/usr/lib/python3/dist-packages/liblinearutil.py is in python3-liblinear 2.1.0+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 | #!/usr/bin/env python
import os, sys
sys.path = [os.path.dirname(os.path.abspath(__file__))] + sys.path
from liblinear import *
from liblinear import __all__ as liblinear_all
from ctypes import c_double
__all__ = ['svm_read_problem', 'load_model', 'save_model', 'evaluations',
'train', 'predict'] + liblinear_all
def svm_read_problem(data_file_name):
"""
svm_read_problem(data_file_name) -> [y, x]
Read LIBSVM-format data from data_file_name and return labels y
and data instances x.
"""
prob_y = []
prob_x = []
for line in open(data_file_name):
line = line.split(None, 1)
# In case an instance with all zero features
if len(line) == 1: line += ['']
label, features = line
xi = {}
for e in features.split():
ind, val = e.split(":")
xi[int(ind)] = float(val)
prob_y += [float(label)]
prob_x += [xi]
return (prob_y, prob_x)
def load_model(model_file_name):
"""
load_model(model_file_name) -> model
Load a LIBLINEAR model from model_file_name and return.
"""
model = liblinear.load_model(model_file_name.encode())
if not model:
print("can't open model file %s" % model_file_name)
return None
model = toPyModel(model)
return model
def save_model(model_file_name, model):
"""
save_model(model_file_name, model) -> None
Save a LIBLINEAR model to the file model_file_name.
"""
liblinear.save_model(model_file_name.encode(), model)
def evaluations(ty, pv):
"""
evaluations(ty, pv) -> (ACC, MSE, SCC)
Calculate accuracy, mean squared error and squared correlation coefficient
using the true values (ty) and predicted values (pv).
"""
if len(ty) != len(pv):
raise ValueError("len(ty) must equal to len(pv)")
total_correct = total_error = 0
sumv = sumy = sumvv = sumyy = sumvy = 0
for v, y in zip(pv, ty):
if y == v:
total_correct += 1
total_error += (v-y)*(v-y)
sumv += v
sumy += y
sumvv += v*v
sumyy += y*y
sumvy += v*y
l = len(ty)
ACC = 100.0*total_correct/l
MSE = total_error/l
try:
SCC = ((l*sumvy-sumv*sumy)*(l*sumvy-sumv*sumy))/((l*sumvv-sumv*sumv)*(l*sumyy-sumy*sumy))
except:
SCC = float('nan')
return (ACC, MSE, SCC)
def train(arg1, arg2=None, arg3=None):
"""
train(y, x [, options]) -> model | ACC
train(prob [, options]) -> model | ACC
train(prob, param) -> model | ACC
Train a model from data (y, x) or a problem prob using
'options' or a parameter param.
If '-v' is specified in 'options' (i.e., cross validation)
either accuracy (ACC) or mean-squared error (MSE) is returned.
options:
-s type : set type of solver (default 1)
for multi-class classification
0 -- L2-regularized logistic regression (primal)
1 -- L2-regularized L2-loss support vector classification (dual)
2 -- L2-regularized L2-loss support vector classification (primal)
3 -- L2-regularized L1-loss support vector classification (dual)
4 -- support vector classification by Crammer and Singer
5 -- L1-regularized L2-loss support vector classification
6 -- L1-regularized logistic regression
7 -- L2-regularized logistic regression (dual)
for regression
11 -- L2-regularized L2-loss support vector regression (primal)
12 -- L2-regularized L2-loss support vector regression (dual)
13 -- L2-regularized L1-loss support vector regression (dual)
-c cost : set the parameter C (default 1)
-p epsilon : set the epsilon in loss function of SVR (default 0.1)
-e epsilon : set tolerance of termination criterion
-s 0 and 2
|f'(w)|_2 <= eps*min(pos,neg)/l*|f'(w0)|_2,
where f is the primal function, (default 0.01)
-s 11
|f'(w)|_2 <= eps*|f'(w0)|_2 (default 0.001)
-s 1, 3, 4, and 7
Dual maximal violation <= eps; similar to liblinear (default 0.)
