/usr/lib/python3/dist-packages/futurist/periodics.py is in python3-futurist 0.13.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 | # -*- coding: utf-8 -*-
# Copyright (C) 2015 Yahoo! Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import collections
import fractions
import functools
import heapq
import inspect
import logging
import math
import threading
# For: https://wiki.openstack.org/wiki/Security/Projects/Bandit
from random import SystemRandom as random
from concurrent import futures
import six
import futurist
from futurist import _utils as utils
LOG = logging.getLogger(__name__)
_REQUIRED_ATTRS = ('_is_periodic', '_periodic_spacing',
'_periodic_run_immediately')
# Constants that are used to determine what 'kind' the current callback
# is being ran as.
PERIODIC = 'periodic'
IMMEDIATE = 'immediate'
class Watcher(object):
"""A **read-only** object representing a periodics callbacks activities."""
_REPR_MSG_TPL = ("<Watcher object at 0x%(ident)x "
"("
"runs=%(runs)s,"
" successes=%(successes)s,"
" failures=%(failures)s,"
" elapsed=%(elapsed)0.2f,"
" elapsed_waiting=%(elapsed_waiting)0.2f"
")>")
def __init__(self, metrics):
self._metrics = metrics
def __repr__(self):
return self._REPR_MSG_TPL % dict(ident=id(self), **self._metrics)
@property
def runs(self):
"""How many times the periodic callback has been ran."""
return self._metrics['runs']
@property
def successes(self):
"""How many times the periodic callback ran successfully."""
return self._metrics['successes']
@property
def failures(self):
"""How many times the periodic callback ran unsuccessfully."""
return self._metrics['failures']
@property
def elapsed(self):
"""Total amount of time the periodic callback has ran for."""
return self._metrics['elapsed']
@property
def elapsed_waiting(self):
"""Total amount of time the periodic callback has waited to run for."""
return self._metrics['elapsed_waiting']
@property
def average_elapsed_waiting(self):
"""Avg. amount of time the periodic callback has waited to run for.
This may raise a ``ZeroDivisionError`` if there has been no runs.
"""
return self._metrics['elapsed_waiting'] / self._metrics['runs']
@property
def average_elapsed(self):
"""Avg. amount of time the periodic callback has ran for.
This may raise a ``ZeroDivisionError`` if there has been no runs.
"""
return self._metrics['elapsed'] / self._metrics['runs']
def _check_attrs(obj):
"""Checks that a periodic function/method has all the expected attributes.
This will return the expected attributes that were **not** found.
"""
missing_attrs = []
for attr_name in _REQUIRED_ATTRS:
if not hasattr(obj, attr_name):
missing_attrs.append(attr_name)
return missing_attrs
def is_periodic(obj):
"""Check whether an object is a valid periodic callable.
:param obj: object to inspect
:type obj: anything
:return: True if obj is a periodic task, otherwise False
"""
return callable(obj) and not _check_attrs(obj)
def periodic(spacing, run_immediately=False, enabled=True):
"""Tags a method/function as wanting/able to execute periodically.
:param spacing: how often to run the decorated function (required)
:type spacing: float/int
:param run_immediately: option to specify whether to run
immediately or wait until the spacing provided has
elapsed before running for the first time
:type run_immediately: boolean
:param enabled: whether the task is enabled to run
:type enabled: boolean
"""
if spacing <= 0:
raise ValueError("Periodicity/spacing must be greater than"
" zero instead of %s" % spacing)
def wrapper(f):
f._is_periodic = enabled
f._periodic_spacing = spacing
f._periodic_run_immediately = run_immediately
@six.wraps(f)
def decorator(*args, **kwargs):
return f(*args, **kwargs)
return decorator
return wrapper
def _add_jitter(max_percent_jitter):
"""Wraps a existing strategy and adds jitter to it.
0% to 100% of the spacing value will be added to this value to ensure
callbacks do not synchronize.
