This file is indexed.

/usr/lib/python3/dist-packages/emcee/ptsampler.py is in python3-emcee 2.1.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
#!/usr/bin/env python
# -*- coding: utf-8 -*-

from __future__ import (division, print_function, absolute_import,
                        unicode_literals)

__all__ = ["PTSampler"]

import numpy as np
import numpy.random as nr
import multiprocessing as multi

from . import autocorr
from .sampler import Sampler

def default_beta_ladder(ndim, ntemps=None, Tmax=None):
    """Returns a ladder of :math:`\beta \equiv 1/T` with temperatures
    geometrically spaced with spacing chosen so that a Gaussian
    posterior would have a 0.25 temperature swap acceptance rate.

    :param ndim:
        The number of dimensions in the parameter space.

    :param ntemps: (optional)
        If set, the number of temperatures to use.  If ``None``, the
        ``Tmax`` argument must be given, and the number of
        temperatures is chosen so that the highest temperature is
        greater than ``Tmax``.

    :param Tmax: (optional)
        If ``ntemps`` is not given, this argument controls the number
        of temperatures.  Temperatures are chosen according to the
        spacing criteria until the maximum temperature exceeds
        ``Tmax``

    """
    tstep = np.array([25.2741, 7., 4.47502, 3.5236, 3.0232,
                      2.71225, 2.49879, 2.34226, 2.22198, 2.12628,
                      2.04807, 1.98276, 1.92728, 1.87946, 1.83774,
                      1.80096, 1.76826, 1.73895, 1.7125, 1.68849,
                      1.66657, 1.64647, 1.62795, 1.61083, 1.59494,
                      1.58014, 1.56632, 1.55338, 1.54123, 1.5298,
                      1.51901, 1.50881, 1.49916, 1.49, 1.4813,
                      1.47302, 1.46512, 1.45759, 1.45039, 1.4435,
                      1.4369, 1.43056, 1.42448, 1.41864, 1.41302,
                      1.40761, 1.40239, 1.39736, 1.3925, 1.38781,
                      1.38327, 1.37888, 1.37463, 1.37051, 1.36652,
                      1.36265, 1.35889, 1.35524, 1.3517, 1.34825,
                      1.3449, 1.34164, 1.33847, 1.33538, 1.33236,
                      1.32943, 1.32656, 1.32377, 1.32104, 1.31838,
                      1.31578, 1.31325, 1.31076, 1.30834, 1.30596,
                      1.30364, 1.30137, 1.29915, 1.29697, 1.29484,
                      1.29275, 1.29071, 1.2887, 1.28673, 1.2848,
                      1.28291, 1.28106, 1.27923, 1.27745, 1.27569,
                      1.27397, 1.27227, 1.27061, 1.26898, 1.26737,
                      1.26579, 1.26424, 1.26271, 1.26121,
                      1.25973])
    dmax = tstep.shape[0]
        
    if ndim > dmax:
        # An approximation to the temperature step at large
        # dimension
        tstep = 1.0 + 2.0*np.sqrt(np.log(4.0))/np.sqrt(ndim)
    else:
        tstep = tstep[ndim-1]
        
    if ntemps is None and Tmax is None:
        raise ValueError('must specify one of ``ntemps`` and ``Tmax``')
    elif ntemps is None:
        ntemps = int(np.log(Tmax)/np.log(tstep)+2)

    return np.exp(np.linspace(0, -(ntemps-1)*np.log(tstep), ntemps))


class PTLikePrior(object):
    """
    Wrapper class for logl and logp.

    """

    def __init__(self, logl, logp, loglargs=[], logpargs=[], loglkwargs={},
                 logpkwargs={}):
        self.logl = logl
        self.logp = logp
        self.loglargs = loglargs
        self.logpargs = logpargs
        self.loglkwargs = loglkwargs
        self.logpkwargs = logpkwargs

    def __call__(self, x):
        lp = self.logp(x, *self.logpargs, **self.logpkwargs)

        if lp == float('-inf'):
            return lp, lp

        return self.logl(x, *self.loglargs, **self.loglkwargs), lp


class PTSampler(Sampler):
    """
    A parallel-tempered ensemble sampler, using :class:`EnsembleSampler`
    for sampling within each parallel chain.

