This file is indexed.

/usr/lib/python3/dist-packages/nibabel/analyze.py is in python3-nibabel 2.0.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
# emacs: -*- mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
#   See COPYING file distributed along with the NiBabel package for the
#   copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
''' Read / write access to the basic Mayo Analyze format

===========================
 The Analyze header format
===========================

This is a binary header format and inherits from ``WrapStruct``

Apart from the attributes and methods of WrapStruct:

Class attributes are::

    .default_x_flip

with methods::

    .get/set_data_shape
    .get/set_data_dtype
    .get/set_zooms
    .get/set_data_offset
    .get_base_affine()
    .get_best_affine()
    .data_to_fileobj
    .data_from_fileobj

and class methods::

    .from_header(hdr)

More sophisticated headers can add more methods and attributes.

Notes
-----

This - basic - analyze header cannot encode full affines (only
diagonal affines), and cannot do integer scaling.

The inability to store affines means that we have to guess what orientation the
image has.  Most Analyze images are stored on disk in (fastest-changing to
slowest-changing) R->L, P->A and I->S order.  That is, the first voxel is the
rightmost, most posterior and most inferior voxel location in the image, and the
next voxel is one voxel towards the left of the image.

Most people refer to this disk storage format as 'radiological', on the basis
that, if you load up the data as an array ``img_arr`` where the first axis is
the fastest changing, then take a slice in the I->S axis - ``img_arr[:,:,10]`` -
then the right part of the brain will be on the left of your displayed slice.
Radiologists like looking at images where the left of the brain is on the right
side of the image.

Conversely, if the image has the voxels stored with the left voxels first -
L->R, P->A, I->S, then this would be 'neurological' format.  Neurologists like
looking at images where the left side of the brain is on the left of the image.

When we are guessing at an affine for Analyze, this translates to the problem of
whether the affine should consider proceeding within the data down an X line as
being from left to right, or right to left.

By default we assume that the image is stored in R->L format.  We encode this
choice in the ``default_x_flip`` flag that can be True or False.  True means
assume radiological.

If the image is 3D, and the X, Y and Z zooms are x, y, and z, then::

    if default_x_flip is True::
        affine = np.diag((-x,y,z,1))
    else:
        affine = np.diag((x,y,z,1))

In our implementation, there is no way of saving this assumed flip into the
header.  One way of doing this, that we have not used, is to allow negative
zooms, in particular, negative X zooms.  We did not do this because the image
can be loaded with and without a default flip, so the saved zoom will not
constrain the affine.
'''

import numpy as np

from .volumeutils import (native_code, swapped_code, make_dt_codes,
                          shape_zoom_affine, array_from_file, seek_tell,
                          apply_read_scaling)
from .arraywriters import (make_array_writer, get_slope_inter, WriterError,
                           ArrayWriter)
from .wrapstruct import LabeledWrapStruct
from .spatialimages import (HeaderDataError, HeaderTypeError,
                            SpatialImage)
from .fileholders import copy_file_map
from .batteryrunners import Report
from .arrayproxy import ArrayProxy
from .keywordonly import kw_only_meth

# Sub-parts of standard analyze header from
# Mayo dbh.h file
header_key_dtd = [
    ('sizeof_hdr', 'i4'),
    ('data_type', 'S10'),
    ('db_name', 'S18'),
    ('extents', 'i4'),
    ('session_error', 'i2'),
    ('regular', 'S1'),
    ('hkey_un0', 'S1')
    ]
image_dimension_dtd = [
    ('dim', 'i2', (8,)),
    ('vox_units', 'S4'),
    ('cal_units', 'S8'),
    ('unused1', 'i2'),
    ('datatype', 'i2'),
    ('bitpix', 'i2'),
    ('dim_un0', 'i2'),
    ('pixdim', 'f4', (8,)),
    ('vox_offset', 'f4'),
    ('funused1', 'f4'),
    ('funused2', 'f4'),
    ('funused3', 'f4'),
    ('cal_max', 'f4'),
    ('cal_min', 'f4'),
    ('compressed', 'i4'),
    ('verified', 'i4'),
    ('glmax', 'i4'),
    ('glmin', 'i4')
    ]
data_history_dtd = [
    ('descrip', 'S80'),
    ('aux_file', 'S24'),
    ('orient', 'S1'),
    ('originator', 'S10'),
    ('generated', 'S10'),
    ('scannum', 'S10'),
    ('patient_id', 'S10'),
    ('exp_date', 'S10'),
    ('exp_time', 'S10'),
    ('hist_un0', 'S3'),
    ('views', 'i4'),
    ('vols_added', 'i4'),
    ('start_field', 'i4'),
    ('field_skip', 'i4'),
    ('omax', 'i4'),
    ('omin', 'i4'),
    ('smax', 'i4'),
    ('smin', 'i4')
    ]

