/usr/lib/python3/dist-packages/nibabel/minc1.py is in python3-nibabel 2.0.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 | # emacs: -*- mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the NiBabel package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
""" Read MINC1 format images """
from numbers import Integral
import numpy as np
from .externals.netcdf import netcdf_file
from .spatialimages import Header, SpatialImage
from .fileslice import canonical_slicers
from .deprecated import FutureWarningMixin
_dt_dict = {
('b','unsigned'): np.uint8,
('b','signed__'): np.int8,
('c','unsigned'): 'S1',
('h','unsigned'): np.uint16,
('h','signed__'): np.int16,
('i','unsigned'): np.uint32,
('i','signed__'): np.int32,
}
# See https://en.wikibooks.org/wiki/MINC/Reference/MINC1-programmers-guide#MINC_specific_convenience_functions
_default_dir_cos = {
'xspace': [1,0,0],
'yspace': [0,1,0],
'zspace': [0,0,1]}
class MincError(Exception):
""" Error when reading MINC files """
class Minc1File(object):
''' Class to wrap MINC1 format opened netcdf object
Although it has some of the same methods as a ``Header``, we use
this only when reading a MINC file, to pull out useful header
information, and for the method of reading the data out
'''
def __init__(self, mincfile):
self._mincfile = mincfile
self._image = mincfile.variables['image']
self._dim_names = self._image.dimensions
# The code below will error with vector_dimensions. See:
# https://en.wikibooks.org/wiki/MINC/Reference/MINC1-programmers-guide#An_Introduction_to_NetCDF
# https://en.wikibooks.org/wiki/MINC/Reference/MINC1-programmers-guide#Image_dimensions
self._dims = [self._mincfile.variables[s]
for s in self._dim_names]
# We don't currently support irregular spacing
# https://en.wikibooks.org/wiki/MINC/Reference/MINC1-programmers-guide#MINC_specific_convenience_functions
for dim in self._dims:
if dim.spacing != b'regular__':
raise ValueError('Irregular spacing not supported')
self._spatial_dims = [name for name in self._dim_names
if name.endswith('space')]
# the MINC standard appears to allow the following variables to
# be undefined.
# https://en.wikibooks.org/wiki/MINC/Reference/MINC1-programmers-guide#Image_conversion_variables
# It wasn't immediately obvious what the defaults were.
self._image_max = self._mincfile.variables['image-max']
self._image_min = self._mincfile.variables['image-min']
def _get_dimensions(self, var):
# Dimensions for a particular variable
# Differs for MINC1 and MINC2 - see:
# https://en.wikibooks.org/wiki/MINC/Reference/MINC2.0_File_Format_Reference#Associating_HDF5_dataspaces_with_MINC_dimensions
return var.dimensions
def get_data_dtype(self):
typecode = self._image.typecode()
if typecode == 'f':
dtt = np.dtype(np.float32)
elif typecode == 'd':
dtt = np.dtype(np.float64)
else:
signtype = self._image.signtype.decode('latin-1')
dtt = _dt_dict[(typecode, signtype)]
return np.dtype(dtt).newbyteorder('>')
def get_data_shape(self):
return self._image.data.shape
def get_zooms(self):
""" Get real-world sizes of voxels """
# zooms must be positive; but steps in MINC can be negative
return tuple(
[abs(float(dim.step)) for dim in self._dims])
def get_affine(self):
nspatial = len(self._spatial_dims)
rot_mat = np.eye(nspatial)
steps = np.zeros((nspatial,))
starts = np.zeros((nspatial,))
dim_names = list(self._dim_names) # for indexing in loop
for i, name in enumerate(self._spatial_dims):
dim = self._dims[dim_names.index(name)]
try:
dir_cos = dim.direction_cosines
except AttributeError:
dir_cos = _default_dir_cos[name]
rot_mat[:, i] = dir_cos
steps[i] = dim.step
starts[i] = dim.start
origin = np.dot(rot_mat, starts)
aff = np.eye(nspatial+1)
aff[:nspatial, :nspatial] = rot_mat * steps
aff[:nspatial, nspatial] = origin
return aff
def _get_valid_range(self):
''' Return valid range for image data
The valid range can come from the image 'valid_range' or
image 'valid_min' and 'valid_max', or, failing that, from the
data type range
'''
ddt = self.get_data_dtype()
info = np.iinfo(ddt.type)
try:
valid_range = self._image.valid_range
except AttributeError:
try:
valid_range = [self._image.valid_min,
self._image.valid_max]
except AttributeError:
valid_range = [info.min, info.max]
if valid_range[0] < info.min or valid_range[1] > info.max:
raise ValueError('Valid range outside input '
'data type range')
return np.asarray(valid_range, dtype=np.float)
def _get_scalar(self, var):
""" Get scalar value from NetCDF scalar """
return var.getValue()
def _get_array(self, var):
""" Get array from NetCDF array """
return var.data
def _normalize(self, data, sliceobj=()):
""" Apply scaling to image data `data` already sliced with `sliceobj`
https://en.wikibooks.org/wiki/MINC/Reference/MINC1-programmers-guide#Pixel_values_and_real_values
MINC normalization uses "image-min" and "image-max" variables to
map the data from the valid range of the image to the range
specified by "image-min" and "image-max".
