/usr/lib/python3/dist-packages/nibabel/analyze.py is in python3-nibabel 2.0.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 | # emacs: -*- mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the NiBabel package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
''' Read / write access to the basic Mayo Analyze format
===========================
The Analyze header format
===========================
This is a binary header format and inherits from ``WrapStruct``
Apart from the attributes and methods of WrapStruct:
Class attributes are::
.default_x_flip
with methods::
.get/set_data_shape
.get/set_data_dtype
.get/set_zooms
.get/set_data_offset
.get_base_affine()
.get_best_affine()
.data_to_fileobj
.data_from_fileobj
and class methods::
.from_header(hdr)
More sophisticated headers can add more methods and attributes.
Notes
-----
This - basic - analyze header cannot encode full affines (only
diagonal affines), and cannot do integer scaling.
The inability to store affines means that we have to guess what orientation the
image has. Most Analyze images are stored on disk in (fastest-changing to
slowest-changing) R->L, P->A and I->S order. That is, the first voxel is the
rightmost, most posterior and most inferior voxel location in the image, and the
next voxel is one voxel towards the left of the image.
Most people refer to this disk storage format as 'radiological', on the basis
that, if you load up the data as an array ``img_arr`` where the first axis is
the fastest changing, then take a slice in the I->S axis - ``img_arr[:,:,10]`` -
then the right part of the brain will be on the left of your displayed slice.
Radiologists like looking at images where the left of the brain is on the right
side of the image.
Conversely, if the image has the voxels stored with the left voxels first -
L->R, P->A, I->S, then this would be 'neurological' format. Neurologists like
looking at images where the left side of the brain is on the left of the image.
When we are guessing at an affine for Analyze, this translates to the problem of
whether the affine should consider proceeding within the data down an X line as
being from left to right, or right to left.
By default we assume that the image is stored in R->L format. We encode this
choice in the ``default_x_flip`` flag that can be True or False. True means
assume radiological.
If the image is 3D, and the X, Y and Z zooms are x, y, and z, then::
if default_x_flip is True::
affine = np.diag((-x,y,z,1))
else:
affine = np.diag((x,y,z,1))
In our implementation, there is no way of saving this assumed flip into the
header. One way of doing this, that we have not used, is to allow negative
zooms, in particular, negative X zooms. We did not do this because the image
can be loaded with and without a default flip, so the saved zoom will not
constrain the affine.
'''
import numpy as np
from .volumeutils import (native_code, swapped_code, make_dt_codes,
shape_zoom_affine, array_from_file, seek_tell,
apply_read_scaling)
from .arraywriters import (make_array_writer, get_slope_inter, WriterError,
ArrayWriter)
from .wrapstruct import LabeledWrapStruct
from .spatialimages import (HeaderDataError, HeaderTypeError,
SpatialImage)
from .fileholders import copy_file_map
from .batteryrunners import Report
from .arrayproxy import ArrayProxy
from .keywordonly import kw_only_meth
# Sub-parts of standard analyze header from
# Mayo dbh.h file
header_key_dtd = [
('sizeof_hdr', 'i4'),
('data_type', 'S10'),
('db_name', 'S18'),
('extents', 'i4'),
('session_error', 'i2'),
('regular', 'S1'),
('hkey_un0', 'S1')
]
image_dimension_dtd = [
('dim', 'i2', (8,)),
('vox_units', 'S4'),
('cal_units', 'S8'),
('unused1', 'i2'),
('datatype', 'i2'),
('bitpix', 'i2'),
('dim_un0', 'i2'),
('pixdim', 'f4', (8,)),
('vox_offset', 'f4'),
('funused1', 'f4'),
('funused2', 'f4'),
('funused3', 'f4'),
('cal_max', 'f4'),
('cal_min', 'f4'),
('compressed', 'i4'),
('verified', 'i4'),
('glmax', 'i4'),
('glmin', 'i4')
]
data_history_dtd = [
('descrip', 'S80'),
('aux_file', 'S24'),
('orient', 'S1'),
('originator', 'S10'),
('generated', 'S10'),
('scannum', 'S10'),
('patient_id', 'S10'),
('exp_date', 'S10'),
('exp_time', 'S10'),
('hist_un0', 'S3'),
('views', 'i4'),
('vols_added', 'i4'),
('start_field', 'i4'),
('field_skip', 'i4'),
('omax', 'i4'),
('omin', 'i4'),
('smax', 'i4'),
('smin', 'i4')
]
# Full header numpy dtype combined across sub-fields
header_dtype = np.dtype(header_key_dtd + image_dimension_dtd +
data_history_dtd)
_dtdefs = ( # code, conversion function, equivalent dtype, aliases
(0, 'none', np.void),
(1, 'binary', np.void), # 1 bit per voxel, needs thought
(2, 'uint8', np.uint8),
(4, 'int16', np.int16),
(8, 'int32', np.int32),
(16, 'float32', np.float32),
(32, 'complex64', np.complex64), # numpy complex format?