"""
if max_percent_jitter > 1 or max_percent_jitter < 0:
raise ValueError("Invalid 'max_percent_jitter', must be greater or"
" equal to 0.0 and less than or equal to 1.0")
def wrapper(func):
@six.wraps(func)
def decorator(cb, metrics, now=None):
next_run = func(cb, metrics, now=now)
how_often = cb._periodic_spacing
jitter = how_often * (random.random() * max_percent_jitter)
return next_run + jitter
decorator.__name__ += "_with_jitter"
return decorator
return wrapper
def _last_finished_strategy(cb, started_at, finished_at, metrics):
# Determine when the callback should next run based on when it was
# last finished **only** given metrics about this information.
how_often = cb._periodic_spacing
return finished_at + how_often
def _last_started_strategy(cb, started_at, finished_at, metrics):
# Determine when the callback should next run based on when it was
# last started **only** given metrics about this information.
how_often = cb._periodic_spacing
return started_at + how_often
def _aligned_last_finished_strategy(cb, started_at, finished_at, metrics):
# Determine when the callback should next run based on when it was
# last finished **only** where the last finished time is first aligned to
# be a multiple of the expected spacing (so that no matter how long or
# how short the callback takes it is always ran on its next aligned
# to spacing time).
how_often = cb._periodic_spacing
aligned_finished_at = finished_at - math.fmod(finished_at, how_often)
return aligned_finished_at + how_often
def _now_plus_periodicity(cb, now):
how_often = cb._periodic_spacing
return how_often + now
class _Schedule(object):
"""Internal heap-based structure that maintains the schedule/ordering.
This stores a heap composed of the following ``(next_run, index)`` where
``next_run`` is the next desired runtime for the callback that is stored
somewhere with the index provided. The index is saved so that if two
functions with the same ``next_run`` time are inserted, that the one with
the smaller index is preferred (it is also saved so that on pop we can
know what the index of the callback we should call is).
"""
def __init__(self):
self._ordering = []
def push(self, next_run, index):
heapq.heappush(self._ordering, (next_run, index))
def __len__(self):
return len(self._ordering)
def pop(self):
return heapq.heappop(self._ordering)
def _on_failure_log(log, cb, kind, spacing, exc_info, traceback=None):
cb_name = utils.get_callback_name(cb)
if all(exc_info) or not traceback:
log.error("Failed to call %s '%s' (it runs every %0.2f"
" seconds)", kind, cb_name, spacing, exc_info=exc_info)
else:
log.error("Failed to call %s '%s' (it runs every %0.2f"
" seconds):\n%s", kind, cb_name, spacing, traceback)
def _run_callback_retain(now_func, cb, *args, **kwargs):
# NOTE(harlowja): this needs to be a module level function so that the
# process pool execution can locate it (it can't be a lambda or method
# local function because it won't be able to find those).
failure = None
started_at = now_func()
try:
cb(*args, **kwargs)
except Exception:
# Until https://bugs.python.org/issue24451 is merged we have to
# capture and return the failure, so that we can have reliable
# timing information.
failure = utils.Failure(True)
finished_at = now_func()
return (started_at, finished_at, failure)
def _run_callback_no_retain(now_func, cb, *args, **kwargs):
# NOTE(harlowja): this needs to be a module level function so that the
# process pool execution can locate it (it can't be a lambda or method
# local function because it won't be able to find those).
failure = None
started_at = now_func()
try:
cb(*args, **kwargs)
except Exception:
# Until https://bugs.python.org/issue24451 is merged we have to
# capture and return the failure, so that we can have reliable
# timing information.
failure = utils.Failure(False)
finished_at = now_func()
return (started_at, finished_at, failure)
def _build(now_func, callables, next_run_scheduler):
schedule = _Schedule()
now = None
immediates = collections.deque()
for index, (cb, _cb_name, args, kwargs) in enumerate(callables):
if cb._periodic_run_immediately:
immediates.append(index)
else:
if now is None:
now = now_func()
next_run = next_run_scheduler(cb, now)
schedule.push(next_run, index)
return immediates, schedule
_SCHEDULE_RETRY_EXCEPTIONS = (RuntimeError, futurist.RejectedSubmission)
class ExecutorFactory(object):
"""Base class for any executor factory."""
shutdown = True
"""Whether the executor should be shut down on periodic worker stop."""
def __call__(self):
"""Return the executor to be used."""
raise NotImplementedError()
class ExistingExecutor(ExecutorFactory):
"""An executor factory returning the existing object."""
def __init__(self, executor, shutdown=False):
self._executor = executor
self.shutdown = shutdown
def __call__(self):
return self._executor
class PeriodicWorker(object):
"""Calls a collection of callables periodically (sleeping as needed...).