# Full header numpy dtype combined across sub-fields
header_dtype = np.dtype(header_key_dtd + image_dimension_dtd +
                        data_history_dtd)

_dtdefs = ( # code, conversion function, equivalent dtype, aliases
    (0, 'none', np.void),
    (1, 'binary', np.void), # 1 bit per voxel, needs thought
    (2, 'uint8', np.uint8),
    (4, 'int16', np.int16),
    (8, 'int32', np.int32),
    (16, 'float32', np.float32),
    (32, 'complex64', np.complex64), # numpy complex format?
    (64, 'float64', np.float64),
    (128, 'RGB', np.dtype([('R','u1'),
                  ('G', 'u1'),
                  ('B', 'u1')])),
    (255, 'all', np.void))

# Make full code alias bank, including dtype column
data_type_codes = make_dt_codes(_dtdefs)


class AnalyzeHeader(LabeledWrapStruct):
    ''' Class for basic analyze header

    Implements zoom-only setting of affine transform, and no image
    scaling
    '''
    # Copies of module-level definitions
    template_dtype = header_dtype
    _data_type_codes = data_type_codes
    # fields with recoders for their values
    _field_recoders = {'datatype': data_type_codes}
    # default x flip
    default_x_flip = True

    # data scaling capabilities
    has_data_slope = False
    has_data_intercept = False

    sizeof_hdr = 348

    def __init__(self,
                 binaryblock=None,
                 endianness=None,
                 check=True):
        ''' Initialize header from binary data block

        Parameters
        ----------
        binaryblock : {None, string} optional
            binary block to set into header.  By default, None, in
            which case we insert the default empty header block
        endianness : {None, '<','>', other endian code} string, optional
            endianness of the binaryblock.  If None, guess endianness
            from the data.
        check : bool, optional
            Whether to check content of header in initialization.
            Default is True.

        Examples
        --------
        >>> hdr1 = AnalyzeHeader() # an empty header
        >>> hdr1.endianness == native_code
        True
        >>> hdr1.get_data_shape()
        (0,)
        >>> hdr1.set_data_shape((1,2,3)) # now with some content
        >>> hdr1.get_data_shape()
        (1, 2, 3)

        We can set the binary block directly via this initialization.
        Here we get it from the header we have just made

        >>> binblock2 = hdr1.binaryblock
        >>> hdr2 = AnalyzeHeader(binblock2)
        >>> hdr2.get_data_shape()
        (1, 2, 3)

        Empty headers are native endian by default

        >>> hdr2.endianness == native_code
        True

        You can pass valid opposite endian headers with the
        ``endianness`` parameter. Even empty headers can have
        endianness

        >>> hdr3 = AnalyzeHeader(endianness=swapped_code)
        >>> hdr3.endianness == swapped_code
        True

        If you do not pass an endianness, and you pass some data, we
        will try to guess from the passed data.

        >>> binblock3 = hdr3.binaryblock
        >>> hdr4 = AnalyzeHeader(binblock3)
        >>> hdr4.endianness == swapped_code
        True
        '''
        super(AnalyzeHeader, self).__init__(binaryblock, endianness, check)

    @classmethod
    def guessed_endian(klass, hdr):
        ''' Guess intended endianness from mapping-like ``hdr``

        Parameters
        ----------
        hdr : mapping-like
           hdr for which to guess endianness

        Returns
        -------
        endianness : {'<', '>'}
           Guessed endianness of header

        Examples
        --------
        Zeros header, no information, guess native

        >>> hdr = AnalyzeHeader()
        >>> hdr_data = np.zeros((), dtype=header_dtype)
        >>> AnalyzeHeader.guessed_endian(hdr_data) == native_code
        True

        A valid native header is guessed native

        >>> hdr_data = hdr.structarr.copy()
        >>> AnalyzeHeader.guessed_endian(hdr_data) == native_code
        True

        And, when swapped, is guessed as swapped

        >>> sw_hdr_data = hdr_data.byteswap(swapped_code)
        >>> AnalyzeHeader.guessed_endian(sw_hdr_data) == swapped_code
        True

        The algorithm is as follows:

        First, look at the first value in the ``dim`` field; this
        should be between 0 and 7.  If it is between 1 and 7, then
        this must be a native endian header.

