This file is indexed.

/usr/lib/python3/dist-packages/nibabel/parrec.py is in python3-nibabel 2.0.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
# emacs: -*- mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
#   See COPYING file distributed along with the NiBabel package for the
#   copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Read images in PAR/REC format.

This is yet another MRI image format generated by Philips scanners. It is an
ASCII header (PAR) plus a binary blob (REC).

This implementation aims to read version 4 and 4.2 of this format. Other
versions could probably be supported, but we need example images to test
against.  If you want us to support another version, and have an image we can
add to the test suite, let us know.  You would make us very happy by submitting
a pull request.

###############
PAR file format
###############

The PAR format appears to have two sections:

General information
###################

This is a set of lines each giving one key : value pair, examples::

    .    EPI factor        <0,1=no EPI>     :   39
    .    Dynamic scan      <0=no 1=yes> ?   :   1
    .    Diffusion         <0=no 1=yes> ?   :   0

(from nibabe/tests/data/phantom_EPI_asc_CLEAR_2_1.PAR)

Image information
#################

There is a ``#`` prefixed list of fields under the heading "IMAGE INFORMATION
DEFINITION".  From the same file, here is the start of this list::

    # === IMAGE INFORMATION DEFINITION =============================================
    #  The rest of this file contains ONE line per image, this line contains the following information:
    #
    #  slice number                             (integer)
    #  echo number                              (integer)
    #  dynamic scan number                      (integer)

There follows a space separated table with values for these fields, each row
containing all the named values. Here's the first few lines from the example
file above::

    # === IMAGE INFORMATION ==========================================================
    #  sl ec  dyn ph ty    idx pix scan% rec size                (re)scale              window        angulation              offcentre        thick   gap   info      spacing     echo     dtime   ttime    diff  avg  flip    freq   RR-int  turbo delay b grad cont anis         diffusion       L.ty

    1   1    1  1 0 2     0  16    62   64   64     0.00000   1.29035 4.28404e-003  1070  1860 -13.26  -0.00  -0.00    2.51   -0.81   -8.69  6.000  2.000 0 1 0 2  3.750  3.750  30.00    0.00     0.00    0.00   0   90.00     0    0    0    39   0.0  1   1    8    0   0.000    0.000    0.000  1
    2   1    1  1 0 2     1  16    62   64   64     0.00000   1.29035 4.28404e-003  1122  1951 -13.26  -0.00  -0.00    2.51    6.98  -10.53  6.000  2.000 0 1 0 2  3.750  3.750  30.00    0.00     0.00    0.00   0   90.00     0    0    0    39   0.0  1   1    8    0   0.000    0.000    0.000  1
    3   1    1  1 0 2     2  16    62   64   64     0.00000   1.29035 4.28404e-003  1137  1977 -13.26  -0.00  -0.00    2.51   14.77  -12.36  6.000  2.000 0 1 0 2  3.750  3.750  30.00    0.00     0.00    0.00   0   90.00     0    0    0    39   0.0  1   1    8    0   0.000    0.000    0.000  1

###########
Orientation
###########

PAR files refer to orientations "ap", "fh" and "rl".

Nibabel's required affine output axes are RAS (left to Right, posterior to
Anterior, inferior to Superior). The correspondence of the PAR file's axes to
RAS axes is:

* ap = anterior -> posterior = negative A in RAS
* fh = foot -> head = S in RAS
* rl = right -> left = negative R in RAS

The orientation of the PAR file axes corresponds to DICOM's LPS coordinate
system (right to Left, anterior to Posterior, inferior to Superior), but in a
different order.

We call the PAR file's axis system "PSL" (Posterior, Superior, Left)

#########
Data type
#########

It seems that everyone agrees that Philips stores REC data in little-endian
format - see https://github.com/nipy/nibabel/issues/274

Philips XML header files, and some previous experience, suggest that the REC
data is always stored as 8 or 16 bit unsigned integers - see
https://github.com/nipy/nibabel/issues/275
"""
from __future__ import print_function, division

import warnings
import numpy as np
from copy import deepcopy
import re

from .keywordonly import kw_only_meth
from .spatialimages import SpatialImage, Header
from .eulerangles import euler2mat
from .volumeutils import Recoder, array_from_file, BinOpener
from .affines import from_matvec, dot_reduce, apply_affine
from .nifti1 import unit_codes
from .fileslice import fileslice, strided_scalar

# PSL to RAS affine
PSL_TO_RAS = np.array([[0, 0, -1, 0],  # L -> R
                       [-1, 0, 0, 0],  # P -> A
                       [0, 1, 0, 0],   # S -> S
                       [0, 0, 0, 1]])