    :param ntemps:
        The number of temperatures.  Can be ``None``, in which case
        the ``Tmax`` argument sets the maximum temperature.

    :param nwalkers:
        The number of ensemble walkers at each temperature.

    :param dim:
        The dimension of parameter space.

    :param logl:
        The log-likelihood function.

    :param logp:
        The log-prior function.

    :param threads: (optional)
        The number of parallel threads to use in sampling.

    :param pool: (optional)
        Alternative to ``threads``.  Any object that implements a
        ``map`` method compatible with the built-in ``map`` will do
        here.  For example, :class:`multi.Pool` will do.

    :param betas: (optional)
        Array giving the inverse temperatures, :math:`\\beta=1/T`,
        used in the ladder.  The default is chosen so that a Gaussian
        posterior in the given number of dimensions will have a 0.25
        tswap acceptance rate.

    :param a: (optional)
        Proposal scale factor.

    :param Tmax: (optional)
        Maximum temperature for the ladder.  If ``ntemps`` is
        ``None``, this argument is used to set the temperature ladder.

    :param loglargs: (optional)
        Positional arguments for the log-likelihood function.

    :param logpargs: (optional)
        Positional arguments for the log-prior function.

    :param loglkwargs: (optional)
        Keyword arguments for the log-likelihood function.

    :param logpkwargs: (optional)
        Keyword arguments for the log-prior function.

    """
    def __init__(self, ntemps, nwalkers, dim, logl, logp, threads=1,
                 pool=None, betas=None, a=2.0, Tmax=None, loglargs=[], logpargs=[],
                 loglkwargs={}, logpkwargs={}):
        self.logl = logl
        self.logp = logp
        self.a = a
        self.loglargs = loglargs
        self.logpargs = logpargs
        self.loglkwargs = loglkwargs
        self.logpkwargs = logpkwargs

        self.nwalkers = nwalkers
        self.dim = dim
        
        if betas is None:
            self._betas = default_beta_ladder(self.dim, ntemps=ntemps, Tmax=Tmax)
        else:
            self._betas = betas

        self.ntemps = self.betas.shape[0]

        assert self.nwalkers % 2 == 0, \
            "The number of walkers must be even."
        assert self.nwalkers >= 2*self.dim, \
            "The number of walkers must be greater than 2*dimension."

        self._chain = None
        self._lnprob = None
        self._lnlikelihood = None

        self.nswap = np.zeros(self.ntemps, dtype=np.float)
        self.nswap_accepted = np.zeros(self.ntemps, dtype=np.float)

        self.nprop = np.zeros((self.ntemps, self.nwalkers), dtype=np.float)
        self.nprop_accepted = np.zeros((self.ntemps, self.nwalkers),
                                       dtype=np.float)

        self.pool = pool
        if threads > 1 and pool is None:
            self.pool = multi.Pool(threads)

    def reset(self):
        """
        Clear the ``chain``, ``lnprobability``, ``lnlikelihood``,
        ``acceptance_fraction``, ``tswap_acceptance_fraction`` stored
        properties.

        """
        self.nswap = np.zeros(self.ntemps, dtype=np.float)
        self.nswap_accepted = np.zeros(self.ntemps, dtype=np.float)

        self.nprop = np.zeros((self.ntemps, self.nwalkers), dtype=np.float)
        self.nprop_accepted = np.zeros((self.ntemps, self.nwalkers),
                                       dtype=np.float)

        self._chain = None
        self._lnprob = None
        self._lnlikelihood = None

    def sample(self, p0, lnprob0=None, lnlike0=None, iterations=1,
               thin=1, storechain=True):
        """
        Advance the chains ``iterations`` steps as a generator.

