This file is indexed.

/usr/lib/python3/dist-packages/nibabel/eulerangles.py is in python3-nibabel 2.0.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
# emacs: -*- mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
#   See COPYING file distributed along with the NiBabel package for the
#   copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
''' Module implementing Euler angle rotations and their conversions

See:

* https://en.wikipedia.org/wiki/Rotation_matrix
* https://en.wikipedia.org/wiki/Euler_angles
* http://mathworld.wolfram.com/EulerAngles.html

See also: *Representing Attitude with Euler Angles and Quaternions: A
Reference* (2006) by James Diebel. A cached PDF link last found here:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.110.5134

Euler's rotation theorem tells us that any rotation in 3D can be
described by 3 angles.  Let's call the 3 angles the *Euler angle vector*
and call the angles in the vector :math:`alpha`, :math:`beta` and
:math:`gamma`.  The vector is [ :math:`alpha`,
:math:`beta`. :math:`gamma` ] and, in this description, the order of the
parameters specifies the order in which the rotations occur (so the
rotation corresponding to :math:`alpha` is applied first).

In order to specify the meaning of an *Euler angle vector* we need to
specify the axes around which each of the rotations corresponding to
:math:`alpha`, :math:`beta` and :math:`gamma` will occur.

There are therefore three axes for the rotations :math:`alpha`,
:math:`beta` and :math:`gamma`; let's call them :math:`i` :math:`j`,
:math:`k`.

Let us express the rotation :math:`alpha` around axis `i` as a 3 by 3
rotation matrix `A`.  Similarly :math:`beta` around `j` becomes 3 x 3
matrix `B` and :math:`gamma` around `k` becomes matrix `G`.  Then the
whole rotation expressed by the Euler angle vector [ :math:`alpha`,
:math:`beta`. :math:`gamma` ], `R` is given by::

   R = np.dot(G, np.dot(B, A))

See http://mathworld.wolfram.com/EulerAngles.html

The order :math:`G B A` expresses the fact that the rotations are
performed in the order of the vector (:math:`alpha` around axis `i` =
`A` first).

To convert a given Euler angle vector to a meaningful rotation, and a
rotation matrix, we need to define:

* the axes `i`, `j`, `k`
* whether a rotation matrix should be applied on the left of a vector to
  be transformed (vectors are column vectors) or on the right (vectors
  are row vectors).
* whether the rotations move the axes as they are applied (intrinsic
  rotations) - compared the situation where the axes stay fixed and the
  vectors move within the axis frame (extrinsic)
* the handedness of the coordinate system

See: https://en.wikipedia.org/wiki/Rotation_matrix#Ambiguities

We are using the following conventions:

* axes `i`, `j`, `k` are the `z`, `y`, and `x` axes respectively.  Thus
  an Euler angle vector [ :math:`alpha`, :math:`beta`. :math:`gamma` ]
  in our convention implies a :math:`alpha` radian rotation around the
  `z` axis, followed by a :math:`beta` rotation around the `y` axis,
  followed by a :math:`gamma` rotation around the `x` axis.
* the rotation matrix applies on the left, to column vectors on the
  right, so if `R` is the rotation matrix, and `v` is a 3 x N matrix
  with N column vectors, the transformed vector set `vdash` is given by
  ``vdash = np.dot(R, v)``.
* extrinsic rotations - the axes are fixed, and do not move with the
  rotations.
* a right-handed coordinate system

The convention of rotation around ``z``, followed by rotation around
``y``, followed by rotation around ``x``, is known (confusingly) as
"xyz", pitch-roll-yaw, Cardan angles, or Tait-Bryan angles.
'''

import math

from .externals.six.moves import reduce

import numpy as np


_FLOAT_EPS_4 = np.finfo(float).eps * 4.0


def euler2mat(z=0, y=0, x=0):
    ''' Return matrix for rotations around z, y and x axes

    Uses the z, then y, then x convention above

    Parameters
    ----------
    z : scalar
       Rotation angle in radians around z-axis (performed first)
    y : scalar
       Rotation angle in radians around y-axis
    x : scalar
       Rotation angle in radians around x-axis (performed last)

    Returns
    -------
    M : array shape (3,3)
       Rotation matrix giving same rotation as for given angles

    Examples
    --------
    >>> zrot = 1.3 # radians
    >>> yrot = -0.1
    >>> xrot = 0.2
    >>> M = euler2mat(zrot, yrot, xrot)
    >>> M.shape == (3, 3)
    True

    The output rotation matrix is equal to the composition of the
    individual rotations

    >>> M1 = euler2mat(zrot)
    >>> M2 = euler2mat(0, yrot)
    >>> M3 = euler2mat(0, 0, xrot)
    >>> composed_M = np.dot(M3, np.dot(M2, M1))
    >>> np.allclose(M, composed_M)
    True

    You can specify rotations by named arguments

    >>> np.all(M3 == euler2mat(x=xrot))
    True

    When applying M to a vector, the vector should column vector to the
    right of M.  If the right hand side is a 2D array rather than a
    vector, then each column of the 2D array represents a vector.

