an array image.
Parameters
----------
caching : {'fill', 'unchanged'}, optional
See the Notes section for a detailed explanation. This argument
specifies whether the image object should fill in an internal
cached reference to the returned image data array. "fill" specifies
that the image should fill an internal cached reference if
currently empty. Future calls to ``get_data`` will return this
cached reference. You might prefer "fill" to save the image object
from having to reload the array data from disk on each call to
``get_data``. "unchanged" means that the image should not fill in
the internal cached reference if the cache is currently empty. You
might prefer "unchanged" to "fill" if you want to make sure that
the call to ``get_data`` does not create an extra (cached)
reference to the returned array. In this case it is easier for
Python to free the memory from the returned array.
Returns
-------
data : array
array of image data
See also
--------
uncache: empty the array data cache
Notes
-----
All images have a property ``dataobj`` that represents the image array
data. Images that have been loaded from files usually do not load the
array data from file immediately, in order to reduce image load time
and memory use. For these images, ``dataobj`` is an *array proxy*; an
object that knows how to load the image array data from file.
By default (`caching` == "fill"), when you call ``get_data`` on a
proxy image, we load the array data from disk, store (cache) an
internal reference to this array data, and return the array. The next
time you call ``get_data``, you will get the cached reference to the
array, so we don't have to load the array data from disk again.
Array images have a ``dataobj`` property that already refers to an
array in memory, so there is no benefit to caching, and the `caching`
keywords have no effect.
For proxy images, you may not want to fill the cache after reading the
data from disk because the cache will hold onto the array memory until
the image object is deleted, or you use the image ``uncache`` method.
If you don't want to fill the cache, then always use
``get_data(caching='unchanged')``; in this case ``get_data`` will not
fill the cache (store the reference to the array) if the cache is empty
(no reference to the array). If the cache is full, "unchanged" leaves
the cache full and returns the cached array reference.
The cache can effect the behavior of the image, because if the cache is
full, or you have an array image, then modifying the returned array
will modify the result of future calls to ``get_data()``. For example
you might do this:
>>> import os
>>> import nibabel as nib
>>> from nibabel.testing import data_path
>>> img_fname = os.path.join(data_path, 'example4d.nii.gz')
>>> img = nib.load(img_fname) # This is a proxy image
>>> nib.is_proxy(img.dataobj)
True
The array is not yet cached by a call to "get_data", so:
>>> img.in_memory
False
After we call ``get_data`` using the default `caching='fill', the cache
contains a reference to the returned array ``data``:
>>> data = img.get_data()
>>> img.in_memory
True
We modify an element in the returned data array:
>>> data[0, 0, 0, 0]
0
>>> data[0, 0, 0, 0] = 99
>>> data[0, 0, 0, 0]
99
The next time we call 'get_data', the method returns the cached
reference to the (modified) array:
>>> data_again = img.get_data()
>>> data_again is data
True
>>> data_again[0, 0, 0, 0]
99
If you had *initially* used `caching` == 'unchanged' then the returned
``data`` array would have been loaded from file, but not cached, and:
>>> img = nib.load(img_fname) # a proxy image again
>>> data = img.get_data(caching='unchanged')
>>> img.in_memory
False
>>> data[0, 0, 0] = 99
>>> data_again = img.get_data(caching='unchanged')
>>> data_again is data
False
>>> data_again[0, 0, 0, 0]
0
"""
if caching not in ('fill', 'unchanged'):
raise ValueError('caching value should be "fill" or "unchanged"')
if self._data_cache is not None:
return self._data_cache
data = np.asanyarray(self._dataobj)
if caching == 'fill':
self._data_cache = data
return data
@property
def in_memory(self):
""" True when array data is in memory
"""
return (isinstance(self._dataobj, np.ndarray)
or self._data_cache is not None)
def uncache(self):
""" Delete any cached read of data from proxied data
Remember there are two types of images:
* *array images* where the data ``img.dataobj`` is an array
* *proxy images* where the data ``img.dataobj`` is a proxy object
If you call ``img.get_data()`` on a proxy image, the result of reading
from the proxy gets cached inside the image object, and this cache is
what gets returned from the next call to ``img.get_data()``. If you
modify the returned data, as in::
data = img.get_data()
data[:] = 42
then the next call to ``img.get_data()`` returns the modified array,
whether the image is an array image or a proxy image::
assert np.all(img.get_data() == 42)
When you uncache an array image, this has no effect on the return of
``img.get_data()``, but when you uncache a proxy image, the result of
``img.get_data()`` returns to its original value.
"""
self._data_cache = None
@property
def shape(self):
return self._dataobj.shape
def get_shape(self):
""" Return shape for image
This function deprecated; please use the ``shape`` property instead
"""
warnings.warn('Please use the shape property instead of get_shape',
DeprecationWarning,
stacklevel=2)
return self.shape
def get_data_dtype(self):
return self._header.get_data_dtype()
def set_data_dtype(self, dtype):
self._header.set_data_dtype(dtype)
def get_affine(self):
""" Get affine from image
Please use the `affine` property instead of `get_affine`; we will
deprecate this method in future versions of nibabel.
"""
return self.affine
def get_header(self):
""" Get header from image
Please use the `header` property instead of `get_header`; we will
deprecate this method in future versions of nibabel.
"""
return self.header
def get_filename(self):
''' Fetch the image filename
Parameters
----------
None
Returns
-------
fname : None or str
Returns None if there is no filename, or a filename string.