NOTE(harlowja): typically the :py:meth:`.start` method is executed in a
background thread so that the periodic callables are executed in
the background/asynchronously (using the defined periods to determine
when each is called).
"""
#: Max amount of time to wait when running (forces a wakeup when elapsed).
MAX_LOOP_IDLE = 30
_NO_OP_ARGS = ()
_NO_OP_KWARGS = {}
_INITIAL_METRICS = {
'runs': 0,
'elapsed': 0,
'elapsed_waiting': 0,
'failures': 0,
'successes': 0,
}
# When scheduling fails temporary, use a random delay between 0.9-1.1 sec.
_RESCHEDULE_DELAY = 0.9
_RESCHEDULE_JITTER = 0.2
DEFAULT_JITTER = fractions.Fraction(5, 100)
"""
Default jitter percentage the built-in strategies (that have jitter
support) will use.
"""
BUILT_IN_STRATEGIES = {
'last_started': (
_last_started_strategy,
_now_plus_periodicity,
),
'last_started_jitter': (
_add_jitter(DEFAULT_JITTER)(_last_started_strategy),
_now_plus_periodicity,
),
'last_finished': (
_last_finished_strategy,
_now_plus_periodicity,
),
'last_finished_jitter': (
_add_jitter(DEFAULT_JITTER)(_last_finished_strategy),
_now_plus_periodicity,
),
'aligned_last_finished': (
_aligned_last_finished_strategy,
_now_plus_periodicity,
),
'aligned_last_finished_jitter': (
_add_jitter(DEFAULT_JITTER)(_aligned_last_finished_strategy),
_now_plus_periodicity,
),
}
"""
Built in scheduling strategies (used to determine when next to run
a periodic callable).
The first element is the strategy to use after the initial start
and the second element is the strategy to use for the initial start.
These are made somewhat pluggable so that we can *easily* add-on
different types later (perhaps one that uses a cron-style syntax
for example).
"""
@classmethod
def create(cls, objects, exclude_hidden=True,
log=None, executor_factory=None,
cond_cls=threading.Condition, event_cls=threading.Event,
schedule_strategy='last_started', now_func=utils.now,
on_failure=None, args=_NO_OP_ARGS, kwargs=_NO_OP_KWARGS):
"""Automatically creates a worker by analyzing object(s) methods.
Only picks up methods that have been tagged/decorated with
the :py:func:`.periodic` decorator (does not match against private
or protected methods unless explicitly requested to).
:param objects: the objects to introspect for decorated members
:type objects: iterable
:param exclude_hidden: exclude hidden members (ones that start with
an underscore)
:type exclude_hidden: bool
:param log: logger to use when creating a new worker (defaults
to the module logger if none provided), it is currently
only used to report callback failures (if they occur)
:type log: logger
:param executor_factory: factory callable that can be used to generate
executor objects that will be used to
run the periodic callables (if none is
provided one will be created that uses
the :py:class:`~futurist.SynchronousExecutor`
class)
:type executor_factory: ExecutorFactory or any callable
:param cond_cls: callable object that can
produce ``threading.Condition``
(or compatible/equivalent) objects
:type cond_cls: callable
:param event_cls: callable object that can produce ``threading.Event``
(or compatible/equivalent) objects
:type event_cls: callable
:param schedule_strategy: string to select one of the built-in
strategies that can return the
next time a callable should run
:type schedule_strategy: string
:param now_func: callable that can return the current time offset
from some point (used in calculating elapsed times
and next times to run); preferably this is
monotonically increasing
:type now_func: callable
:param on_failure: callable that will be called whenever a periodic
function fails with an error, it will be provided
four positional arguments and one keyword
argument, the first positional argument being the
callable that failed, the second being the type
of activity under which it failed (IMMEDIATE or
PERIODIC), the third being the spacing that the
callable runs at and the fourth `exc_info` tuple
of the failure. The keyword argument 'traceback'
will also be provided that may be be a string
that caused the failure (this is required for
executors which run out of process, as those can not
transfer stack frames across process boundaries); if
no callable is provided then a default failure
logging function will be used instead, do note that
any user provided callable should not raise
exceptions on being called
:type on_failure: callable
:param args: positional arguments to be passed to all callables
:type args: tuple
:param kwargs: keyword arguments to be passed to all callables
:type kwargs: dict
"""
callables = []
for obj in objects:
for (name, member) in inspect.getmembers(obj):
if name.startswith("_") and exclude_hidden:
continue
if six.callable(member):
missing_attrs = _check_attrs(member)
if not missing_attrs:
callables.append((member, args, kwargs))
return cls(callables, log=log, executor_factory=executor_factory,
cond_cls=cond_cls, event_cls=event_cls,
schedule_strategy=schedule_strategy, now_func=now_func,
on_failure=on_failure)
def __init__(self, callables, log=None, executor_factory=None,
cond_cls=threading.Condition, event_cls=threading.Event,
schedule_strategy='last_started', now_func=utils.now,
on_failure=None):
"""Creates a new worker using the given periodic callables.