        :param p0:
            The initial positions of the walkers.  Shape should be
            ``(ntemps, nwalkers, dim)``.

        :param lnprob0: (optional)
            The initial posterior values for the ensembles.  Shape
            ``(ntemps, nwalkers)``.

        :param lnlike0: (optional)
            The initial likelihood values for the ensembles.  Shape
            ``(ntemps, nwalkers)``.

        :param iterations: (optional)
            The number of iterations to preform.

        :param thin: (optional)
            The number of iterations to perform between saving the
            state to the internal chain.

        :param storechain: (optional)
            If ``True`` store the iterations in the ``chain``
            property.

        At each iteration, this generator yields

        * ``p``, the current position of the walkers.

        * ``lnprob`` the current posterior values for the walkers.

        * ``lnlike`` the current likelihood values for the walkers.

        """
        p = np.copy(np.array(p0))

        # If we have no lnprob or logls compute them
        if lnprob0 is None or lnlike0 is None:
            fn = PTLikePrior(self.logl, self.logp, self.loglargs,
                             self.logpargs, self.loglkwargs, self.logpkwargs)
            if self.pool is None:
                results = list(map(fn, p.reshape((-1, self.dim))))
            else:
                results = list(self.pool.map(fn, p.reshape((-1, self.dim))))

            logls = np.array([r[0] for r in results]).reshape((self.ntemps,
                                                               self.nwalkers))
            logps = np.array([r[1] for r in results]).reshape((self.ntemps,
                                                               self.nwalkers))

            lnlike0 = logls
            lnprob0 = logls * self.betas.reshape((self.ntemps, 1)) + logps

        lnprob = lnprob0
        logl = lnlike0

        # Expand the chain in advance of the iterations
        if storechain:
            nsave = iterations / thin
            if self._chain is None:
                isave = 0
                self._chain = np.zeros((self.ntemps, self.nwalkers, nsave,
                                        self.dim))
                self._lnprob = np.zeros((self.ntemps, self.nwalkers, nsave))
                self._lnlikelihood = np.zeros((self.ntemps, self.nwalkers,
                                               nsave))
            else:
                isave = self._chain.shape[2]
                self._chain = np.concatenate((self._chain,
                                              np.zeros((self.ntemps,
                                                        self.nwalkers,
                                                        nsave, self.dim))),
                                             axis=2)
                self._lnprob = np.concatenate((self._lnprob,
                                               np.zeros((self.ntemps,
                                                         self.nwalkers,
                                                         nsave))),
                                              axis=2)
                self._lnlikelihood = np.concatenate((self._lnlikelihood,
                                                     np.zeros((self.ntemps,
                                                               self.nwalkers,
                                                               nsave))),
                                                    axis=2)

        for i in range(iterations):
            for j in [0, 1]:
                jupdate = j
                jsample = (j + 1) % 2

                pupdate = p[:, jupdate::2, :]
                psample = p[:, jsample::2, :]

                zs = np.exp(np.random.uniform(low=-np.log(self.a), high=np.log(self.a), size=(self.ntemps, self.nwalkers/2)))

                qs = np.zeros((self.ntemps, self.nwalkers/2, self.dim))
                for k in range(self.ntemps):
                    js = np.random.randint(0, high=self.nwalkers / 2,
                                           size=self.nwalkers / 2)
                    qs[k, :, :] = psample[k, js, :] + zs[k, :].reshape(
                        (self.nwalkers / 2, 1)) * (pupdate[k, :, :] -
                                                   psample[k, js, :])

                fn = PTLikePrior(self.logl, self.logp, self.loglargs,
                                 self.logpargs, self.loglkwargs,
                                 self.logpkwargs)
                if self.pool is None:
                    results = list(map(fn, qs.reshape((-1, self.dim))))
                else:
                    results = list(self.pool.map(fn, qs.reshape((-1,
                                                                 self.dim))))