If an image may have several filenames assoctiated with it
(e.g Analyze ``.img, .hdr`` pair) then we return the more
characteristic filename (the ``.img`` filename in the case of
Analyze')
'''
# which filename is returned depends on the ordering of the
# 'files_types' class attribute - we return the name
# corresponding to the first in that tuple
characteristic_type = self.files_types[0][0]
return self.file_map[characteristic_type].filename
def set_filename(self, filename):
''' Sets the files in the object from a given filename
The different image formats may check whether the filename has
an extension characteristic of the format, and raise an error if
not.
Parameters
----------
filename : str
If the image format only has one file associated with it,
this will be the only filename set into the image
``.file_map`` attribute. Otherwise, the image instance will
try and guess the other filenames from this given filename.
'''
self.file_map = self.__class__.filespec_to_file_map(filename)
@classmethod
def from_filename(klass, filename):
file_map = klass.filespec_to_file_map(filename)
return klass.from_file_map(file_map)
@classmethod
def from_filespec(klass, filespec):
warnings.warn('``from_filespec`` class method is deprecated\n'
'Please use the ``from_filename`` class method '
'instead',
DeprecationWarning, stacklevel=2)
klass.from_filename(filespec)
@classmethod
def from_file_map(klass, file_map):
raise NotImplementedError
@classmethod
def from_files(klass, file_map):
warnings.warn('``from_files`` class method is deprecated\n'
'Please use the ``from_file_map`` class method '
'instead',
DeprecationWarning, stacklevel=2)
return klass.from_file_map(file_map)
@classmethod
def filespec_to_file_map(klass, filespec):
""" Make `file_map` for this class from filename `filespec`
Class method
Parameters
----------
filespec : str
Filename that might be for this image file type.
Returns
-------
file_map : dict
`file_map` dict with (key, value) pairs of (``file_type``,
FileHolder instance), where ``file_type`` is a string giving the
type of the contained file.
Raises
------
ImageFileError
if `filespec` is not recognizable as being a filename for this
image type.
"""
try:
filenames = types_filenames(filespec,
klass.files_types,
trailing_suffixes=klass._compressed_exts)
except TypesFilenamesError:
raise ImageFileError(
'Filespec "{0}" does not look right for class {1}'.format(
filespec, klass))
file_map = {}
for key, fname in filenames.items():
file_map[key] = FileHolder(filename=fname)
return file_map
@classmethod
def filespec_to_files(klass, filespec):
warnings.warn('``filespec_to_files`` class method is deprecated\n'
'Please use the ``filespec_to_file_map`` class method '
'instead',
DeprecationWarning, stacklevel=2)
return klass.filespec_to_file_map(filespec)
def to_filename(self, filename):
''' Write image to files implied by filename string
Parameters
----------
filename : str
filename to which to save image. We will parse `filename`
with ``filespec_to_file_map`` to work out names for image,
header etc.
Returns
-------
None
'''
self.file_map = self.filespec_to_file_map(filename)
self.to_file_map()
def to_filespec(self, filename):
warnings.warn('``to_filespec`` is deprecated, please '
'use ``to_filename`` instead',
DeprecationWarning, stacklevel=2)
self.to_filename(filename)
def to_file_map(self, file_map=None):
raise NotImplementedError
def to_files(self, file_map=None):
warnings.warn('``to_files`` method is deprecated\n'
'Please use the ``to_file_map`` method '
'instead',
DeprecationWarning, stacklevel=2)
self.to_file_map(file_map)
@classmethod
def make_file_map(klass, mapping=None):
''' Class method to make files holder for this image type
Parameters
----------
mapping : None or mapping, optional
mapping with keys corresponding to image file types (such as
'image', 'header' etc, depending on image class) and values
that are filenames or file-like. Default is None
Returns
-------
file_map : dict
dict with string keys given by first entry in tuples in
sequence klass.files_types, and values of type FileHolder,
where FileHolder objects have default values, other than
those given by `mapping`
'''
if mapping is None:
mapping = {}
file_map = {}
for key, ext in klass.files_types:
file_map[key] = FileHolder()
mapval = mapping.get(key, None)
if isinstance(mapval, basestring):
file_map[key].filename = mapval
elif hasattr(mapval, 'tell'):
file_map[key].fileobj = mapval
return file_map
load = from_filename
@classmethod
def instance_to_filename(klass, img, filename):
''' Save `img` in our own format, to name implied by `filename`
This is a class method
Parameters
----------
img : ``spatialimage`` instance
In fact, an object with the API of ``spatialimage`` - specifically
``dataobj``, ``affine``, ``header`` and ``extra``.
filename : str
Filename, implying name to which to save image.
'''
img = klass.from_image(img)
img.to_filename(filename)
@classmethod
def from_image(klass, img):
''' Class method to create new instance of own class from `img`
Parameters
----------
img : ``spatialimage`` instance
In fact, an object with the API of ``spatialimage`` -
specifically ``dataobj``, ``affine``, ``header`` and ``extra``.
Returns
-------
cimg : ``spatialimage`` instance
Image, of our own class
'''
return klass(img.dataobj,
img.affine,
klass.header_class.from_header(img.header),
extra=img.extra.copy())
def __getitem__(self):
''' No slicing or dictionary interface for images
'''
raise TypeError("Cannot slice image objects; consider slicing image "
"array data with `img.dataobj[slice]` or "
"`img.get_data()[slice]`")
|