# Acquisition (tra/sag/cor) to PSL axes
# These come from looking at transverse, sagittal, coronal datasets where we
# can see the LR, PA, SI orientation of the slice axes from the scanned object
ACQ_TO_PSL = dict(
    transverse=np.array([[0,  1,  0, 0],  # P
                         [0,  0,  1, 0],  # S
                         [1,  0,  0, 0],  # L
                         [0,  0,  0, 1]]),
    sagittal=np.diag([1, -1, -1, 1]),
    coronal=np.array([[0,  0,  1, 0],  # P
                      [0, -1,  0, 0],  # S
                      [1,  0,  0, 0],  # L
                      [0,  0,  0, 1]])
)

# General information dict definitions
# assign props to PAR header entries
# values are: (shortname[, dtype[, shape]])
_hdr_key_dict = {
    'Patient name': ('patient_name',),
    'Examination name': ('exam_name',),
    'Protocol name': ('protocol_name',),
    'Examination date/time': ('exam_date',),
    'Series Type': ('series_type',),
    'Acquisition nr': ('acq_nr', int),
    'Reconstruction nr': ('recon_nr', int),
    'Scan Duration [sec]': ('scan_duration', float),
    'Max. number of cardiac phases': ('max_cardiac_phases', int),
    'Max. number of echoes': ('max_echoes', int),
    'Max. number of slices/locations': ('max_slices', int),
    'Max. number of dynamics': ('max_dynamics', int),
    'Max. number of mixes': ('max_mixes', int),
    'Patient position': ('patient_position',),
    'Preparation direction': ('prep_direction',),
    'Technique': ('tech',),
    'Scan resolution  (x, y)': ('scan_resolution', int, (2,)),
    'Scan mode': ('scan_mode',),
    'Repetition time [ms]': ('repetition_time', float),
    'FOV (ap,fh,rl) [mm]': ('fov', float, (3,)),
    'Water Fat shift [pixels]': ('water_fat_shift', float),
    'Angulation midslice(ap,fh,rl)[degr]': ('angulation', float, (3,)),
    'Off Centre midslice(ap,fh,rl) [mm]': ('off_center', float, (3,)),
    'Flow compensation <0=no 1=yes> ?': ('flow_compensation', int),
    'Presaturation     <0=no 1=yes> ?': ('presaturation', int),
    'Phase encoding velocity [cm/sec]': ('phase_enc_velocity', float, (3,)),
    'MTC               <0=no 1=yes> ?': ('mtc', int),
    'SPIR              <0=no 1=yes> ?': ('spir', int),
    'EPI factor        <0,1=no EPI>': ('epi_factor', int),
    'Dynamic scan      <0=no 1=yes> ?': ('dyn_scan', int),
    'Diffusion         <0=no 1=yes> ?': ('diffusion', int),
    'Diffusion echo time [ms]': ('diffusion_echo_time', float),
    # Lines below added for par / rec versions > 4
    'Max. number of diffusion values': ('max_diffusion_values', int),
    'Max. number of gradient orients': ('max_gradient_orient', int),
    # Line below added for par / rec version > 4.1
    'Number of label types   <0=no ASL>': ('nr_label_types', int),
    }

# Image information as coded into a numpy structured array
# header items order per image definition line
image_def_dtds = {}
image_def_dtds['V4'] = [
    ('slice number', int),
    ('echo number', int,),
    ('dynamic scan number', int,),
    ('cardiac phase number', int,),
    ('image_type_mr', int,),
    ('scanning sequence', int,),
    ('index in REC file', int,),
    ('image pixel size', int,),
    ('scan percentage', int,),
    ('recon resolution', int, (2,)),
    ('rescale intercept', float),
    ('rescale slope', float),
    ('scale slope', float),
    # Window center, width recorded as integer but can be float
    ('window center', float,),
    ('window width', float,),
    ('image angulation', float, (3,)),
    ('image offcentre', float, (3,)),
    ('slice thickness', float),
    ('slice gap', float),
    ('image_display_orientation', int,),
    ('slice orientation', int,),
    ('fmri_status_indication', int,),
    ('image_type_ed_es', int,),
    ('pixel spacing', float, (2,)),
    ('echo_time', float),
    ('dyn_scan_begin_time', float),
    ('trigger_time', float),
    ('diffusion_b_factor', float),
    ('number of averages', int,),
    ('image_flip_angle', float),
    ('cardiac frequency', int,),
    ('minimum RR-interval', int,),
    ('maximum RR-interval', int,),
    ('TURBO factor', int,),
    ('Inversion delay', float)]

# Extra image def fields for 4.1 compared to 4
image_def_dtds['V4.1'] = image_def_dtds['V4'] + [
    ('diffusion b value number', int,),     # (imagekey!)
    ('gradient orientation number', int,),  # (imagekey!)
    ('contrast type', 'S30'),               # XXX might be too short?
    ('diffusion anisotropy type', 'S30'),   # XXX might be too short?
    ('diffusion', float, (3,)),
    ]

# Extra image def fields for 4.2 compared to 4.1
image_def_dtds['V4.2'] = image_def_dtds['V4.1'] + [
    ('label type', int,),                  # (imagekey!)
]

#: PAR header versions we claim to understand
supported_versions = list(image_def_dtds.keys())

#: Deprecated; please don't use
image_def_dtype = np.dtype(image_def_dtds['V4.2'])

#: slice orientation codes
slice_orientation_codes = Recoder((  # code, label
    (1, 'transverse'),
    (2, 'sagittal'),
    (3, 'coronal')), fields=('code', 'label'))


class PARRECError(Exception):
    """Exception for PAR/REC format related problems.