(64, 'float64', np.float64),
(128, 'RGB', np.dtype([('R','u1'),
('G', 'u1'),
('B', 'u1')])),
(255, 'all', np.void))
# Make full code alias bank, including dtype column
data_type_codes = make_dt_codes(_dtdefs)
class AnalyzeHeader(LabeledWrapStruct):
''' Class for basic analyze header
Implements zoom-only setting of affine transform, and no image
scaling
'''
# Copies of module-level definitions
template_dtype = header_dtype
_data_type_codes = data_type_codes
# fields with recoders for their values
_field_recoders = {'datatype': data_type_codes}
# default x flip
default_x_flip = True
# data scaling capabilities
has_data_slope = False
has_data_intercept = False
sizeof_hdr = 348
def __init__(self,
binaryblock=None,
endianness=None,
check=True):
''' Initialize header from binary data block
Parameters
----------
binaryblock : {None, string} optional
binary block to set into header. By default, None, in
which case we insert the default empty header block
endianness : {None, '<','>', other endian code} string, optional
endianness of the binaryblock. If None, guess endianness
from the data.
check : bool, optional
Whether to check content of header in initialization.
Default is True.
Examples
--------
>>> hdr1 = AnalyzeHeader() # an empty header
>>> hdr1.endianness == native_code
True
>>> hdr1.get_data_shape()
(0,)
>>> hdr1.set_data_shape((1,2,3)) # now with some content
>>> hdr1.get_data_shape()
(1, 2, 3)
We can set the binary block directly via this initialization.
Here we get it from the header we have just made
>>> binblock2 = hdr1.binaryblock
>>> hdr2 = AnalyzeHeader(binblock2)
>>> hdr2.get_data_shape()
(1, 2, 3)
Empty headers are native endian by default
>>> hdr2.endianness == native_code
True
You can pass valid opposite endian headers with the
``endianness`` parameter. Even empty headers can have
endianness
>>> hdr3 = AnalyzeHeader(endianness=swapped_code)
>>> hdr3.endianness == swapped_code
True
If you do not pass an endianness, and you pass some data, we
will try to guess from the passed data.
>>> binblock3 = hdr3.binaryblock
>>> hdr4 = AnalyzeHeader(binblock3)
>>> hdr4.endianness == swapped_code
True
'''
super(AnalyzeHeader, self).__init__(binaryblock, endianness, check)
@classmethod
def guessed_endian(klass, hdr):
''' Guess intended endianness from mapping-like ``hdr``
Parameters
----------
hdr : mapping-like
hdr for which to guess endianness
Returns
-------
endianness : {'<', '>'}
Guessed endianness of header
Examples
--------
Zeros header, no information, guess native
>>> hdr = AnalyzeHeader()
>>> hdr_data = np.zeros((), dtype=header_dtype)
>>> AnalyzeHeader.guessed_endian(hdr_data) == native_code
True
A valid native header is guessed native
>>> hdr_data = hdr.structarr.copy()
>>> AnalyzeHeader.guessed_endian(hdr_data) == native_code
True
And, when swapped, is guessed as swapped
>>> sw_hdr_data = hdr_data.byteswap(swapped_code)
>>> AnalyzeHeader.guessed_endian(sw_hdr_data) == swapped_code
True
The algorithm is as follows:
First, look at the first value in the ``dim`` field; this
should be between 0 and 7. If it is between 1 and 7, then
this must be a native endian header.