        >>> hdr_data = np.zeros((), dtype=header_dtype) # blank binary data
        >>> hdr_data['dim'][0] = 1
        >>> AnalyzeHeader.guessed_endian(hdr_data) == native_code
        True
        >>> hdr_data['dim'][0] = 6
        >>> AnalyzeHeader.guessed_endian(hdr_data) == native_code
        True
        >>> hdr_data['dim'][0] = -1
        >>> AnalyzeHeader.guessed_endian(hdr_data) == swapped_code
        True

        If the first ``dim`` value is zeros, we need a tie breaker.
        In that case we check the ``sizeof_hdr`` field.  This should
        be 348.  If it looks like the byteswapped value of 348,
        assumed swapped.  Otherwise assume native.

        >>> hdr_data = np.zeros((), dtype=header_dtype) # blank binary data
        >>> AnalyzeHeader.guessed_endian(hdr_data) == native_code
        True
        >>> hdr_data['sizeof_hdr'] = 1543569408
        >>> AnalyzeHeader.guessed_endian(hdr_data) == swapped_code
        True
        >>> hdr_data['sizeof_hdr'] = -1
        >>> AnalyzeHeader.guessed_endian(hdr_data) == native_code
        True

        This is overridden by the ``dim[0]`` value though:

        >>> hdr_data['sizeof_hdr'] = 1543569408
        >>> hdr_data['dim'][0] = 1
        >>> AnalyzeHeader.guessed_endian(hdr_data) == native_code
        True
        '''
        dim0 = int(hdr['dim'][0])
        if dim0 == 0:
            if hdr['sizeof_hdr'].byteswap() == klass.sizeof_hdr:
                return swapped_code
            return native_code
        elif 1 <= dim0 <= 7:
            return native_code
        return swapped_code

    @classmethod
    def default_structarr(klass, endianness=None):
        ''' Return header data for empty header with given endianness
        '''
        hdr_data = super(AnalyzeHeader, klass).default_structarr(endianness)
        hdr_data['sizeof_hdr'] = klass.sizeof_hdr
        hdr_data['dim'] = 1
        hdr_data['dim'][0] = 0
        hdr_data['pixdim'] = 1
        hdr_data['datatype'] = 16 # float32
        hdr_data['bitpix'] = 32
        return hdr_data

    @classmethod
    def from_header(klass, header=None, check=True):
        ''' Class method to create header from another header

        Parameters
        ----------
        header : ``Header`` instance or mapping
           a header of this class, or another class of header for
           conversion to this type
        check : {True, False}
           whether to check header for integrity

        Returns
        -------
        hdr : header instance
           fresh header instance of our own class
        '''
        # own type, return copy
        if type(header) == klass:
            obj = header.copy()
            if check:
                obj.check_fix()
            return obj
        # not own type, make fresh header instance
        obj = klass(check=check)
        if header is None:
            return obj
        if hasattr(header, 'as_analyze_map'):
            # header is convertible from a field mapping
            mapping = header.as_analyze_map()
            for key in mapping:
                try:
                    obj[key] = mapping[key]
                except (ValueError, KeyError):
                    # the presence of the mapping certifies the fields as being
                    # of the same meaning as for Analyze types, so we can
                    # safely discard fields with names not known to this header
                    # type on the basis they are from the wrong Analyze dialect
                    pass
            # set any fields etc that are specific to this format (overriden by
            # sub-classes)
            obj._clean_after_mapping()
        # Fallback basic conversion always done.
        # More specific warning for unsupported datatypes
        orig_code = header.get_data_dtype()
        try:
            obj.set_data_dtype(orig_code)
        except HeaderDataError:
            raise HeaderDataError('Input header %s has datatype %s but '
                                  'output header %s does not support it'
                                  % (header.__class__,
                                     header.get_value_label('datatype'),
                                     klass))
        obj.set_data_dtype(header.get_data_dtype())
        obj.set_data_shape(header.get_data_shape())
        obj.set_zooms(header.get_zooms())
        if check:
            obj.check_fix()
        return obj

    def _clean_after_mapping(self):
        ''' Set format-specific stuff after converting header from mapping

        This routine cleans up Analyze-type headers that have had their fields
        set from an Analyze map returned by the ``as_analyze_map`` method.
        Nifti 1 / 2, SPM Analyze, Analyze are all Analyze-type headers.
        Because this map can set fields that are illegal for particular
        subtypes of the Analyze header, this routine cleans these up before the
        resulting header is checked and returned.