    To be raised whenever PAR/REC is not happy, or we are not happy with
    PAR/REC.
    """
    pass


# Value after colon may be absent
GEN_RE = re.compile(r".\s+(.*?)\s*:\s*(.*)")

def _split_header(fobj):
    """ Split header into `version`, `gen_dict`, `image_lines` """
    version = None
    gen_dict = {}
    image_lines = []
    # Small state-machine
    state = 'top-header'
    for line in fobj:
        line = line.strip()
        if line == '':
            continue
        if state == 'top-header':
            if not line.startswith('#'):
                state = 'general-info'
            elif 'image export tool' in line:
                version = line.split()[-1]
        if state == 'general-info':
            if not line.startswith('.'):
                state = 'comment-block'
            else:  # Let match raise error for unexpected field format
                key, value = GEN_RE.match(line).groups()
                gen_dict[key] = value
        if state == 'comment-block':
            if not line.startswith('#'):
                state = 'image-info'
        if state == 'image-info':
            if line.startswith('#'):
                break
            image_lines.append(line)
    return version, gen_dict, image_lines




def _process_gen_dict(gen_dict):
    """ Process `gen_dict` key, values into `general_info`
    """
    general_info = {}
    for key, value in gen_dict.items():
        # get props for this hdr field
        props = _hdr_key_dict[key]
        # turn values into meaningful dtype
        if len(props) == 2:
            # only dtype spec and no shape
            value = props[1](value)
        elif len(props) == 3:
            # array with dtype and shape
            value = np.fromstring(value, props[1], sep=' ')
            value.shape = props[2]
        general_info[props[0]] = value
    return general_info


def _process_image_lines(image_lines, version):
    """ Process image information definition lines according to `version`
    """
    # postproc image def props
    image_def_dtd = image_def_dtds[version]
    # create an array for all image defs
    image_defs = np.zeros(len(image_lines), dtype=image_def_dtd)
    # for every image definition
    for i, line in enumerate(image_lines):
        items = line.split()
        item_counter = 0
        # for all image properties we know about
        for props in image_def_dtd:
            if len(props) == 2:
                name, np_type = props
                value = items[item_counter]
                if not np.dtype(np_type).kind == 'S':
                    value = np_type(value)
                item_counter += 1
            elif len(props) == 3:
                name, np_type, shape = props
                nelements = np.prod(shape)
                value = items[item_counter:item_counter + nelements]
                value = [np_type(v) for v in value]
                item_counter += nelements
            image_defs[name][i] = value
    return image_defs


def vol_numbers(slice_nos):
    """ Calculate volume numbers inferred from slice numbers `slice_nos`

    The volume number for each slice is the number of times this slice has
    occurred previously in the `slice_nos` sequence

    Parameters
    ----------
    slice_nos : sequence
        Sequence of slice numbers, e.g. ``[1, 2, 3, 4, 1, 2, 3, 4]``.

    Returns
    -------
    vol_nos : list
        A list, the same length of `slice_nos` giving the volume number for
        each corresponding slice number.
    """
    counter = {}
    vol_nos = []
    for s_no in slice_nos:
        count = counter.setdefault(s_no, 0)
        vol_nos.append(count)
        counter[s_no] += 1
    return vol_nos


def vol_is_full(slice_nos, slice_max, slice_min=1):
    """ Vector with True for slices in complete volume, False otherwise

    Parameters
    ----------
    slice_nos : sequence
        Sequence of slice numbers, e.g. ``[1, 2, 3, 4, 1, 2, 3, 4]``.
    slice_max : int
        Highest slice number for a full slice set.  Slice set will be
        ``range(slice_min, slice_max+1)``.
    slice_min : int
        Lowest slice number for full slice set.

    Returns
    -------
    is_full : array
        Bool vector with True for slices in full volumes, False for slices in
        partial volumes.  A full volume is a volume with all slices in the
        ``slice set`` as defined above.