>>> hdr_data = np.zeros((), dtype=header_dtype) # blank binary data
>>> hdr_data['dim'][0] = 1
>>> AnalyzeHeader.guessed_endian(hdr_data) == native_code
True
>>> hdr_data['dim'][0] = 6
>>> AnalyzeHeader.guessed_endian(hdr_data) == native_code
True
>>> hdr_data['dim'][0] = -1
>>> AnalyzeHeader.guessed_endian(hdr_data) == swapped_code
True
If the first ``dim`` value is zeros, we need a tie breaker.
In that case we check the ``sizeof_hdr`` field. This should
be 348. If it looks like the byteswapped value of 348,
assumed swapped. Otherwise assume native.
>>> hdr_data = np.zeros((), dtype=header_dtype) # blank binary data
>>> AnalyzeHeader.guessed_endian(hdr_data) == native_code
True
>>> hdr_data['sizeof_hdr'] = 1543569408
>>> AnalyzeHeader.guessed_endian(hdr_data) == swapped_code
True
>>> hdr_data['sizeof_hdr'] = -1
>>> AnalyzeHeader.guessed_endian(hdr_data) == native_code
True
This is overridden by the ``dim[0]`` value though:
>>> hdr_data['sizeof_hdr'] = 1543569408
>>> hdr_data['dim'][0] = 1
>>> AnalyzeHeader.guessed_endian(hdr_data) == native_code
True
'''
dim0 = int(hdr['dim'][0])
if dim0 == 0:
if hdr['sizeof_hdr'].byteswap() == klass.sizeof_hdr:
return swapped_code
return native_code
elif 1 <= dim0 <= 7:
return native_code
return swapped_code
@classmethod
def default_structarr(klass, endianness=None):
''' Return header data for empty header with given endianness
'''
hdr_data = super(AnalyzeHeader, klass).default_structarr(endianness)
hdr_data['sizeof_hdr'] = klass.sizeof_hdr
hdr_data['dim'] = 1
hdr_data['dim'][0] = 0
hdr_data['pixdim'] = 1
hdr_data['datatype'] = 16 # float32
hdr_data['bitpix'] = 32
return hdr_data
@classmethod
def from_header(klass, header=None, check=True):
''' Class method to create header from another header
Parameters
----------
header : ``Header`` instance or mapping
a header of this class, or another class of header for
conversion to this type
check : {True, False}
whether to check header for integrity
Returns
-------
hdr : header instance
fresh header instance of our own class
'''
# own type, return copy
if type(header) == klass:
obj = header.copy()
if check:
obj.check_fix()
return obj
# not own type, make fresh header instance
obj = klass(check=check)
if header is None:
return obj
if hasattr(header, 'as_analyze_map'):
# header is convertible from a field mapping
mapping = header.as_analyze_map()
for key in mapping:
try:
obj[key] = mapping[key]
except (ValueError, KeyError):
# the presence of the mapping certifies the fields as being
# of the same meaning as for Analyze types, so we can
# safely discard fields with names not known to this header
# type on the basis they are from the wrong Analyze dialect
pass
# set any fields etc that are specific to this format (overriden by
# sub-classes)
obj._clean_after_mapping()
# Fallback basic conversion always done.
# More specific warning for unsupported datatypes
orig_code = header.get_data_dtype()
try:
obj.set_data_dtype(orig_code)
except HeaderDataError:
raise HeaderDataError('Input header %s has datatype %s but '
'output header %s does not support it'
% (header.__class__,
header.get_value_label('datatype'),
klass))
obj.set_data_dtype(header.get_data_dtype())
obj.set_data_shape(header.get_data_shape())
obj.set_zooms(header.get_zooms())
if check:
obj.check_fix()
return obj
def _clean_after_mapping(self):
''' Set format-specific stuff after converting header from mapping
This routine cleans up Analyze-type headers that have had their fields
set from an Analyze map returned by the ``as_analyze_map`` method.
Nifti 1 / 2, SPM Analyze, Analyze are all Analyze-type headers.