        For example, a Nifti1 single (``.nii``) header has magic "n+1".
        Passing the nifti single header for conversion to a Nifti1Pair header
        using the ``as_analyze_map`` method will by default set the header
        magic to "n+1", when it should be "ni1" for the pair header.  This
        method is for that kind of case - so the specific header can set fields
        like magic correctly, even though the mapping has given a wrong value.
        '''
        # All current Nifti etc fields that are present in the Analyze header
        # have the same meaning as they do for Analyze.
        pass

    def raw_data_from_fileobj(self, fileobj):
        ''' Read unscaled data array from `fileobj`

        Parameters
        ----------
        fileobj : file-like
           Must be open, and implement ``read`` and ``seek`` methods

        Returns
        -------
        arr : ndarray
           unscaled data array
        '''
        dtype = self.get_data_dtype()
        shape = self.get_data_shape()
        offset = self.get_data_offset()
        return array_from_file(shape, dtype, fileobj, offset)

    def data_from_fileobj(self, fileobj):
        ''' Read scaled data array from `fileobj`

        Use this routine to get the scaled image data from an image file
        `fileobj`, given a header `self`.  "Scaled" means, with any header
        scaling factors applied to the raw data in the file.  Use
        `raw_data_from_fileobj` to get the raw data.

        Parameters
        ----------
        fileobj : file-like
           Must be open, and implement ``read`` and ``seek`` methods

        Returns
        -------
        arr : ndarray
           scaled data array

        Notes
        -----
        We use the header to get any scale or intercept values to apply to the
        data.  Raw Analyze files don't have scale factors or intercepts, but
        this routine also works with formats based on Analyze, that do have
        scaling, such as SPM analyze formats and NIfTI.
        '''
        # read unscaled data
        data = self.raw_data_from_fileobj(fileobj)
        # get scalings from header.  Value of None means not present in header
        slope, inter = self.get_slope_inter()
        slope = 1.0 if slope is None else slope
        inter = 0.0 if inter is None else inter
        # Upcast as necessary for big slopes, intercepts
        return apply_read_scaling(data, slope, inter)

    def data_to_fileobj(self, data, fileobj, rescale=True):
        ''' Write `data` to `fileobj`, maybe rescaling data, modifying `self`

        In writing the data, we match the header to the written data, by
        setting the header scaling factors, iff `rescale` is True.  Thus we
        modify `self` in the process of writing the data.

        Parameters
        ----------
        data : array-like
           data to write; should match header defined shape
        fileobj : file-like object
           Object with file interface, implementing ``write`` and
           ``seek``
        rescale : {True, False}, optional
            Whether to try and rescale data to match output dtype specified by
            header. If True and scaling needed and header cannot scale, then
            raise ``HeaderTypeError``.

        Examples
        --------
        >>> from nibabel.analyze import AnalyzeHeader
        >>> hdr = AnalyzeHeader()
        >>> hdr.set_data_shape((1, 2, 3))
        >>> hdr.set_data_dtype(np.float64)
        >>> from io import BytesIO
        >>> str_io = BytesIO()
        >>> data = np.arange(6).reshape(1,2,3)
        >>> hdr.data_to_fileobj(data, str_io)
        >>> data.astype(np.float64).tostring('F') == str_io.getvalue()
        True
        '''
        data = np.asanyarray(data)
        shape = self.get_data_shape()
        if data.shape != shape:
            raise HeaderDataError('Data should be shape (%s)' %
                                  ', '.join(str(s) for s in shape))
        out_dtype = self.get_data_dtype()
        if rescale:
            try:
                arr_writer = make_array_writer(data,
                                               out_dtype,
                                               self.has_data_slope,
                                               self.has_data_intercept)
            except WriterError as e:
                raise HeaderTypeError(str(e))
        else:
            arr_writer = ArrayWriter(data, out_dtype, check_scaling=False)
        seek_tell(fileobj, self.get_data_offset())
        arr_writer.to_fileobj(fileobj)
        self.set_slope_inter(*get_slope_inter(arr_writer))

    def get_data_dtype(self):
        ''' Get numpy dtype for data

        For examples see ``set_data_dtype``
        '''
        code = int(self._structarr['datatype'])
        dtype = self._data_type_codes.dtype[code]
        return dtype.newbyteorder(self.endianness)

    def set_data_dtype(self, datatype):
        ''' Set numpy dtype for data from code or dtype or type