:param callables: a iterable of tuple objects previously decorated
with the :py:func:`.periodic` decorator, each item
in the iterable is expected to be in the format
of ``(cb, args, kwargs)`` where ``cb`` is the
decorated function and ``args`` and ``kwargs`` are
any positional and keyword arguments to send into
the callback when it is activated (both ``args``
and ``kwargs`` may be provided as none to avoid
using them)
:type callables: iterable
:param log: logger to use when creating a new worker (defaults
to the module logger if none provided), it is currently
only used to report callback failures (if they occur)
:type log: logger
:param executor_factory: factory callable that can be used to generate
executor objects that will be used to
run the periodic callables (if none is
provided one will be created that uses
the :py:class:`~futurist.SynchronousExecutor`
class)
:type executor_factory: ExecutorFactory or any callable
:param cond_cls: callable object that can
produce ``threading.Condition``
(or compatible/equivalent) objects
:type cond_cls: callable
:param event_cls: callable object that can produce ``threading.Event``
(or compatible/equivalent) objects
:type event_cls: callable
:param schedule_strategy: string to select one of the built-in
strategies that can return the
next time a callable should run
:type schedule_strategy: string
:param now_func: callable that can return the current time offset
from some point (used in calculating elapsed times
and next times to run); preferably this is
monotonically increasing
:type now_func: callable
:param on_failure: callable that will be called whenever a periodic
function fails with an error, it will be provided
four positional arguments and one keyword
argument, the first positional argument being the
callable that failed, the second being the type
of activity under which it failed (IMMEDIATE or
PERIODIC), the third being the spacing that the
callable runs at and the fourth `exc_info` tuple
of the failure. The keyword argument 'traceback'
will also be provided that may be be a string
that caused the failure (this is required for
executors which run out of process, as those can not
transfer stack frames across process boundaries); if
no callable is provided then a default failure
logging function will be used instead, do note that
any user provided callable should not raise
exceptions on being called
:type on_failure: callable
"""
self._tombstone = event_cls()
self._waiter = cond_cls()
self._dead = event_cls()
self._active = event_cls()
self._cond_cls = cond_cls
self._watchers = []
self._callables = []
for (cb, args, kwargs) in callables:
if not six.callable(cb):
raise ValueError("Periodic callback %r must be callable" % cb)
missing_attrs = _check_attrs(cb)
if missing_attrs:
raise ValueError("Periodic callback %r missing required"
" attributes %s" % (cb, missing_attrs))
if cb._is_periodic:
# Ensure these aren't none and if so replace them with
# something more appropriate...
if args is None:
args = self._NO_OP_ARGS
if kwargs is None:
kwargs = self._NO_OP_KWARGS
cb_name = utils.get_callback_name(cb)
cb_metrics = self._INITIAL_METRICS.copy()
watcher = Watcher(cb_metrics)
self._callables.append((cb, cb_name, args, kwargs))
self._watchers.append((cb_metrics, watcher))
try:
strategy = self.BUILT_IN_STRATEGIES[schedule_strategy]
self._schedule_strategy = strategy[0]
self._initial_schedule_strategy = strategy[1]
except KeyError:
valid_strategies = sorted(self.BUILT_IN_STRATEGIES.keys())
raise ValueError("Scheduling strategy '%s' must be one of"
" %s selectable strategies"
% (schedule_strategy, valid_strategies))
self._immediates, self._schedule = _build(
now_func, self._callables, self._initial_schedule_strategy)
self._log = log or LOG
if executor_factory is None:
executor_factory = lambda: futurist.SynchronousExecutor()
self._on_failure = functools.partial(_on_failure_log, self._log)
self._executor_factory = executor_factory
self._now_func = now_func
def __len__(self):
"""How many callables are currently active."""
