/usr/lib/python3/dist-packages/nibabel-2.0.2.egg-info is in python3-nibabel 2.0.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 | Metadata-Version: 1.1
Name: nibabel
Version: 2.0.2
Summary: Access a multitude of neuroimaging data formats
Home-page: https://nipy.github.io/nibabel
Author: Matthew Brett, Michael Hanke and Eric Larson
Author-email: nipy-devel@neuroimaging.scipy.org
License: MIT license
Download-URL: https://github.com/nipy/nibabel
Description:
=======
NiBabel
=======
Read / write access to some common neuroimaging file formats
This package provides read +/- write access to some common medical and
neuroimaging file formats, including: ANALYZE_ (plain, SPM99, SPM2 and later),
GIFTI_, NIfTI1_, NIfTI2_, MINC1_, MINC2_, MGH_ and ECAT_ as well as Philips
PAR/REC. We can read and write Freesurfer_ geometry, and read Freesurfer
morphometry and annotation files. There is some very limited support for
DICOM_. NiBabel is the successor of PyNIfTI_.
.. _ANALYZE: http://www.grahamwideman.com/gw/brain/analyze/formatdoc.htm
.. _NIfTI1: http://nifti.nimh.nih.gov/nifti-1/
.. _NIfTI2: http://nifti.nimh.nih.gov/nifti-2/
.. _MINC1:
https://en.wikibooks.org/wiki/MINC/Reference/MINC1_File_Format_Reference
.. _MINC2:
https://en.wikibooks.org/wiki/MINC/Reference/MINC2.0_File_Format_Reference
.. _PyNIfTI: http://niftilib.sourceforge.net/pynifti/
.. _GIFTI: https://www.nitrc.org/projects/gifti
.. _MGH: https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/MghFormat
.. _ECAT: http://xmedcon.sourceforge.net/Docs/Ecat
.. _Freesurfer: https://surfer.nmr.mgh.harvard.edu
.. _DICOM: http://medical.nema.org/
The various image format classes give full or selective access to header (meta)
information and access to the image data is made available via NumPy arrays.
Website
=======
Current documentation on nibabel can always be found at the `NIPY nibabel
website <https://nipy.github.io/nibabel>`_.
Mailing Lists
=============
Please see the `nipy devel list
<http://mail.scipy.org/mailman/listinfo/nipy-devel>`_. The nipy devel list is
fine for user and developer questions about nibabel.
Code
====
You can find our sources and single-click downloads:
* `Main repository`_ on Github;
* Documentation_ for all releases and current development tree;
* Download the `current release`_ from pypi;
* Download `current development version`_ as a zip file;
* Downloads of all `available releases`_.
.. _main repository: https://github.com/nipy/nibabel
.. _Documentation: https://nipy.github.io/nibabel
.. _current release: https://pypi.python.org/pypi/nibabel
.. _current development version: https://github.com/nipy/nibabel/archive/master.zip
.. _available releases: https://github.com/nipy/nibabel/releases
License
=======
Nibabel is licensed under the terms of the MIT license. Some code included with
nibabel is licensed under the BSD license. Please see the COPYING file in the
nibabel distribution.
Platform: OS Independent
Classifier: Development Status :: 4 - Beta
Classifier: Environment :: Console
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: MIT License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python
Classifier: Topic :: Scientific/Engineering
Requires: numpy (>=1.5)
Provides: nibabel
Provides: nisext
|