        Examples
        --------
        >>> hdr = AnalyzeHeader()
        >>> hdr.set_data_dtype(np.uint8)
        >>> hdr.get_data_dtype()
        dtype('uint8')
        >>> hdr.set_data_dtype(np.dtype(np.uint8))
        >>> hdr.get_data_dtype()
        dtype('uint8')
        >>> hdr.set_data_dtype('implausible') #doctest: +IGNORE_EXCEPTION_DETAIL
        Traceback (most recent call last):
           ...
        HeaderDataError: data dtype "implausible" not recognized
        >>> hdr.set_data_dtype('none') #doctest: +IGNORE_EXCEPTION_DETAIL
        Traceback (most recent call last):
           ...
        HeaderDataError: data dtype "none" known but not supported
        >>> hdr.set_data_dtype(np.void) #doctest: +IGNORE_EXCEPTION_DETAIL
        Traceback (most recent call last):
           ...
        HeaderDataError: data dtype "<type 'numpy.void'>" known but not supported
        '''
        dt = datatype
        if dt not in self._data_type_codes:
            try:
                dt = np.dtype(dt)
            except TypeError:
                raise HeaderDataError(
                    'data dtype "{0}" not recognized'.format(datatype))
            if dt not in self._data_type_codes:
                raise HeaderDataError(
                    'data dtype "{0}" not supported'.format(datatype))
        code = self._data_type_codes[dt]
        dtype = self._data_type_codes.dtype[code]
        # test for void, being careful of user-defined types
        if dtype.type is np.void and not dtype.fields:
            raise HeaderDataError(
                'data dtype "{0}" known but not supported'.format(datatype))
        self._structarr['datatype'] = code
        self._structarr['bitpix'] = dtype.itemsize * 8

    def get_data_shape(self):
        ''' Get shape of data

        Examples
        --------
        >>> hdr = AnalyzeHeader()
        >>> hdr.get_data_shape()
        (0,)
        >>> hdr.set_data_shape((1,2,3))
        >>> hdr.get_data_shape()
        (1, 2, 3)

        Expanding number of dimensions gets default zooms

        >>> hdr.get_zooms()
        (1.0, 1.0, 1.0)
        '''
        dims = self._structarr['dim']
        ndims = dims[0]
        if ndims == 0:
            return 0,
        return tuple(int(d) for d in dims[1:ndims+1])

    def set_data_shape(self, shape):
        ''' Set shape of data

        If ``ndims == len(shape)`` then we set zooms for dimensions higher than
        ``ndims`` to 1.0

        Parameters
        ----------
        shape : sequence
           sequence of integers specifying data array shape
        '''
        dims = self._structarr['dim']
        ndims = len(shape)
        dims[:] = 1
        dims[0] = ndims
        try:
            dims[1:ndims+1] = shape
        except (ValueError, OverflowError):
            # numpy 1.4.1 at least generates a ValueError from trying to set a
            # python long into an int64 array (dims are int64 for nifti2)
            values_fit = False
        else:
            values_fit = np.all(dims[1:ndims+1] == shape)
        # Error if we did not succeed setting dimensions
        if not values_fit:
            raise HeaderDataError('shape %s does not fit in dim datatype' %
                                  (shape,))
        self._structarr['pixdim'][ndims+1:] = 1.0

    def get_base_affine(self):
        ''' Get affine from basic (shared) header fields

        Note that we get the translations from the center of the
        image.

        Examples
        --------
        >>> hdr = AnalyzeHeader()
        >>> hdr.set_data_shape((3, 5, 7))
        >>> hdr.set_zooms((3, 2, 1))
        >>> hdr.default_x_flip
        True
        >>> hdr.get_base_affine() # from center of image
        array([[-3.,  0.,  0.,  3.],
               [ 0.,  2.,  0., -4.],
               [ 0.,  0.,  1., -3.],
               [ 0.,  0.,  0.,  1.]])
        '''
        hdr = self._structarr
        dims = hdr['dim']
        ndim = dims[0]
        return shape_zoom_affine(hdr['dim'][1:ndim+1],
                                 hdr['pixdim'][1:ndim+1],
                                 self.default_x_flip)

    get_best_affine = get_base_affine

    def get_zooms(self):
        ''' Get zooms from header

        Returns
        -------
        z : tuple
           tuple of header zoom values

        Examples
        --------
        >>> hdr = AnalyzeHeader()
        >>> hdr.get_zooms()
        (1.0,)
        >>> hdr.set_data_shape((1,2))
        >>> hdr.get_zooms()
        (1.0, 1.0)
        >>> hdr.set_zooms((3, 4))
        >>> hdr.get_zooms()
        (3.0, 4.0)
        '''
        hdr = self._structarr
        dims = hdr['dim']
        ndim = dims[0]
        if ndim == 0:
            return (1.0,)
        pixdims = hdr['pixdim']
        return tuple(pixdims[1:ndim+1])