                qslogls = np.array([r[0] for r in results]).reshape(
                    (self.ntemps, self.nwalkers/2))
                qslogps = np.array([r[1] for r in results]).reshape(
                    (self.ntemps, self.nwalkers/2))
                qslnprob = qslogls * self.betas.reshape((self.ntemps, 1)) \
                    + qslogps

                logpaccept = self.dim*np.log(zs) + qslnprob \
                    - lnprob[:, jupdate::2]
                logrs = np.log(np.random.uniform(low=0.0, high=1.0,
                                                 size=(self.ntemps,
                                                       self.nwalkers/2)))

                accepts = logrs < logpaccept
                accepts = accepts.flatten()

                pupdate.reshape((-1, self.dim))[accepts, :] = \
                    qs.reshape((-1, self.dim))[accepts, :]
                lnprob[:, jupdate::2].reshape((-1,))[accepts] = \
                    qslnprob.reshape((-1,))[accepts]
                logl[:, jupdate::2].reshape((-1,))[accepts] = \
                    qslogls.reshape((-1,))[accepts]

                accepts = accepts.reshape((self.ntemps, self.nwalkers/2))

                self.nprop[:, jupdate::2] += 1.0
                self.nprop_accepted[:, jupdate::2] += accepts

            p, lnprob, logl = self._temperature_swaps(p, lnprob, logl)

            if (i + 1) % thin == 0:
                if storechain:
                    self._chain[:, :, isave, :] = p
                    self._lnprob[:, :, isave, ] = lnprob
                    self._lnlikelihood[:, :, isave] = logl
                    isave += 1

            yield p, lnprob, logl

    def _temperature_swaps(self, p, lnprob, logl):
        """
        Perform parallel-tempering temperature swaps on the state
        in ``p`` with associated ``lnprob`` and ``logl``.

        """
        ntemps = self.ntemps

        for i in range(ntemps - 1, 0, -1):
            bi = self.betas[i]
            bi1 = self.betas[i - 1]

            dbeta = bi1 - bi

            iperm = nr.permutation(self.nwalkers)
            i1perm = nr.permutation(self.nwalkers)

            raccept = np.log(nr.uniform(size=self.nwalkers))
            paccept = dbeta * (logl[i, iperm] - logl[i - 1, i1perm])

            self.nswap[i] += self.nwalkers
            self.nswap[i - 1] += self.nwalkers

            asel = (paccept > raccept)
            nacc = np.sum(asel)

            self.nswap_accepted[i] += nacc
            self.nswap_accepted[i - 1] += nacc

            ptemp = np.copy(p[i, iperm[asel], :])
            ltemp = np.copy(logl[i, iperm[asel]])
            prtemp = np.copy(lnprob[i, iperm[asel]])

            p[i, iperm[asel], :] = p[i - 1, i1perm[asel], :]
            logl[i, iperm[asel]] = logl[i - 1, i1perm[asel]]
            lnprob[i, iperm[asel]] = lnprob[i - 1, i1perm[asel]] \
                - dbeta * logl[i - 1, i1perm[asel]]

            p[i - 1, i1perm[asel], :] = ptemp
            logl[i - 1, i1perm[asel]] = ltemp
            lnprob[i - 1, i1perm[asel]] = prtemp + dbeta * ltemp

        return p, lnprob, logl

    def thermodynamic_integration_log_evidence(self, logls=None, fburnin=0.1):
        """
        Thermodynamic integration estimate of the evidence.

        :param logls: (optional) The log-likelihoods to use for
            computing the thermodynamic evidence.  If ``None`` (the
            default), use the stored log-likelihoods in the sampler.
            Should be of shape ``(Ntemps, Nwalkers, Nsamples)``.

        :param fburnin: (optional)
            The fraction of the chain to discard as burnin samples; only the
            final ``1-fburnin`` fraction of the samples will be used to
            compute the evidence; the default is ``fburnin = 0.1``.