Because this map can set fields that are illegal for particular
subtypes of the Analyze header, this routine cleans these up before the
resulting header is checked and returned.
For example, a Nifti1 single (``.nii``) header has magic "n+1".
Passing the nifti single header for conversion to a Nifti1Pair header
using the ``as_analyze_map`` method will by default set the header
magic to "n+1", when it should be "ni1" for the pair header. This
method is for that kind of case - so the specific header can set fields
like magic correctly, even though the mapping has given a wrong value.
'''
# All current Nifti etc fields that are present in the Analyze header
# have the same meaning as they do for Analyze.
pass
def raw_data_from_fileobj(self, fileobj):
''' Read unscaled data array from `fileobj`
Parameters
----------
fileobj : file-like
Must be open, and implement ``read`` and ``seek`` methods
Returns
-------
arr : ndarray
unscaled data array
'''
dtype = self.get_data_dtype()
shape = self.get_data_shape()
offset = self.get_data_offset()
return array_from_file(shape, dtype, fileobj, offset)
def data_from_fileobj(self, fileobj):
''' Read scaled data array from `fileobj`
Use this routine to get the scaled image data from an image file
`fileobj`, given a header `self`. "Scaled" means, with any header
scaling factors applied to the raw data in the file. Use
`raw_data_from_fileobj` to get the raw data.
Parameters
----------
fileobj : file-like
Must be open, and implement ``read`` and ``seek`` methods
Returns
-------
arr : ndarray
scaled data array
Notes
-----
We use the header to get any scale or intercept values to apply to the
data. Raw Analyze files don't have scale factors or intercepts, but
this routine also works with formats based on Analyze, that do have
scaling, such as SPM analyze formats and NIfTI.
'''
# read unscaled data
data = self.raw_data_from_fileobj(fileobj)
# get scalings from header. Value of None means not present in header
slope, inter = self.get_slope_inter()
slope = 1.0 if slope is None else slope
inter = 0.0 if inter is None else inter
# Upcast as necessary for big slopes, intercepts
return apply_read_scaling(data, slope, inter)
def data_to_fileobj(self, data, fileobj, rescale=True):
''' Write `data` to `fileobj`, maybe rescaling data, modifying `self`
In writing the data, we match the header to the written data, by
setting the header scaling factors, iff `rescale` is True. Thus we
modify `self` in the process of writing the data.
Parameters
----------
data : array-like
data to write; should match header defined shape
fileobj : file-like object
Object with file interface, implementing ``write`` and
``seek``
rescale : {True, False}, optional
Whether to try and rescale data to match output dtype specified by
header. If True and scaling needed and header cannot scale, then
raise ``HeaderTypeError``.
Examples
--------
>>> from nibabel.analyze import AnalyzeHeader
>>> hdr = AnalyzeHeader()
>>> hdr.set_data_shape((1, 2, 3))
>>> hdr.set_data_dtype(np.float64)
>>> from io import BytesIO
>>> str_io = BytesIO()
>>> data = np.arange(6).reshape(1,2,3)
>>> hdr.data_to_fileobj(data, str_io)
>>> data.astype(np.float64).tostring('F') == str_io.getvalue()
True
'''
data = np.asanyarray(data)
shape = self.get_data_shape()
if data.shape != shape:
raise HeaderDataError('Data should be shape (%s)' %
', '.join(str(s) for s in shape))
out_dtype = self.get_data_dtype()
if rescale:
try:
arr_writer = make_array_writer(data,