    Raises
    ------
    ValueError
        if any `slice_nos` value is outside slice set.
    """
    slice_set = set(range(slice_min, slice_max + 1))
    if not slice_set.issuperset(slice_nos):
        raise ValueError(
            'Slice numbers outside inclusive range {0} to {1}'.format(
                slice_min, slice_max))
    vol_nos = np.array(vol_numbers(slice_nos))
    slice_nos = np.asarray(slice_nos)
    is_full = np.ones(slice_nos.shape, dtype=bool)
    for vol_no in set(vol_nos):
        ours = vol_nos == vol_no
        if not set(slice_nos[ours]) == slice_set:
            is_full[ours] = False
    return is_full


def _truncation_checks(general_info, image_defs, permit_truncated):
    """ Check for presence of truncation in PAR file parameters

    Raise error if truncation present and `permit_truncated` is False.
    """
    def _err_or_warn(msg):
        if not permit_truncated:
            raise PARRECError(msg)
        warnings.warn(msg)

    def _chk_trunc(idef_name, gdef_max_name):
        if not gdef_max_name in general_info:
            return
        id_values = image_defs[idef_name + ' number']
        n_have = len(set(id_values))
        n_expected = general_info[gdef_max_name]
        if n_have != n_expected:
            _err_or_warn(
                "Header inconsistency: Found {0} {1} values, "
                "but expected {2}".format(n_have, idef_name, n_expected))

    _chk_trunc('slice', 'max_slices')
    _chk_trunc('echo', 'max_echoes')
    _chk_trunc('dynamic scan', 'max_dynamics')
    _chk_trunc('diffusion b value', 'max_diffusion_values')
    _chk_trunc('gradient orientation', 'max_gradient_orient')

    # Final check for partial volumes
    if not np.all(vol_is_full(image_defs['slice number'],
                              general_info['max_slices'])):
        _err_or_warn("Found one or more partial volume(s)")


def one_line(long_str):
    """ Make maybe mutli-line `long_str` into one long line """
    return ' '.join(line.strip() for line in long_str.splitlines())


def parse_PAR_header(fobj):
    """Parse a PAR header and aggregate all information into useful containers.

    Parameters
    ----------
    fobj : file-object
        The PAR header file object.

    Returns
    -------
    general_info : dict
        Contains all "General Information" from the header file
    image_info : ndarray
        Structured array with fields giving all "Image information" in the
        header
    """
    # single pass through the header
    version, gen_dict, image_lines = _split_header(fobj)
    if version not in supported_versions:
        warnings.warn(one_line(
            """ PAR/REC version '{0}' is currently not supported -- making an
            attempt to read nevertheless. Please email the NiBabel mailing
            list, if you are interested in adding support for this version.
            """.format(version)))
    general_info = _process_gen_dict(gen_dict)
    image_defs = _process_image_lines(image_lines, version)
    return general_info, image_defs


def _data_from_rec(rec_fileobj, in_shape, dtype, slice_indices, out_shape,
                   scalings=None, mmap=True):
    """Get data from REC file

    Parameters
    ----------
    rec_fileobj : file-like
        The file to process.
    in_shape : tuple
        The input shape inferred from the PAR file.
    dtype : dtype
        The datatype.
    slice_indices : array of int
        The indices used to re-index the resulting array properly.
    out_shape : tuple
        The output shape.
    scalings : {None, sequence}, optional
        Scalings to use. If not None, a length 2 sequence giving (``slope``,
        ``intercept``), where ``slope`` and ``intercept`` are arrays that can
        be broadcast to `out_shape`.
    mmap : {True, False, 'c', 'r', 'r+'}, optional
        `mmap` controls the use of numpy memory mapping for reading data.  If
        False, do not try numpy ``memmap`` for data array.  If one of {'c', 'r',
        'r+'}, try numpy memmap with ``mode=mmap``.  A `mmap` value of True
        gives the same behavior as ``mmap='c'``.  If `rec_fileobj` cannot be
        memory-mapped, ignore `mmap` value and read array from file.

    Returns
    -------
    data : array
        The scaled and sorted array.
    """
    rec_data = array_from_file(in_shape, dtype, rec_fileobj, mmap=mmap)
    rec_data = rec_data[..., slice_indices]
    rec_data = rec_data.reshape(out_shape, order='F')
    if scalings is not None:
        # Don't do in-place b/c this goes int16 -> float64
        rec_data = rec_data * scalings[0] + scalings[1]
    return rec_data


class PARRECArrayProxy(object):
    @kw_only_meth(2)
    def __init__(self, file_like, header, mmap=True, scaling='dv'):
        """ Initialize PARREC array proxy