    def set_zooms(self, zooms):
        ''' Set zooms into header fields

        See docstring for ``get_zooms`` for examples
        '''
        hdr = self._structarr
        dims = hdr['dim']
        ndim = dims[0]
        zooms = np.asarray(zooms)
        if len(zooms) != ndim:
            raise HeaderDataError('Expecting %d zoom values for ndim %d'
                                  % (ndim, ndim))
        if np.any(zooms < 0):
            raise HeaderDataError('zooms must be positive')
        pixdims = hdr['pixdim']
        pixdims[1:ndim+1] = zooms[:]

    def as_analyze_map(self):
        """ Return header as mapping for conversion to Analyze types

        Collect data from custom header type to fill in fields for Analyze and
        derived header types (such as Nifti1 and Nifti2).

        When Analyze types convert another header type to their own type, they
        call this this method to check if there are other Analyze / Nifti
        fields that the source header would like to set.

        Returns
        -------
        analyze_map : mapping
            Object that can be used as a mapping thus::

                for key in analyze_map:
                    value = analyze_map[key]

            where ``key`` is the name of a field that can be set in an Analyze
            header type, such as Nifti1, and ``value`` is a value for the
            field.  For example, `analyze_map` might be a something like
            ``dict(regular='y', slice_duration=0.3)`` where ``regular`` is a
            field present in both Analyze and Nifti1, and ``slice_duration`` is
            a field restricted to Nifti1 and Nifti2.  If a particular Analyze
            header type does not recognize the field name, it will throw away
            the value without error.  See :meth:`Analyze.from_header`.

        Notes
        -----
        You can also return a Nifti header with the relevant fields set.

        Your header still needs methods ``get_data_dtype``, ``get_data_shape``
        and ``get_zooms``, for the conversion, and these get called *after*
        using the analyze map, so the methods will override values set in the
        map.
        """
        # In the case of Analyze types, the header is already such a mapping
        return self

    def set_data_offset(self, offset):
        """ Set offset into data file to read data
        """
        self._structarr['vox_offset'] = offset

    def get_data_offset(self):
        ''' Return offset into data file to read data

        Examples
        --------
        >>> hdr = AnalyzeHeader()
        >>> hdr.get_data_offset()
        0
        >>> hdr['vox_offset'] = 12
        >>> hdr.get_data_offset()
        12
        '''
        return int(self._structarr['vox_offset'])

    def get_slope_inter(self):
        ''' Get scalefactor and intercept

        These are not implemented for basic Analyze
        '''
        return None, None

    def set_slope_inter(self, slope, inter=None):
        ''' Set slope and / or intercept into header

        Set slope and intercept for image data, such that, if the image
        data is ``arr``, then the scaled image data will be ``(arr *
        slope) + inter``

        In this case, for Analyze images, we can't store the slope or the
        intercept, so this method only checks that `slope` is None or NaN or
        1.0, and that `inter` is None or NaN or 0.

        Parameters
        ----------
        slope : None or float
            If float, value must be NaN or 1.0 or we raise a ``HeaderTypeError``
        inter : None or float, optional
            If float, value must be 0.0 or we raise a ``HeaderTypeError``
        '''
        if ((slope in (None, 1) or np.isnan(slope)) and
            (inter in (None, 0) or np.isnan(inter))):
            return
        raise HeaderTypeError('Cannot set slope != 1 or intercept != 0 '
                              'for Analyze headers')

    @classmethod
    def _get_checks(klass):
        ''' Return sequence of check functions for this class '''
        return (klass._chk_sizeof_hdr,
                klass._chk_datatype,
                klass._chk_bitpix,
                klass._chk_pixdims)

    ''' Check functions in format expected by BatteryRunner class '''

    @classmethod
    def _chk_sizeof_hdr(klass, hdr, fix=False):
        rep = Report(HeaderDataError)
        if hdr['sizeof_hdr'] == klass.sizeof_hdr:
            return hdr, rep
        rep.problem_level = 30
        rep.problem_msg = 'sizeof_hdr should be ' + str(klass.sizeof_hdr)
        if fix:
            hdr['sizeof_hdr'] = klass.sizeof_hdr
            rep.fix_msg = 'set sizeof_hdr to ' + str(klass.sizeof_hdr)
        return hdr, rep