The "image-max" and "image-min" are variables that describe the
"max" and "min" of image over some dimensions of "image".
The usual case is that "image" has dimensions ["zspace", "yspace",
"xspace"] and "image-max" has dimensions ["zspace"], but there can be up
to two dimensions for over which scaling is specified.
Parameters
----------
data : ndarray
data after applying `sliceobj` slicing to full image
sliceobj : tuple, optional
slice definition. If not specified, assume no slicing has been
applied to `data`
"""
ddt = self.get_data_dtype()
if ddt.type in np.sctypes['float']:
return data
image_max = self._image_max
image_min = self._image_min
mx_dims = self._get_dimensions(image_max)
mn_dims = self._get_dimensions(image_min)
if mx_dims != mn_dims:
raise MincError('"image-max" and "image-min" do not '
'have the same dimensions')
nscales = len(mx_dims)
if nscales > 2:
raise MincError('More than two scaling dimensions')
if mx_dims != self._dim_names[:nscales]:
raise MincError('image-max and image dimensions '
'do not match')
dmin, dmax = self._get_valid_range()
out_data = np.clip(data, dmin, dmax)
if nscales == 0: # scalar values
imax = self._get_scalar(image_max)
imin = self._get_scalar(image_min)
else: # 1D or 2D array of scaling values
# We need to get the correct values from image-max and image-min to
# do the scaling.
shape = self.get_data_shape()
sliceobj = canonical_slicers(sliceobj, shape)
# Indices into sliceobj referring to image axes
ax_inds = [i for i, obj in enumerate(sliceobj) if not obj is None]
assert len(ax_inds) == len(shape)
# Slice imax, imin using same slicer as for data
nscales_ax = ax_inds[nscales]
i_slicer = sliceobj[:nscales_ax]
# Fill slicer to broadcast against sliced data; add length 1 axis
# for each axis except int axes (which are dropped by slicing)
broad_part = tuple(None for s in sliceobj[ax_inds[nscales]:]
if not isinstance(s, Integral))
i_slicer += broad_part
imax = self._get_array(image_max)[i_slicer]
imin = self._get_array(image_min)[i_slicer]
slope = (imax-imin) / (dmax-dmin)
inter = (imin - dmin * slope)
out_data *= slope
out_data += inter
return out_data
def get_scaled_data(self, sliceobj=()):
""" Return scaled data for slice definition `sliceobj`
Parameters
----------
sliceobj : tuple, optional
slice definition. If not specified, return whole array
Returns
-------
scaled_arr : array
array from minc file with scaling applied
"""
if sliceobj == ():
raw_data = self._image.data
else:
raw_data = self._image.data[sliceobj]
dtype = self.get_data_dtype()
data = np.asarray(raw_data).view(dtype)
return self._normalize(data, sliceobj)
class MincImageArrayProxy(object):
''' MINC implementation of array proxy protocol
The array proxy allows us to freeze the passed fileobj and
header such that it returns the expected data array.
'''
def __init__(self, minc_file):
self.minc_file = minc_file
self._shape = minc_file.get_data_shape()
@property
def shape(self):
return self._shape
@property
def is_proxy(self):
return True
def __array__(self):
''' Read of data from file '''
return self.minc_file.get_scaled_data()
def __getitem__(self, sliceobj):
""" Read slice `sliceobj` of data from file """
return self.minc_file.get_scaled_data(sliceobj)
class MincHeader(Header):
""" Class to contain header for MINC formats
"""
# We don't use the data layout - this just in case we do later
data_layout = 'C'
def data_to_fileobj(self, data, fileobj, rescale=True):
""" See Header class for an implementation we can't use """
raise NotImplementedError
def data_from_fileobj(self, fileobj):
""" See Header class for an implementation we can't use """
raise NotImplementedError
class Minc1Image(SpatialImage):
''' Class for MINC1 format images
The MINC1 image class uses the default header type, rather than a specific
MINC header type - and reads the relevant information from the MINC file on
load.
'''
header_class = MincHeader
files_types = (('image', '.mnc'),)
_compressed_exts = ('.gz', '.bz2')
ImageArrayProxy = MincImageArrayProxy
@classmethod
def from_file_map(klass, file_map):
with file_map['image'].get_prepare_fileobj() as fobj:
minc_file = Minc1File(netcdf_file(fobj))
affine = minc_file.get_affine()
if affine.shape != (4, 4):
raise MincError('Image does not have 3 spatial dimensions')
data_dtype = minc_file.get_data_dtype()
shape = minc_file.get_data_shape()
zooms = minc_file.get_zooms()
header = klass.header_class(data_dtype, shape, zooms)
data = klass.ImageArrayProxy(minc_file)
return klass(data, affine, header, extra=None, file_map=file_map)
load = Minc1Image.load
# Backwards compatibility
class MincFile(FutureWarningMixin, Minc1File):
""" Deprecated alternative name for Minc1File
"""
warn_message = 'MincFile is deprecated; please use Minc1File instead'
class MincImage(FutureWarningMixin, Minc1Image):
""" Deprecated alternative name for Minc1Image
"""
warn_message = 'MincImage is deprecated; please use Minc1Image instead'
|