        Parameters
        ----------
        file_like : file-like object
            Filename or object implementing ``read, seek, tell``
        header : PARRECHeader instance
            Implementing ``get_data_shape, get_data_dtype``,
            ``get_sorted_slice_indices``, ``get_data_scaling``,
            ``get_rec_shape``.
        mmap : {True, False, 'c', 'r'}, optional, keyword only
            `mmap` controls the use of numpy memory mapping for reading data.
            If False, do not try numpy ``memmap`` for data array.  If one of
            {'c', 'r'}, try numpy memmap with ``mode=mmap``.  A `mmap` value of
            True gives the same behavior as ``mmap='c'``.  If `file_like`
            cannot be memory-mapped, ignore `mmap` value and read array from
            file.
        scaling : {'fp', 'dv'}, optional, keyword only
            Type of scaling to use - see header ``get_data_scaling`` method.
        """
        if mmap not in (True, False, 'c', 'r'):
            raise ValueError("mmap should be one of {True, False, 'c', 'r'}")
        self.file_like = file_like
        # Copies of values needed to read array
        self._shape = header.get_data_shape()
        self._dtype = header.get_data_dtype()
        self._slice_indices = header.get_sorted_slice_indices()
        self._mmap=mmap
        self._slice_scaling = header.get_data_scaling(scaling)
        self._rec_shape = header.get_rec_shape()

    @property
    def shape(self):
        return self._shape

    @property
    def dtype(self):
        return self._dtype

    @property
    def is_proxy(self):
        return True

    def get_unscaled(self):
        with BinOpener(self.file_like) as fileobj:
            return _data_from_rec(fileobj, self._rec_shape, self._dtype,
                                  self._slice_indices, self._shape,
                                  mmap=self._mmap)

    def __array__(self):
        with BinOpener(self.file_like) as fileobj:
            return _data_from_rec(fileobj,
                                  self._rec_shape,
                                  self._dtype,
                                  self._slice_indices,
                                  self._shape,
                                  scalings=self._slice_scaling,
                                  mmap=self._mmap)

    def __getitem__(self, slicer):
        indices = self._slice_indices
        if indices[0] != 0 or np.any(np.diff(indices) != 1):
            # We can't load direct from REC file, use inefficient slicing
            return np.asanyarray(self)[slicer]
        # Slices all sequential from zero, can use fileslice
        # This gives more efficient volume by volume loading, for example
        with BinOpener(self.file_like) as fileobj:
            raw_data = fileslice(fileobj, slicer, self._shape, self._dtype, 0, 'F')
        # Broadcast scaling to shape of original data
        slopes, inters = self._slice_scaling
        fake_data = strided_scalar(self._shape)
        _, slopes, inters = np.broadcast_arrays(fake_data, slopes, inters)
        # Slice scaling to give output shape
        return raw_data * slopes[slicer] + inters[slicer]


class PARRECHeader(Header):
    """PAR/REC header"""
    def __init__(self, info, image_defs, permit_truncated=False):
        """
        Parameters
        ----------
        info : dict
            "General information" from the PAR file (as returned by
            `parse_PAR_header()`).
        image_defs : array
            Structured array with image definitions from the PAR file (as
            returned by `parse_PAR_header()`).
        permit_truncated : bool, optional
            If True, a warning is emitted instead of an error when a truncated
            recording is detected.
        """
        self.general_info = info.copy()
        self.image_defs = image_defs.copy()
        self.permit_truncated = permit_truncated
        _truncation_checks(info, image_defs, permit_truncated)
        # charge with basic properties to be able to use base class
        # functionality
        # dtype
        bitpix = self._get_unique_image_prop('image pixel size')
        if bitpix not in (8, 16):
            raise PARRECError('Only 8- and 16-bit data supported (not %s)'
                              'please report this to the nibabel developers'
                              % bitpix)
        # REC data always little endian
        dt = np.dtype('uint' + str(bitpix)).newbyteorder('<')
        Header.__init__(self,
                        data_dtype=dt,
                        shape=self._calc_data_shape(),
                        zooms=self._calc_zooms())

    @classmethod
    def from_header(klass, header=None):
        if header is None:
            raise PARRECError('Cannot create PARRECHeader from air.')
        if type(header) == klass:
            return header.copy()
        raise PARRECError('Cannot create PARREC header from '
                          'non-PARREC header.')

    @classmethod
    def from_fileobj(klass, fileobj, permit_truncated=False):
        info, image_defs = parse_PAR_header(fileobj)
        return klass(info, image_defs, permit_truncated)

    def copy(self):
        return PARRECHeader(deepcopy(self.general_info),
                            self.image_defs.copy(),
                            self.permit_truncated)

    def as_analyze_map(self):
        """Convert PAR parameters to NIFTI1 format"""
        # Entries in the dict correspond to the parameters found in
        # the NIfTI1 header, specifically in nifti1.py `header_dtd` defs.
        # Here we set the parameters we can to simplify PAR/REC
        # to NIfTI conversion.
        descr = ("%s;%s;%s;%s"
                 % (self.general_info['exam_name'],
                    self.general_info['patient_name'],
                    self.general_info['exam_date'].replace(' ', ''),
                    self.general_info['protocol_name']))[:80]  # max len
        is_fmri = (self.general_info['max_dynamics'] > 1)
        t = 'msec' if is_fmri else 'unknown'
        xyzt_units = unit_codes['mm'] + unit_codes[t]
        return dict(descr=descr, xyzt_units=xyzt_units)  # , pixdim=pixdim)