out_dtype,
self.has_data_slope,
self.has_data_intercept)
except WriterError as e:
raise HeaderTypeError(str(e))
else:
arr_writer = ArrayWriter(data, out_dtype, check_scaling=False)
seek_tell(fileobj, self.get_data_offset())
arr_writer.to_fileobj(fileobj)
self.set_slope_inter(*get_slope_inter(arr_writer))
def get_data_dtype(self):
''' Get numpy dtype for data
For examples see ``set_data_dtype``
'''
code = int(self._structarr['datatype'])
dtype = self._data_type_codes.dtype[code]
return dtype.newbyteorder(self.endianness)
def set_data_dtype(self, datatype):
''' Set numpy dtype for data from code or dtype or type
Examples
--------
>>> hdr = AnalyzeHeader()
>>> hdr.set_data_dtype(np.uint8)
>>> hdr.get_data_dtype()
dtype('uint8')
>>> hdr.set_data_dtype(np.dtype(np.uint8))
>>> hdr.get_data_dtype()
dtype('uint8')
>>> hdr.set_data_dtype('implausible') #doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
HeaderDataError: data dtype "implausible" not recognized
>>> hdr.set_data_dtype('none') #doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
HeaderDataError: data dtype "none" known but not supported
>>> hdr.set_data_dtype(np.void) #doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
HeaderDataError: data dtype "<type 'numpy.void'>" known but not supported
'''
dt = datatype
if dt not in self._data_type_codes:
try:
dt = np.dtype(dt)
except TypeError:
raise HeaderDataError(
'data dtype "{0}" not recognized'.format(datatype))
if dt not in self._data_type_codes:
raise HeaderDataError(
'data dtype "{0}" not supported'.format(datatype))
code = self._data_type_codes[dt]
dtype = self._data_type_codes.dtype[code]
# test for void, being careful of user-defined types
if dtype.type is np.void and not dtype.fields:
raise HeaderDataError(
'data dtype "{0}" known but not supported'.format(datatype))
self._structarr['datatype'] = code
self._structarr['bitpix'] = dtype.itemsize * 8
def get_data_shape(self):
''' Get shape of data
Examples
--------
>>> hdr = AnalyzeHeader()
>>> hdr.get_data_shape()
(0,)
>>> hdr.set_data_shape((1,2,3))
>>> hdr.get_data_shape()
(1, 2, 3)
Expanding number of dimensions gets default zooms
>>> hdr.get_zooms()
(1.0, 1.0, 1.0)
'''
dims = self._structarr['dim']
ndims = dims[0]
if ndims == 0:
return 0,
return tuple(int(d) for d in dims[1:ndims+1])
def set_data_shape(self, shape):
''' Set shape of data
If ``ndims == len(shape)`` then we set zooms for dimensions higher than
``ndims`` to 1.0
Parameters
----------
shape : sequence
sequence of integers specifying data array shape
'''
dims = self._structarr['dim']
ndims = len(shape)
dims[:] = 1
dims[0] = ndims
try:
dims[1:ndims+1] = shape
except (ValueError, OverflowError):
# numpy 1.4.1 at least generates a ValueError from trying to set a
# python long into an int64 array (dims are int64 for nifti2)
values_fit = False
else:
values_fit = np.all(dims[1:ndims+1] == shape)
# Error if we did not succeed setting dimensions
if not values_fit:
raise HeaderDataError('shape %s does not fit in dim datatype' %
(shape,))
self._structarr['pixdim'][ndims+1:] = 1.0
def get_base_affine(self):
''' Get affine from basic (shared) header fields
Note that we get the translations from the center of the
image.
Examples
--------
>>> hdr = AnalyzeHeader()
>>> hdr.set_data_shape((3, 5, 7))
>>> hdr.set_zooms((3, 2, 1))
>>> hdr.default_x_flip
True
>>> hdr.get_base_affine() # from center of image
array([[-3., 0., 0., 3.],
[ 0., 2., 0., -4.],
[ 0., 0., 1., -3.],
[ 0., 0., 0., 1.]])