return len(self._callables)
def _run(self, executor, runner):
"""Main worker run loop."""
barrier = utils.Barrier(cond_cls=self._cond_cls)
def _process_scheduled():
# Figure out when we should run next (by selecting the
# minimum item from the heap, where the minimum should be
# the callable that needs to run next and has the lowest
# next desired run time).
with self._waiter:
while (not self._schedule and
not self._tombstone.is_set() and
not self._immediates):
self._waiter.wait(self.MAX_LOOP_IDLE)
if self._tombstone.is_set():
# We were requested to stop, so stop.
return
if self._immediates:
# This will get processed in _process_immediates()
# in the next loop call.
return
submitted_at = now = self._now_func()
next_run, index = self._schedule.pop()
when_next = next_run - now
if when_next <= 0:
# Run & schedule its next execution.
cb, cb_name, args, kwargs = self._callables[index]
self._log.debug("Submitting periodic function '%s'",
cb_name)
try:
fut = executor.submit(runner,
self._now_func,
cb, *args, **kwargs)
except _SCHEDULE_RETRY_EXCEPTIONS as exc:
# Restart after a short delay
delay = (self._RESCHEDULE_DELAY +
random().random() * self._RESCHEDULE_JITTER)
self._log.error("Failed to submit periodic function "
"'%s', retrying after %.2f sec. "
"Error: %s",
cb_name, delay, exc)
self._schedule.push(self._now_func() + delay,
index)
else:
barrier.incr()
fut.add_done_callback(functools.partial(_on_done,
PERIODIC,
cb, cb_name,
index,
submitted_at))
fut.add_done_callback(lambda _fut: barrier.decr())
else:
# Gotta wait...
self._schedule.push(next_run, index)
when_next = min(when_next, self.MAX_LOOP_IDLE)
self._waiter.wait(when_next)
def _process_immediates():
try:
index = self._immediates.popleft()
except IndexError:
pass
else:
cb, cb_name, args, kwargs = self._callables[index]
submitted_at = self._now_func()
self._log.debug("Submitting immediate function '%s'", cb_name)
try:
fut = executor.submit(runner, self._now_func,
cb, *args, **kwargs)
except _SCHEDULE_RETRY_EXCEPTIONS as exc:
self._log.error("Failed to submit immediate function "
"'%s', retrying. Error: %s", cb_name, exc)
# Restart as soon as possible
self._immediates.append(index)
else:
barrier.incr()
fut.add_done_callback(functools.partial(_on_done,
IMMEDIATE,
cb, cb_name,
index,
submitted_at))
fut.add_done_callback(lambda _fut: barrier.decr())
def _on_done(kind, cb, cb_name, index, submitted_at, fut):
started_at, finished_at, failure = fut.result()
cb_metrics, _watcher = self._watchers[index]
cb_metrics['runs'] += 1
if failure is not None:
cb_metrics['failures'] += 1
self._on_failure(cb, kind, cb._periodic_spacing,
failure.exc_info, traceback=failure.traceback)
else:
cb_metrics['successes'] += 1
elapsed = max(0, finished_at - started_at)
elapsed_waiting = max(0, started_at - submitted_at)
cb_metrics['elapsed'] += elapsed
cb_metrics['elapsed_waiting'] += elapsed_waiting
next_run = self._schedule_strategy(cb,
started_at, finished_at,
cb_metrics)
with self._waiter:
self._schedule.push(next_run, index)
self._waiter.notify_all()
try:
while not self._tombstone.is_set():
_process_immediates()
_process_scheduled()
finally:
barrier.wait()
def _on_finish(self):
# TODO(harlowja): this may be to verbose for people?
if not self._log.isEnabledFor(logging.DEBUG):
return
watcher_it = self.iter_watchers()
for index, watcher in enumerate(watcher_it):
cb, cb_name, _args, _kwargs = self._callables[index]
self._log.debug("Stopped running callback[%s] '%s' periodically:",
index, cb_name)
self._log.debug(" Periodicity = %ss", cb._periodic_spacing)
self._log.debug(" Runs = %s", watcher.runs)
self._log.debug(" Failures = %s", watcher.failures)
self._log.debug(" Successes = %s", watcher.successes)
try:
self._log.debug(" Average elapsed = %0.4fs",
watcher.average_elapsed)
self._log.debug(" Average elapsed waiting = %0.4fs",
watcher.average_elapsed_waiting)
except ZeroDivisionError:
pass
def add(self, cb, *args, **kwargs):
"""Adds a new periodic callback to the current worker.