    @classmethod
    def _chk_datatype(klass, hdr, fix=False):
        rep = Report(HeaderDataError)
        code = int(hdr['datatype'])
        try:
            dtype = klass._data_type_codes.dtype[code]
        except KeyError:
            rep.problem_level = 40
            rep.problem_msg = 'data code %d not recognized' % code
        else:
            if dtype.itemsize == 0:
                rep.problem_level = 40
                rep.problem_msg = 'data code %d not supported' % code
            else:
                return hdr, rep
        if fix:
            rep.fix_msg = 'not attempting fix'
        return hdr, rep

    @classmethod
    def _chk_bitpix(klass, hdr, fix=False):
        rep = Report(HeaderDataError)
        code = int(hdr['datatype'])
        try:
            dt = klass._data_type_codes.dtype[code]
        except KeyError:
            rep.problem_level = 10
            rep.problem_msg = 'no valid datatype to fix bitpix'
            if fix:
                rep.fix_msg = 'no way to fix bitpix'
            return hdr, rep
        bitpix = dt.itemsize * 8
        if bitpix == hdr['bitpix']:
            return hdr, rep
        rep.problem_level = 10
        rep.problem_msg = 'bitpix does not match datatype'
        if fix:
            hdr['bitpix'] = bitpix # inplace modification
            rep.fix_msg = 'setting bitpix to match datatype'
        return hdr, rep

    @staticmethod
    def _chk_pixdims(hdr, fix=False):
        rep = Report(HeaderDataError)
        pixdims = hdr['pixdim']
        spat_dims = pixdims[1:4]
        if not np.any(spat_dims <= 0):
            return hdr, rep
        neg_dims = spat_dims < 0
        zero_dims = spat_dims == 0
        pmsgs = []
        fmsgs = []
        if np.any(zero_dims):
            level = 30
            pmsgs.append('pixdim[1,2,3] should be non-zero')
            if fix:
                spat_dims[zero_dims] = 1
                fmsgs.append('setting 0 dims to 1')
        if np.any(neg_dims):
            level = 35
            pmsgs.append('pixdim[1,2,3] should be positive')
            if fix:
                spat_dims = np.abs(spat_dims)
                fmsgs.append('setting to abs of pixdim values')
        rep.problem_level = level
        rep.problem_msg = ' and '.join(pmsgs)
        if fix:
            pixdims[1:4] = spat_dims
            rep.fix_msg = ' and '.join(fmsgs)
        return hdr, rep


class AnalyzeImage(SpatialImage):
    """ Class for basic Analyze format image
    """
    header_class = AnalyzeHeader
    files_types = (('image','.img'), ('header','.hdr'))
    _compressed_exts = ('.gz', '.bz2')

    ImageArrayProxy = ArrayProxy

    def __init__(self, dataobj, affine, header=None,
                 extra=None, file_map=None):
        super(AnalyzeImage, self).__init__(
            dataobj, affine, header, extra, file_map)
        # Reset consumable values
        self._header.set_data_offset(0)
        self._header.set_slope_inter(None, None)
    __init__.__doc__ = SpatialImage.__init__.__doc__

    def get_data_dtype(self):
        return self._header.get_data_dtype()

    def set_data_dtype(self, dtype):
        self._header.set_data_dtype(dtype)

    @classmethod
    @kw_only_meth(1)
    def from_file_map(klass, file_map, mmap=True):
        ''' class method to create image from mapping in `file_map ``

        Parameters
        ----------
        file_map : dict
            Mapping with (kay, value) pairs of (``file_type``, FileHolder
            instance giving file-likes for each file needed for this image
            type.
        mmap : {True, False, 'c', 'r'}, optional, keyword only
            `mmap` controls the use of numpy memory mapping for reading image
            array data.  If False, do not try numpy ``memmap`` for data array.
            If one of {'c', 'r'}, try numpy memmap with ``mode=mmap``.  A `mmap`
            value of True gives the same behavior as ``mmap='c'``.  If image
            data file cannot be memory-mapped, ignore `mmap` value and read
            array from file.