'''
hdr = self._structarr
dims = hdr['dim']
ndim = dims[0]
return shape_zoom_affine(hdr['dim'][1:ndim+1],
hdr['pixdim'][1:ndim+1],
self.default_x_flip)
get_best_affine = get_base_affine
def get_zooms(self):
''' Get zooms from header
Returns
-------
z : tuple
tuple of header zoom values
Examples
--------
>>> hdr = AnalyzeHeader()
>>> hdr.get_zooms()
(1.0,)
>>> hdr.set_data_shape((1,2))
>>> hdr.get_zooms()
(1.0, 1.0)
>>> hdr.set_zooms((3, 4))
>>> hdr.get_zooms()
(3.0, 4.0)
'''
hdr = self._structarr
dims = hdr['dim']
ndim = dims[0]
if ndim == 0:
return (1.0,)
pixdims = hdr['pixdim']
return tuple(pixdims[1:ndim+1])
def set_zooms(self, zooms):
''' Set zooms into header fields
See docstring for ``get_zooms`` for examples
'''
hdr = self._structarr
dims = hdr['dim']
ndim = dims[0]
zooms = np.asarray(zooms)
if len(zooms) != ndim:
raise HeaderDataError('Expecting %d zoom values for ndim %d'
% (ndim, ndim))
if np.any(zooms < 0):
raise HeaderDataError('zooms must be positive')
pixdims = hdr['pixdim']
pixdims[1:ndim+1] = zooms[:]
def as_analyze_map(self):
""" Return header as mapping for conversion to Analyze types
Collect data from custom header type to fill in fields for Analyze and
derived header types (such as Nifti1 and Nifti2).
When Analyze types convert another header type to their own type, they
call this this method to check if there are other Analyze / Nifti
fields that the source header would like to set.
Returns
-------
analyze_map : mapping
Object that can be used as a mapping thus::
for key in analyze_map:
value = analyze_map[key]
where ``key`` is the name of a field that can be set in an Analyze
header type, such as Nifti1, and ``value`` is a value for the
field. For example, `analyze_map` might be a something like
``dict(regular='y', slice_duration=0.3)`` where ``regular`` is a
field present in both Analyze and Nifti1, and ``slice_duration`` is
a field restricted to Nifti1 and Nifti2. If a particular Analyze
header type does not recognize the field name, it will throw away
the value without error. See :meth:`Analyze.from_header`.
Notes
-----
You can also return a Nifti header with the relevant fields set.
Your header still needs methods ``get_data_dtype``, ``get_data_shape``
and ``get_zooms``, for the conversion, and these get called *after*
using the analyze map, so the methods will override values set in the
map.
"""
# In the case of Analyze types, the header is already such a mapping
return self
def set_data_offset(self, offset):
""" Set offset into data file to read data
"""
self._structarr['vox_offset'] = offset
def get_data_offset(self):
''' Return offset into data file to read data
Examples
--------
>>> hdr = AnalyzeHeader()
>>> hdr.get_data_offset()
0
>>> hdr['vox_offset'] = 12
>>> hdr.get_data_offset()
12
'''
return int(self._structarr['vox_offset'])
def get_slope_inter(self):
''' Get scalefactor and intercept
These are not implemented for basic Analyze
'''
return None, None
def set_slope_inter(self, slope, inter=None):
''' Set slope and / or intercept into header
Set slope and intercept for image data, such that, if the image
data is ``arr``, then the scaled image data will be ``(arr *
slope) + inter``
In this case, for Analyze images, we can't store the slope or the
intercept, so this method only checks that `slope` is None or NaN or
1.0, and that `inter` is None or NaN or 0.
Parameters
----------
slope : None or float
If float, value must be NaN or 1.0 or we raise a ``HeaderTypeError``
inter : None or float, optional
If float, value must be 0.0 or we raise a ``HeaderTypeError``
'''
if ((slope in (None, 1) or np.isnan(slope)) and
(inter in (None, 0) or np.isnan(inter))):
return
raise HeaderTypeError('Cannot set slope != 1 or intercept != 0 '