        :return ``(lnZ, dlnZ)``: Returns an estimate of the
            log-evidence and the error associated with the finite
            number of temperatures at which the posterior has been
            sampled.

        The evidence is the integral of the un-normalized posterior
        over all of parameter space:

        .. math::

            Z \\equiv \\int d\\theta \\, l(\\theta) p(\\theta)

        Thermodymanic integration is a technique for estimating the
        evidence integral using information from the chains at various
        temperatures.  Let

        .. math::

            Z(\\beta) = \\int d\\theta \\, l^\\beta(\\theta) p(\\theta)

        Then

        .. math::

            \\frac{d \\ln Z}{d \\beta}
            = \\frac{1}{Z(\\beta)} \\int d\\theta l^\\beta p \\ln l
            = \\left \\langle \\ln l \\right \\rangle_\\beta

        so

        .. math::

            \\ln Z(\\beta = 1)
            = \\int_0^1 d\\beta \\left \\langle \\ln l \\right\\rangle_\\beta

        By computing the average of the log-likelihood at the
        difference temperatures, the sampler can approximate the above
        integral.
        """

        if logls is None:
            return self.thermodynamic_integration_log_evidence(
                logls=self.lnlikelihood, fburnin=fburnin)
        else:
            betas = np.concatenate((self.betas, np.array([0])))
            betas2 = np.concatenate((self.betas[::2], np.array([0])))

            istart = int(logls.shape[2] * fburnin + 0.5)

            mean_logls = np.mean(np.mean(logls, axis=1)[:, istart:], axis=1)
            mean_logls2 = mean_logls[::2]

            lnZ = -np.dot(mean_logls, np.diff(betas))
            lnZ2 = -np.dot(mean_logls2, np.diff(betas2))

            return lnZ, np.abs(lnZ - lnZ2)

    @property
    def betas(self):
        """
        Returns the sequence of inverse temperatures in the ladder.

        """
        return self._betas

    @property
    def chain(self):
        """
        Returns the stored chain of samples; shape ``(Ntemps,
        Nwalkers, Nsteps, Ndim)``.

        """
        return self._chain

    @property
    def flatchain(self):
        """Returns the stored chain, but flattened along the walker axis, so
        of shape ``(Ntemps, Nwalkers*Nsteps, Ndim)``.

        """

        s = self.chain.shape

        return self._chain.reshape((s[0], -1, s[3]))

    @property
    def lnprobability(self):
        """
        Matrix of lnprobability values; shape ``(Ntemps, Nwalkers, Nsteps)``.

        """
        return self._lnprob

    @property
    def lnlikelihood(self):
        """
        Matrix of ln-likelihood values; shape ``(Ntemps, Nwalkers, Nsteps)``.

        """
        return self._lnlikelihood

    @property
    def tswap_acceptance_fraction(self):
        """
        Returns an array of accepted temperature swap fractions for
        each temperature; shape ``(ntemps, )``.

        """
        return self.nswap_accepted / self.nswap

    @property
    def acceptance_fraction(self):
        """
        Matrix of shape ``(Ntemps, Nwalkers)`` detailing the
        acceptance fraction for each walker.

        """
        return self.nprop_accepted / self.nprop

    @property
    def acor(self):
        """
        Returns a matrix of autocorrelation lengths for each
        parameter in each temperature of shape ``(Ntemps, Ndim)``.

        """
        return self.get_autocorr_time()

    def get_autocorr_time(self, window=50):
        """
        Returns a matrix of autocorrelation lengths for each
        parameter in each temperature of shape ``(Ntemps, Ndim)``.

        :param window: (optional)
            The size of the windowing function. This is equivalent to the
            maximum number of lags to use. (default: 50)

        """
        acors = np.zeros((self.ntemps, self.dim))

        for i in range(self.ntemps):
            x = np.mean(self._chain[i, :, :, :], axis=0)
            acors[i, :] = autocorr.integrated_time(x, window=window)
        return acors