    def get_water_fat_shift(self):
        """Water fat shift, in pixels"""
        return self.general_info['water_fat_shift']

    def get_echo_train_length(self):
        """Echo train length of the recording"""
        return self.general_info['epi_factor']

    def get_q_vectors(self):
        """Get Q vectors from the data

        Returns
        -------
        q_vectors : None or array
            Array of q vectors (bvals * bvecs), or None if not a diffusion
            acquisition.
        """
        bvals, bvecs = self.get_bvals_bvecs()
        if bvals is None and bvecs is None:
            return None
        return bvecs * bvals[:, np.newaxis]

    def get_bvals_bvecs(self):
        """Get bvals and bvecs from data

        Returns
        -------
        b_vals : None or array
            Array of b values, shape (n_directions,), or None if not a
            diffusion acquisition.
        b_vectors : None or array
            Array of b vectors, shape (n_directions, 3), or None if not a
            diffusion acquisition.
        """
        if self.general_info['diffusion'] == 0:
            return None, None
        reorder = self.get_sorted_slice_indices()
        n_slices, n_vols = self.get_data_shape()[-2:]
        bvals = self.image_defs['diffusion_b_factor'][reorder].reshape(
            (n_slices, n_vols), order='F')
        # All bvals within volume should be the same
        assert not np.any(np.diff(bvals, axis=0))
        bvals = bvals[0]
        bvecs = self.image_defs['diffusion'][reorder].reshape(
            (n_slices, n_vols, 3), order='F')
        # All 3 values of bvecs should be same within volume
        assert not np.any(np.diff(bvecs, axis=0))
        bvecs = bvecs[0]
        # rotate bvecs to match stored image orientation
        permute_to_psl = ACQ_TO_PSL[self.get_slice_orientation()]
        bvecs = apply_affine(np.linalg.inv(permute_to_psl), bvecs)
        return bvals, bvecs

    def _get_unique_image_prop(self, name):
        """ Scan image definitions and return unique value of a property.

        * Get array for named field of ``self.image_defs``;
        * Check that all rows in the array are the same and raise error
          otherwise;
        * Return the row.

        Parameters
        ----------
        name : str
            Name of the property in ``self.image_defs``

        Returns
        -------
        unique_value : scalar or array

        Raises
        ------
        PARRECError
            if the rows of ``self.image_defs[name]`` do not all compare equal.
        """
        props = self.image_defs[name]
        if np.any(np.diff(props, axis=0)):
            raise PARRECError('Varying {0} in image sequence ({1}). This is '
                              'not suppported.'.format(name, props))
        return props[0]

    def get_voxel_size(self):
        """Returns the spatial extent of a voxel.

        Does not include the slice gap in the slice extent.

        This function is deprecated and we will remove it in future versions of
        nibabel.  Please use ``get_zooms`` instead.  If you need the slice
        thickness not including the slice gap, use ``self.image_defs['slice
        thickness']``.

        Returns
        -------
        vox_size: shape (3,) ndarray
        """
        warnings.warn('Please use "get_zooms" instead of "get_voxel_size"',
                      DeprecationWarning,
                      stacklevel=2)
        # slice orientation for the whole image series
        slice_thickness = self._get_unique_image_prop('slice thickness')
        voxsize_inplane = self._get_unique_image_prop('pixel spacing')
        voxsize = np.array((voxsize_inplane[0],
                            voxsize_inplane[1],
                            slice_thickness))
        return voxsize

    def get_data_offset(self):
        """ PAR header always has 0 data offset (into REC file) """
        return 0

    def set_data_offset(self, offset):
        """ PAR header always has 0 data offset (into REC file) """
        if offset != 0:
            raise PARRECError("PAR header assumes offset 0")

    def _calc_zooms(self):
        """Compute image zooms from header data.

        Spatial axis are first three.

        Returns
        -------
        zooms : array
            Length 3 array for 3D image, length 4 array for 4D image.

        Notes
        -----
        This routine called in ``__init__``, so may not be able to use
        some attributes available in the fully initalized object.
        """
        # slice orientation for the whole image series
        slice_gap = self._get_unique_image_prop('slice gap')
        # scaling per image axis
        n_dim = 4 if self._get_n_vols() > 1 else 3
        zooms = np.ones(n_dim)
        # spatial sizes are inplane X mm, inplane Y mm + inter slice gap
        zooms[:2] = self._get_unique_image_prop('pixel spacing')
        slice_thickness = self._get_unique_image_prop('slice thickness')
        zooms[2] = slice_thickness + slice_gap
        # If 4D dynamic scan, convert time from milliseconds to seconds
        if len(zooms) > 3 and self.general_info['dyn_scan']:
            zooms[3] = self.general_info['repetition_time'] / 1000.
        return zooms

    def get_affine(self, origin='scanner'):
        """Compute affine transformation into scanner space.