'for Analyze headers')
@classmethod
def _get_checks(klass):
''' Return sequence of check functions for this class '''
return (klass._chk_sizeof_hdr,
klass._chk_datatype,
klass._chk_bitpix,
klass._chk_pixdims)
''' Check functions in format expected by BatteryRunner class '''
@classmethod
def _chk_sizeof_hdr(klass, hdr, fix=False):
rep = Report(HeaderDataError)
if hdr['sizeof_hdr'] == klass.sizeof_hdr:
return hdr, rep
rep.problem_level = 30
rep.problem_msg = 'sizeof_hdr should be ' + str(klass.sizeof_hdr)
if fix:
hdr['sizeof_hdr'] = klass.sizeof_hdr
rep.fix_msg = 'set sizeof_hdr to ' + str(klass.sizeof_hdr)
return hdr, rep
@classmethod
def _chk_datatype(klass, hdr, fix=False):
rep = Report(HeaderDataError)
code = int(hdr['datatype'])
try:
dtype = klass._data_type_codes.dtype[code]
except KeyError:
rep.problem_level = 40
rep.problem_msg = 'data code %d not recognized' % code
else:
if dtype.itemsize == 0:
rep.problem_level = 40
rep.problem_msg = 'data code %d not supported' % code
else:
return hdr, rep
if fix:
rep.fix_msg = 'not attempting fix'
return hdr, rep
@classmethod
def _chk_bitpix(klass, hdr, fix=False):
rep = Report(HeaderDataError)
code = int(hdr['datatype'])
try:
dt = klass._data_type_codes.dtype[code]
except KeyError:
rep.problem_level = 10
rep.problem_msg = 'no valid datatype to fix bitpix'
if fix:
rep.fix_msg = 'no way to fix bitpix'
return hdr, rep
bitpix = dt.itemsize * 8
if bitpix == hdr['bitpix']:
return hdr, rep
rep.problem_level = 10
rep.problem_msg = 'bitpix does not match datatype'
if fix:
hdr['bitpix'] = bitpix # inplace modification
rep.fix_msg = 'setting bitpix to match datatype'
return hdr, rep
@staticmethod
def _chk_pixdims(hdr, fix=False):
rep = Report(HeaderDataError)
pixdims = hdr['pixdim']
spat_dims = pixdims[1:4]
if not np.any(spat_dims <= 0):
return hdr, rep
neg_dims = spat_dims < 0
zero_dims = spat_dims == 0
pmsgs = []
fmsgs = []
if np.any(zero_dims):
level = 30
pmsgs.append('pixdim[1,2,3] should be non-zero')
if fix:
spat_dims[zero_dims] = 1
fmsgs.append('setting 0 dims to 1')
if np.any(neg_dims):
level = 35
pmsgs.append('pixdim[1,2,3] should be positive')
if fix:
spat_dims = np.abs(spat_dims)
fmsgs.append('setting to abs of pixdim values')
rep.problem_level = level
rep.problem_msg = ' and '.join(pmsgs)
if fix:
pixdims[1:4] = spat_dims
rep.fix_msg = ' and '.join(fmsgs)
return hdr, rep
class AnalyzeImage(SpatialImage):
""" Class for basic Analyze format image
"""
header_class = AnalyzeHeader
files_types = (('image','.img'), ('header','.hdr'))
_compressed_exts = ('.gz', '.bz2')
ImageArrayProxy = ArrayProxy
def __init__(self, dataobj, affine, header=None,
extra=None, file_map=None):
super(AnalyzeImage, self).__init__(
dataobj, affine, header, extra, file_map)
# Reset consumable values
self._header.set_data_offset(0)
self._header.set_slope_inter(None, None)
__init__.__doc__ = SpatialImage.__init__.__doc__
def get_data_dtype(self):
return self._header.get_data_dtype()
def set_data_dtype(self, dtype):
self._header.set_data_dtype(dtype)
@classmethod
@kw_only_meth(1)
def from_file_map(klass, file_map, mmap=True):
''' class method to create image from mapping in `file_map ``
Parameters
----------
file_map : dict
Mapping with (kay, value) pairs of (``file_type``, FileHolder
instance giving file-likes for each file needed for this image
type.
mmap : {True, False, 'c', 'r'}, optional, keyword only
`mmap` controls the use of numpy memory mapping for reading image
array data. If False, do not try numpy ``memmap`` for data array.
If one of {'c', 'r'}, try numpy memmap with ``mode=mmap``. A `mmap`
value of True gives the same behavior as ``mmap='c'``. If image
data file cannot be memory-mapped, ignore `mmap` value and read
array from file.