-s 5 and 6
|f'(w)|_inf <= eps*min(pos,neg)/l*|f'(w0)|_inf,
where f is the primal function (default 0.01)
-s 12 and 13
|f'(alpha)|_1 <= eps |f'(alpha0)|,
where f is the dual function (default 0.1)
-B bias : if bias >= 0, instance x becomes [x; bias]; if < 0, no bias term added (default -1)
-wi weight: weights adjust the parameter C of different classes (see README for details)
-v n: n-fold cross validation mode
-q : quiet mode (no outputs)
"""
prob, param = None, None
if isinstance(arg1, (list, tuple)):
assert isinstance(arg2, (list, tuple))
y, x, options = arg1, arg2, arg3
prob = problem(y, x)
param = parameter(options)
elif isinstance(arg1, problem):
prob = arg1
if isinstance(arg2, parameter):
param = arg2
else :
param = parameter(arg2)
if prob == None or param == None :
raise TypeError("Wrong types for the arguments")
prob.set_bias(param.bias)
liblinear.set_print_string_function(param.print_func)
err_msg = liblinear.check_parameter(prob, param)
if err_msg :
raise ValueError('Error: %s' % err_msg)
if param.flag_find_C:
nr_fold = param.nr_fold
best_C = c_double()
best_rate = c_double()
max_C = 1024
if param.flag_C_specified:
start_C = param.C
else:
start_C = -1.0
liblinear.find_parameter_C(prob, param, nr_fold, start_C, max_C, best_C, best_rate)
print("Best C = %lf CV accuracy = %g%%\n"% (best_C.value, 100.0*best_rate.value))
return best_C.value,best_rate.value
elif param.flag_cross_validation:
l, nr_fold = prob.l, param.nr_fold
target = (c_double * l)()
liblinear.cross_validation(prob, param, nr_fold, target)
ACC, MSE, SCC = evaluations(prob.y[:l], target[:l])
if param.solver_type in [L2R_L2LOSS_SVR, L2R_L2LOSS_SVR_DUAL, L2R_L1LOSS_SVR_DUAL]:
print("Cross Validation Mean squared error = %g" % MSE)
print("Cross Validation Squared correlation coefficient = %g" % SCC)
return MSE
else:
print("Cross Validation Accuracy = %g%%" % ACC)
return ACC
else :
m = liblinear.train(prob, param)
m = toPyModel(m)
return m
def predict(y, x, m, options=""):
"""
predict(y, x, m [, options]) -> (p_labels, p_acc, p_vals)
Predict data (y, x) with the SVM model m.
options:
-b probability_estimates: whether to output probability estimates, 0 or 1 (default 0); currently for logistic regression only
-q quiet mode (no outputs)
The return tuple contains
p_labels: a list of predicted labels
p_acc: a tuple including accuracy (for classification), mean-squared
error, and squared correlation coefficient (for regression).
p_vals: a list of decision values or probability estimates (if '-b 1'
is specified). If k is the number of classes, for decision values,
each element includes results of predicting k binary-class
SVMs. if k = 2 and solver is not MCSVM_CS, only one decision value
is returned. For probabilities, each element contains k values
indicating the probability that the testing instance is in each class.
Note that the order of classes here is the same as 'model.label'
field in the model structure.
"""
def info(s):
print(s)
predict_probability = 0
argv = options.split()
i = 0
while i < len(argv):
if argv[i] == '-b':
i += 1
predict_probability = int(argv[i])
elif argv[i] == '-q':
info = print_null
else:
raise ValueError("Wrong options")
i+=1
solver_type = m.param.solver_type
nr_class = m.get_nr_class()
nr_feature = m.get_nr_feature()
is_prob_model = m.is_probability_model()
bias = m.bias
if bias >= 0:
biasterm = feature_node(nr_feature+1, bias)
else:
biasterm = feature_node(-1, bias)
pred_labels = []
pred_values = []
if predict_probability:
if not is_prob_model:
raise TypeError('probability output is only supported for logistic regression')
prob_estimates = (c_double * nr_class)()
for xi in x:
xi, idx = gen_feature_nodearray(xi, feature_max=nr_feature)
xi[-2] = biasterm
label = liblinear.predict_probability(m, xi, prob_estimates)
values = prob_estimates[:nr_class]
pred_labels += [label]
pred_values += [values]
else:
if nr_class <= 2:
nr_classifier = 1
else:
nr_classifier = nr_class
dec_values = (c_double * nr_classifier)()
for xi in x:
xi, idx = gen_feature_nodearray(xi, feature_max=nr_feature)
xi[-2] = biasterm
label = liblinear.predict_values(m, xi, dec_values)
values = dec_values[:nr_classifier]
pred_labels += [label]
pred_values += [values]
if len(y) == 0:
y = [0] * len(x)
ACC, MSE, SCC = evaluations(y, pred_labels)
l = len(y)
if m.is_regression_model():
info("Mean squared error = %g (regression)" % MSE)
info("Squared correlation coefficient = %g (regression)" % SCC)
else:
info("Accuracy = %g%% (%d/%d) (classification)" % (ACC, int(l*ACC/100), l))
return pred_labels, (ACC, MSE, SCC), pred_values
|