        The method only considers global rotation and offset settings in the
        header and ignores potentially deviating information in the image
        definitions.

        Parameters
        ----------
        origin : {'scanner', 'fov'}
            Transformation origin. By default the transformation is computed
            relative to the scanner's iso center. If 'fov' is requested the
            transformation origin will be the center of the field of view
            instead.

        Returns
        -------
        aff : (4, 4) array
            4x4 array, with output axis order corresponding to RAS or (x,y,z)
            or (lr, pa, fh).

        Notes
        -----
        Transformations appear to be specified in (ap, fh, rl) axes.  The
        orientation of data is recorded in the "slice orientation" field of the
        PAR header "General Information".

        We need to:

        * translate to coordinates in terms of the center of the FOV
        * apply voxel size scaling
        * reorder / flip the data to Philips' PSL axes
        * apply the rotations
        * apply any isocenter scaling offset if `origin` == "scanner"
        * reorder and flip to RAS axes
        """
        # shape, zooms in original data ordering (ijk ordering)
        ijk_shape = np.array(self.get_data_shape()[:3])
        to_center = from_matvec(np.eye(3), -(ijk_shape - 1) / 2.)
        zoomer = np.diag(list(self.get_zooms()[:3]) + [1])
        slice_orientation = self.get_slice_orientation()
        permute_to_psl = ACQ_TO_PSL.get(slice_orientation)
        if permute_to_psl is None:
            raise PARRECError(
                "Unknown slice orientation ({0}).".format(slice_orientation))
        # hdr has deg, we need radians
        # Order is [ap, fh, rl]
        ang_rad = self.general_info['angulation'] * np.pi / 180.0
        # euler2mat accepts z, y, x angles and does rotation around z, y, x
        # axes in that order. It's possible that PAR assumes rotation in a
        # different order, we still need some relevant data to test this
        rot = from_matvec(euler2mat(*ang_rad[::-1]), [0, 0, 0])
        # compose the PSL affine
        psl_aff = dot_reduce(rot, permute_to_psl, zoomer, to_center)
        if origin == 'scanner':
            # offset to scanner's isocenter (in ap, fh, rl)
            iso_offset = self.general_info['off_center']
            psl_aff[:3, 3] += iso_offset
        # Currently in PSL; apply PSL -> RAS
        return np.dot(PSL_TO_RAS, psl_aff)

    def _get_n_slices(self):
        """ Get number of slices for output data """
        return len(set(self.image_defs['slice number']))

    def _get_n_vols(self):
        """ Get number of volumes for output data """
        slice_nos = self.image_defs['slice number']
        vol_nos = vol_numbers(slice_nos)
        is_full = vol_is_full(slice_nos, self.general_info['max_slices'])
        return len(set(np.array(vol_nos)[is_full]))

    def _calc_data_shape(self):
        """ Calculate the output shape of the image data

        Returns length 3 tuple for 3D image, length 4 tuple for 4D.

        Returns
        -------
        n_inplaneX : int
            number of voxels in X direction.
        n_inplaneY : int
            number of voxels in Y direction.
        n_slices : int
            number of slices.
        n_vols : int
            number of volumes or absent for 3D image.

        Notes
        -----
        This routine called in ``__init__``, so may not be able to use
        some attributes available in the fully initalized object.
        """
        inplane_shape = tuple(self._get_unique_image_prop('recon resolution'))
        shape = inplane_shape + (self._get_n_slices(),)
        n_vols = self._get_n_vols()
        return shape + (n_vols,) if n_vols > 1 else shape

    def get_data_scaling(self, method="dv"):
        """Returns scaling slope and intercept.

        Parameters
        ----------
        method : {'fp', 'dv'}
          Scaling settings to be reported -- see notes below.

        Returns
        -------
        slope : array
            scaling slope
        intercept : array
            scaling intercept

        Notes
        -----
        The PAR header contains two different scaling settings: 'dv' (value on
        console) and 'fp' (floating point value). Here is how they are defined:

        PV: value in REC
        RS: rescale slope
        RI: rescale intercept
        SS: scale slope

        DV = PV * RS + RI
        FP = DV / (RS * SS)
        """
        # These will be 3D or 4D
        scale_slope = self.image_defs['scale slope']
        rescale_slope = self.image_defs['rescale slope']
        rescale_intercept = self.image_defs['rescale intercept']
        if method == 'dv':
            slope, intercept = rescale_slope, rescale_intercept
        elif method == 'fp':
            slope = 1.0 / scale_slope
            intercept = rescale_intercept / (rescale_slope * scale_slope)
        else:
            raise ValueError("Unknown scaling method '%s'." % method)
        reorder = self.get_sorted_slice_indices()
        slope = slope[reorder]
        intercept = intercept[reorder]
        shape = (1, 1) + self.get_data_shape()[2:]
        slope = slope.reshape(shape, order='F')
        intercept = intercept.reshape(shape, order='F')
        return slope, intercept

    def get_slice_orientation(self):
        """Returns the slice orientation label.