Returns
-------
img : AnalyzeImage instance
'''
if mmap not in (True, False, 'c', 'r'):
raise ValueError("mmap should be one of {True, False, 'c', 'r'}")
hdr_fh, img_fh = klass._get_fileholders(file_map)
with hdr_fh.get_prepare_fileobj(mode='rb') as hdrf:
header = klass.header_class.from_fileobj(hdrf)
hdr_copy = header.copy()
imgf = img_fh.fileobj
if imgf is None:
imgf = img_fh.filename
data = klass.ImageArrayProxy(imgf, hdr_copy, mmap=mmap)
# Initialize without affine to allow header to pass through unmodified
img = klass(data, None, header, file_map=file_map)
# set affine from header though
img._affine = header.get_best_affine()
img._load_cache = {'header': hdr_copy,
'affine': img._affine.copy(),
'file_map': copy_file_map(file_map)}
return img
@classmethod
@kw_only_meth(1)
def from_filename(klass, filename, mmap=True):
''' class method to create image from filename `filename`
Parameters
----------
filename : str
Filename of image to load
mmap : {True, False, 'c', 'r'}, optional, keyword only
`mmap` controls the use of numpy memory mapping for reading image
array data. If False, do not try numpy ``memmap`` for data array.
If one of {'c', 'r'}, try numpy memmap with ``mode=mmap``. A `mmap`
value of True gives the same behavior as ``mmap='c'``. If image
data file cannot be memory-mapped, ignore `mmap` value and read
array from file.
Returns
-------
img : Analyze Image instance
'''
if mmap not in (True, False, 'c', 'r'):
raise ValueError("mmap should be one of {True, False, 'c', 'r'}")
file_map = klass.filespec_to_file_map(filename)
return klass.from_file_map(file_map, mmap=mmap)
load = from_filename
@staticmethod
def _get_fileholders(file_map):
""" Return fileholder for header and image
Allows single-file image types to return one fileholder for both types.
For Analyze there are two fileholders, one for the header, one for the
image.
"""
return file_map['header'], file_map['image']
def to_file_map(self, file_map=None):
''' Write image to `file_map` or contained ``self.file_map``
Parameters
----------
file_map : None or mapping, optional
files mapping. If None (default) use object's ``file_map``
attribute instead
'''
if file_map is None:
file_map = self.file_map
data = self.get_data()
self.update_header()
hdr = self._header
out_dtype = self.get_data_dtype()
# Store consumable values for later restore
offset = hdr.get_data_offset()
# Scalars of slope, offset to get immutable values
slope = (np.asscalar(hdr['scl_slope']) if hdr.has_data_slope
else np.nan)
inter = (np.asscalar(hdr['scl_inter']) if hdr.has_data_intercept
else np.nan)
# Check whether to calculate slope / inter
scale_me = np.all(np.isnan((slope, inter)))
if scale_me:
arr_writer = make_array_writer(data,
out_dtype,
hdr.has_data_slope,
hdr.has_data_intercept)
else:
arr_writer = ArrayWriter(data, out_dtype, check_scaling=False)
hdr_fh, img_fh = self._get_fileholders(file_map)
# Check if hdr and img refer to same file; this can happen with odd
# analyze images but most often this is because it's a single nifti file
hdr_img_same = hdr_fh.same_file_as(img_fh)
hdrf = hdr_fh.get_prepare_fileobj(mode='wb')
if hdr_img_same:
imgf = hdrf
else:
imgf = img_fh.get_prepare_fileobj(mode='wb')
# Rescale values if asked
if scale_me:
hdr.set_slope_inter(*get_slope_inter(arr_writer))
# Write header
hdr.write_to(hdrf)
# Write image
shape = hdr.get_data_shape()
if data.shape != shape:
raise HeaderDataError('Data should be shape (%s)' %
', '.join(str(s) for s in shape))
# Seek to writing position, get there by writing zeros if seek fails
seek_tell(imgf, hdr.get_data_offset(), write0=True)
# Write array data
arr_writer.to_fileobj(imgf)
hdrf.close_if_mine()
if not hdr_img_same:
imgf.close_if_mine()
self._header = hdr
self.file_map = file_map
# Restore any changed consumable values
hdr.set_data_offset(offset)
if hdr.has_data_slope:
hdr['scl_slope'] = slope
if hdr.has_data_intercept:
hdr['scl_inter'] = inter
load = AnalyzeImage.load
save = AnalyzeImage.instance_to_filename
|