Returns a :py:class:`.Watcher` if added successfully or the value
``None`` if not (or raises a ``ValueError`` if the callback is not
correctly formed and/or decorated).
:param cb: a callable object/method/function previously decorated
with the :py:func:`.periodic` decorator
:type cb: callable
"""
if not six.callable(cb):
raise ValueError("Periodic callback %r must be callable" % cb)
missing_attrs = _check_attrs(cb)
if missing_attrs:
raise ValueError("Periodic callback %r missing required"
" attributes %s" % (cb, missing_attrs))
if not cb._is_periodic:
return None
now = self._now_func()
with self._waiter:
cb_index = len(self._callables)
cb_name = utils.get_callback_name(cb)
cb_metrics = self._INITIAL_METRICS.copy()
watcher = Watcher(cb_metrics)
self._callables.append((cb, cb_name, args, kwargs))
self._watchers.append((cb_metrics, watcher))
if cb._periodic_run_immediately:
self._immediates.append(cb_index)
else:
next_run = self._initial_schedule_strategy(cb, now)
self._schedule.push(next_run, cb_index)
self._waiter.notify_all()
return watcher
def start(self, allow_empty=False):
"""Starts running (will not return until :py:meth:`.stop` is called).
:param allow_empty: instead of running with no callbacks raise when
this worker has no contained callables (this can be
set to true and :py:meth:`.add` can be used to add
new callables on demand), note that when enabled
and no callbacks exist this will block and
sleep (until either stopped or callbacks are
added)
:type allow_empty: bool
"""
if not self._callables and not allow_empty:
raise RuntimeError("A periodic worker can not start"
" without any callables")
if self._active.is_set():
raise RuntimeError("A periodic worker can not be started"
" twice")
executor = self._executor_factory()
# NOTE(harlowja): we compare with the futures process pool executor
# since its the base type of futurist ProcessPoolExecutor and it is
# possible for users to pass in there own custom executors, this one
# is known to not be able to retain tracebacks...
if isinstance(executor, futures.ProcessPoolExecutor):
# Pickling a traceback will not work, so do not try to do it...
#
# Avoids 'TypeError: can't pickle traceback objects'
runner = _run_callback_no_retain
else:
runner = _run_callback_retain
self._dead.clear()
self._active.set()
try:
self._run(executor, runner)
finally:
if getattr(self._executor_factory, 'shutdown', True):
executor.shutdown()
self._dead.set()
self._active.clear()
self._on_finish()
def stop(self):
"""Sets the tombstone (this stops any further executions)."""
with self._waiter:
self._tombstone.set()
self._waiter.notify_all()
def iter_watchers(self):
"""Iterator/generator over all the currently maintained watchers."""
for _cb_metrics, watcher in self._watchers:
yield watcher
def reset(self):
"""Resets the workers internal state."""
self._tombstone.clear()
self._dead.clear()
for cb_metrics, _watcher in self._watchers:
for k in list(six.iterkeys(cb_metrics)):
# NOTE(harlowja): mutate the original dictionaries keys
# so that the watcher (which references the same dictionary
# keys) is able to see those changes.
cb_metrics[k] = 0
self._immediates, self._schedule = _build(
self._now_func, self._callables, self._initial_schedule_strategy)
def wait(self, timeout=None):
"""Waits for the :py:meth:`.start` method to gracefully exit.
An optional timeout can be provided, which will cause the method to
return within the specified timeout. If the timeout is reached, the
returned value will be False.
:param timeout: Maximum number of seconds that the :meth:`.wait`
method should block for
:type timeout: float/int
"""
self._dead.wait(timeout)
return self._dead.is_set()
|