        Returns
        -------
        orientation : {'transverse', 'sagittal', 'coronal'}
        """
        lab = self._get_unique_image_prop('slice orientation')
        return slice_orientation_codes.label[lab]

    def get_rec_shape(self):
        inplane_shape = tuple(self._get_unique_image_prop('recon resolution'))
        return inplane_shape + (len(self.image_defs),)

    def get_sorted_slice_indices(self):
        """Indices to sort (and maybe discard) slices in REC file

        Returns list for indexing into the last (third) dimension of the REC
        data array, and (equivalently) the only dimension of
        ``self.image_defs``.

        If the recording is truncated, the returned indices take care of
        discarding any indices that are not meant to be used.
        """
        slice_nos = self.image_defs['slice number']
        is_full = vol_is_full(slice_nos, self.general_info['max_slices'])
        keys = (slice_nos, vol_numbers(slice_nos), np.logical_not(is_full))
        # Figure out how many we need to remove from the end, and trim them
        # Based on our sorting, they should always be last
        n_used = np.prod(self.get_data_shape()[2:])
        return np.lexsort(keys)[:n_used]


class PARRECImage(SpatialImage):
    """PAR/REC image"""
    header_class = PARRECHeader
    files_types = (('image', '.rec'), ('header', '.par'))

    ImageArrayProxy = PARRECArrayProxy

    @classmethod
    @kw_only_meth(1)
    def from_file_map(klass, file_map, mmap=True, permit_truncated=False,
                      scaling='dv'):
        """ Create PARREC image from file map `file_map`

        Parameters
        ----------
        file_map : dict
            dict with keys ``image, header`` and values being fileholder
            objects for the respective REC and PAR files.
        mmap : {True, False, 'c', 'r'}, optional, keyword only
            `mmap` controls the use of numpy memory mapping for reading image
            array data.  If False, do not try numpy ``memmap`` for data array.
            If one of {'c', 'r'}, try numpy memmap with ``mode=mmap``.  A `mmap`
            value of True gives the same behavior as ``mmap='c'``.  If image
            data file cannot be memory-mapped, ignore `mmap` value and read
            array from file.
        permit_truncated : {False, True}, optional, keyword-only
            If False, raise an error for an image where the header shows signs
            that fewer slices / volumes were recorded than were expected.
        scaling : {'dv', 'fp'}, optional, keyword-only
            Scaling method to apply to data (see
            :meth:`PARRECHeader.get_data_scaling`).
        """
        with file_map['header'].get_prepare_fileobj('rt') as hdr_fobj:
            hdr = klass.header_class.from_fileobj(
                hdr_fobj,
                permit_truncated=permit_truncated)
        rec_fobj = file_map['image'].get_prepare_fileobj()
        data = klass.ImageArrayProxy(rec_fobj, hdr,
                                     mmap=mmap, scaling=scaling)
        return klass(data, hdr.get_affine(), header=hdr, extra=None,
                     file_map=file_map)

    @classmethod
    @kw_only_meth(1)
    def from_filename(klass, filename, mmap=True, permit_truncated=False,
                      scaling='dv'):
        """ Create PARREC image from filename `filename`

        Parameters
        ----------
        filename : str
            Filename of "PAR" or "REC" file
        mmap : {True, False, 'c', 'r'}, optional, keyword only
            `mmap` controls the use of numpy memory mapping for reading image
            array data.  If False, do not try numpy ``memmap`` for data array.
            If one of {'c', 'r'}, try numpy memmap with ``mode=mmap``.  A `mmap`
            value of True gives the same behavior as ``mmap='c'``.  If image
            data file cannot be memory-mapped, ignore `mmap` value and read
            array from file.
        permit_truncated : {False, True}, optional, keyword-only
            If False, raise an error for an image where the header shows signs
            that fewer slices / volumes were recorded than were expected.
        scaling : {'dv', 'fp'}, optional, keyword-only
            Scaling method to apply to data (see
            :meth:`PARRECHeader.get_data_scaling`).
        """
        file_map = klass.filespec_to_file_map(filename)
        return klass.from_file_map(file_map,
                                   mmap=mmap,
                                   permit_truncated=permit_truncated,
                                   scaling=scaling)

    load = from_filename


load = PARRECImage.load