    >>> vec = np.array([1, 0, 0]).reshape((3,1))
    >>> v2 = np.dot(M, vec)
    >>> vecs = np.array([[1, 0, 0],[0, 1, 0]]).T # giving 3x2 array
    >>> vecs2 = np.dot(M, vecs)

    Rotations are counter-clockwise.

    >>> zred = np.dot(euler2mat(z=np.pi/2), np.eye(3))
    >>> np.allclose(zred, [[0, -1, 0],[1, 0, 0], [0, 0, 1]])
    True
    >>> yred = np.dot(euler2mat(y=np.pi/2), np.eye(3))
    >>> np.allclose(yred, [[0, 0, 1],[0, 1, 0], [-1, 0, 0]])
    True
    >>> xred = np.dot(euler2mat(x=np.pi/2), np.eye(3))
    >>> np.allclose(xred, [[1, 0, 0],[0, 0, -1], [0, 1, 0]])
    True

    Notes
    -----
    The direction of rotation is given by the right-hand rule (orient
    the thumb of the right hand along the axis around which the rotation
    occurs, with the end of the thumb at the positive end of the axis;
    curl your fingers; the direction your fingers curl is the direction
    of rotation).  Therefore, the rotations are counterclockwise if
    looking along the axis of rotation from positive to negative.
    '''
    Ms = []
    if z:
        cosz = math.cos(z)
        sinz = math.sin(z)
        Ms.append(np.array(
                [[cosz, -sinz, 0],
                 [sinz, cosz, 0],
                 [0, 0, 1]]))
    if y:
        cosy = math.cos(y)
        siny = math.sin(y)
        Ms.append(np.array(
                [[cosy, 0, siny],
                 [0, 1, 0],
                 [-siny, 0, cosy]]))
    if x:
        cosx = math.cos(x)
        sinx = math.sin(x)
        Ms.append(np.array(
                [[1, 0, 0],
                 [0, cosx, -sinx],
                 [0, sinx, cosx]]))
    if Ms:
        return reduce(np.dot, Ms[::-1])
    return np.eye(3)


def mat2euler(M, cy_thresh=None):
    ''' Discover Euler angle vector from 3x3 matrix

    Uses the conventions above.

    Parameters
    ----------
    M : array-like, shape (3,3)
    cy_thresh : None or scalar, optional
       threshold below which to give up on straightforward arctan for
       estimating x rotation.  If None (default), estimate from
       precision of input.

    Returns
    -------
    z : scalar
    y : scalar
    x : scalar
       Rotations in radians around z, y, x axes, respectively

    Notes
    -----
    If there was no numerical error, the routine could be derived using
    Sympy expression for z then y then x rotation matrix, which is::

      [                       cos(y)*cos(z),                       -cos(y)*sin(z),         sin(y)],
      [cos(x)*sin(z) + cos(z)*sin(x)*sin(y), cos(x)*cos(z) - sin(x)*sin(y)*sin(z), -cos(y)*sin(x)],
      [sin(x)*sin(z) - cos(x)*cos(z)*sin(y), cos(z)*sin(x) + cos(x)*sin(y)*sin(z),  cos(x)*cos(y)]

    with the obvious derivations for z, y, and x

       z = atan2(-r12, r11)
       y = asin(r13)
       x = atan2(-r23, r33)

    Problems arise when cos(y) is close to zero, because both of::

       z = atan2(cos(y)*sin(z), cos(y)*cos(z))
       x = atan2(cos(y)*sin(x), cos(x)*cos(y))

    will be close to atan2(0, 0), and highly unstable.

    The ``cy`` fix for numerical instability below is from: *Graphics
    Gems IV*, Paul Heckbert (editor), Academic Press, 1994, ISBN:
    0123361559.  Specifically it comes from EulerAngles.c by Ken
    Shoemake, and deals with the case where cos(y) is close to zero:

    See: http://www.graphicsgems.org/

    The code appears to be licensed (from the website) as "can be used
    without restrictions".
    '''
    M = np.asarray(M)
    if cy_thresh is None:
        try:
            cy_thresh = np.finfo(M.dtype).eps * 4
        except ValueError:
            cy_thresh = _FLOAT_EPS_4
    r11, r12, r13, r21, r22, r23, r31, r32, r33 = M.flat
    # cy: sqrt((cos(y)*cos(z))**2 + (cos(x)*cos(y))**2)
    cy = math.sqrt(r33*r33 + r23*r23)
    if cy > cy_thresh: # cos(y) not close to zero, standard form
        z = math.atan2(-r12,  r11) # atan2(cos(y)*sin(z), cos(y)*cos(z))
        y = math.atan2(r13,  cy) # atan2(sin(y), cy)
        x = math.atan2(-r23, r33) # atan2(cos(y)*sin(x), cos(x)*cos(y))
    else: # cos(y) (close to) zero, so x -> 0.0 (see above)
        # so r21 -> sin(z), r22 -> cos(z) and
        z = math.atan2(r21,  r22)
        y = math.atan2(r13,  cy) # atan2(sin(y), cy)
        x = 0.0
    return z, y, x


def euler2quat(z=0, y=0, x=0):
    ''' Return quaternion corresponding to these Euler angles

    Uses the z, then y, then x convention above

    Parameters
    ----------
    z : scalar
       Rotation angle in radians around z-axis (performed first)
    y : scalar
       Rotation angle in radians around y-axis
    x : scalar
       Rotation angle in radians around x-axis (performed last)

    Returns
    -------
    quat : array shape (4,)
       Quaternion in w, x, y z (real, then vector) format

    Notes
    -----
    We can derive this formula in Sympy using:

    1. Formula giving quaternion corresponding to rotation of theta radians
       about arbitrary axis:
       http://mathworld.wolfram.com/EulerParameters.html
    2. Generated formulae from 1.) for quaternions corresponding to
       theta radians rotations about ``x, y, z`` axes
    3. Apply quaternion multiplication formula -
       https://en.wikipedia.org/wiki/Quaternions#Hamilton_product - to
       formulae from 2.) to give formula for combined rotations.
    '''
    z = z/2.0
    y = y/2.0
    x = x/2.0
    cz = math.cos(z)
    sz = math.sin(z)
    cy = math.cos(y)
    sy = math.sin(y)
    cx = math.cos(x)
    sx = math.sin(x)
    return np.array([
             cx*cy*cz - sx*sy*sz,
             cx*sy*sz + cy*cz*sx,
             cx*cz*sy - sx*cy*sz,
             cx*cy*sz + sx*cz*sy])


def quat2euler(q):
    ''' Return Euler angles corresponding to quaternion `q`

    Parameters
    ----------
    q : 4 element sequence
       w, x, y, z of quaternion

    Returns
    -------
    z : scalar
       Rotation angle in radians around z-axis (performed first)
    y : scalar
       Rotation angle in radians around y-axis
    x : scalar
       Rotation angle in radians around x-axis (performed last)

    Notes
    -----
    It's possible to reduce the amount of calculation a little, by
    combining parts of the ``quat2mat`` and ``mat2euler`` functions, but
    the reduction in computation is small, and the code repetition is
    large.
    '''
    # delayed import to avoid cyclic dependencies
    from . import quaternions as nq
    return mat2euler(nq.quat2mat(q))


def euler2angle_axis(z=0, y=0, x=0):
    ''' Return angle, axis corresponding to these Euler angles

    Uses the z, then y, then x convention above

    Parameters
    ----------
    z : scalar
       Rotation angle in radians around z-axis (performed first)
    y : scalar
       Rotation angle in radians around y-axis
    x : scalar
       Rotation angle in radians around x-axis (performed last)

    Returns
    -------
    theta : scalar
       angle of rotation
    vector : array shape (3,)
       axis around which rotation occurs

    Examples
    --------
    >>> theta, vec = euler2angle_axis(0, 1.5, 0)
    >>> print(theta)
    1.5
    >>> np.allclose(vec, [0, 1, 0])
    True
    '''
    # delayed import to avoid cyclic dependencies
    from . import quaternions as nq
    return nq.quat2angle_axis(euler2quat(z, y, x))


def angle_axis2euler(theta, vector, is_normalized=False):
    ''' Convert angle, axis pair to Euler angles

    Parameters
    ----------
    theta : scalar
       angle of rotation
    vector : 3 element sequence
       vector specifying axis for rotation.
    is_normalized : bool, optional
       True if vector is already normalized (has norm of 1).  Default
       False

    Returns
    -------
    z : scalar
    y : scalar
    x : scalar
       Rotations in radians around z, y, x axes, respectively

    Examples
    --------
    >>> z, y, x = angle_axis2euler(0, [1, 0, 0])
    >>> np.allclose((z, y, x), 0)
    True

    Notes
    -----
    It's possible to reduce the amount of calculation a little, by
    combining parts of the ``angle_axis2mat`` and ``mat2euler``
    functions, but the reduction in computation is small, and the code
    repetition is large.
    '''
    # delayed import to avoid cyclic dependencies
    from . import quaternions as nq
    M = nq.angle_axis2mat(theta, vector, is_normalized)
    return mat2euler(M)