        Returns
        -------
        img : AnalyzeImage instance
        '''
        if mmap not in (True, False, 'c', 'r'):
            raise ValueError("mmap should be one of {True, False, 'c', 'r'}")
        hdr_fh, img_fh = klass._get_fileholders(file_map)
        with hdr_fh.get_prepare_fileobj(mode='rb') as hdrf:
            header = klass.header_class.from_fileobj(hdrf)
        hdr_copy = header.copy()
        imgf = img_fh.fileobj
        if imgf is None:
            imgf = img_fh.filename
        data = klass.ImageArrayProxy(imgf, hdr_copy, mmap=mmap)
        # Initialize without affine to allow header to pass through unmodified
        img = klass(data, None, header, file_map=file_map)
        # set affine from header though
        img._affine = header.get_best_affine()
        img._load_cache = {'header': hdr_copy,
                           'affine': img._affine.copy(),
                           'file_map': copy_file_map(file_map)}
        return img

    @classmethod
    @kw_only_meth(1)
    def from_filename(klass, filename, mmap=True):
        ''' class method to create image from filename `filename`

        Parameters
        ----------
        filename : str
            Filename of image to load
        mmap : {True, False, 'c', 'r'}, optional, keyword only
            `mmap` controls the use of numpy memory mapping for reading image
            array data.  If False, do not try numpy ``memmap`` for data array.
            If one of {'c', 'r'}, try numpy memmap with ``mode=mmap``.  A `mmap`
            value of True gives the same behavior as ``mmap='c'``.  If image
            data file cannot be memory-mapped, ignore `mmap` value and read
            array from file.

        Returns
        -------
        img : Analyze Image instance
        '''
        if mmap not in (True, False, 'c', 'r'):
            raise ValueError("mmap should be one of {True, False, 'c', 'r'}")
        file_map = klass.filespec_to_file_map(filename)
        return klass.from_file_map(file_map, mmap=mmap)

    load = from_filename

    @staticmethod
    def _get_fileholders(file_map):
        """ Return fileholder for header and image

        Allows single-file image types to return one fileholder for both types.
        For Analyze there are two fileholders, one for the header, one for the
        image.
        """
        return file_map['header'], file_map['image']

    def to_file_map(self, file_map=None):
        ''' Write image to `file_map` or contained ``self.file_map``

        Parameters
        ----------
        file_map : None or mapping, optional
           files mapping.  If None (default) use object's ``file_map``
           attribute instead
        '''
        if file_map is None:
            file_map = self.file_map
        data = self.get_data()
        self.update_header()
        hdr = self._header
        out_dtype = self.get_data_dtype()
        # Store consumable values for later restore
        offset = hdr.get_data_offset()
        # Scalars of slope, offset to get immutable values
        slope = (np.asscalar(hdr['scl_slope']) if hdr.has_data_slope
                 else np.nan)
        inter = (np.asscalar(hdr['scl_inter']) if hdr.has_data_intercept
                 else np.nan)
        # Check whether to calculate slope / inter
        scale_me = np.all(np.isnan((slope, inter)))
        if scale_me:
            arr_writer = make_array_writer(data,
                                           out_dtype,
                                           hdr.has_data_slope,
                                           hdr.has_data_intercept)
        else:
            arr_writer = ArrayWriter(data, out_dtype, check_scaling=False)
        hdr_fh, img_fh = self._get_fileholders(file_map)
        # Check if hdr and img refer to same file; this can happen with odd
        # analyze images but most often this is because it's a single nifti file
        hdr_img_same = hdr_fh.same_file_as(img_fh)
        hdrf = hdr_fh.get_prepare_fileobj(mode='wb')
        if hdr_img_same:
            imgf = hdrf
        else:
            imgf = img_fh.get_prepare_fileobj(mode='wb')
        # Rescale values if asked
        if scale_me:
            hdr.set_slope_inter(*get_slope_inter(arr_writer))
        # Write header
        hdr.write_to(hdrf)
        # Write image
        shape = hdr.get_data_shape()
        if data.shape != shape:
            raise HeaderDataError('Data should be shape (%s)' %
                                  ', '.join(str(s) for s in shape))
        # Seek to writing position, get there by writing zeros if seek fails
        seek_tell(imgf, hdr.get_data_offset(), write0=True)
        # Write array data
        arr_writer.to_fileobj(imgf)
        hdrf.close_if_mine()
        if not hdr_img_same:
            imgf.close_if_mine()
        self._header = hdr
        self.file_map = file_map
        # Restore any changed consumable values
        hdr.set_data_offset(offset)
        if hdr.has_data_slope:
            hdr['scl_slope'] = slope
        if hdr.has_data_intercept:
            hdr['scl_inter'] = inter


load = AnalyzeImage.load
save = AnalyzeImage.instance_to_filename