This file is indexed.

/usr/lib/python3/dist-packages/haystack/query.py is in python3-django-haystack 2.4.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
# encoding: utf-8

from __future__ import absolute_import, division, print_function, unicode_literals

import operator
import warnings

from django.utils import six

from haystack import connection_router, connections
from haystack.backends import SQ
from haystack.constants import DEFAULT_OPERATOR, ITERATOR_LOAD_PER_QUERY, REPR_OUTPUT_SIZE
from haystack.exceptions import NotHandled
from haystack.inputs import AutoQuery, Raw
from haystack.utils import log as logging


class SearchQuerySet(object):
    """
    Provides a way to specify search parameters and lazily load results.

    Supports chaining (a la QuerySet) to narrow the search.
    """
    def __init__(self, using=None, query=None):
        # ``_using`` should only ever be a value other than ``None`` if it's
        # been forced with the ``.using`` method.
        self._using = using
        self.query = None
        self._determine_backend()

        # If ``query`` is present, it should override even what the routers
        # think.
        if query is not None:
            self.query = query

        self._result_cache = []
        self._result_count = None
        self._cache_full = False
        self._load_all = False
        self._ignored_result_count = 0
        self.log = logging.getLogger('haystack')

    def _determine_backend(self):
        from haystack import connections
        # A backend has been manually selected. Use it instead.
        if self._using is not None:
            self.query = connections[self._using].get_query()
            return

        # No backend, so rely on the routers to figure out what's right.
        hints = {}

        if self.query:
            hints['models'] = self.query.models

        backend_alias = connection_router.for_read(**hints)

        if isinstance(backend_alias, (list, tuple)) and len(backend_alias):
            # We can only effectively read from one engine.
            backend_alias = backend_alias[0]

        # The ``SearchQuery`` might swap itself out for a different variant
        # here.
        if self.query:
            self.query = self.query.using(backend_alias)
        else:
            self.query = connections[backend_alias].get_query()

    def __getstate__(self):
        """
        For pickling.
        """
        len(self)
        obj_dict = self.__dict__.copy()
        obj_dict['_iter'] = None
        obj_dict['log'] = None
        return obj_dict

    def __setstate__(self, data_dict):
        """
        For unpickling.
        """
        self.__dict__ = data_dict
        self.log = logging.getLogger('haystack')

    def __repr__(self):
        data = list(self[:REPR_OUTPUT_SIZE])

        if len(self) > REPR_OUTPUT_SIZE:
            data[-1] = "...(remaining elements truncated)..."

        return repr(data)

    def __len__(self):
        if not self._result_count:
            self._result_count = self.query.get_count()

            # Some backends give weird, false-y values here. Convert to zero.
            if not self._result_count:
                self._result_count = 0

        # This needs to return the actual number of hits, not what's in the cache.
        return self._result_count - self._ignored_result_count

    def __iter__(self):
        if self._cache_is_full():
            # We've got a fully populated cache. Let Python do the hard work.
            return iter(self._result_cache)

        return self._manual_iter()

    def __and__(self, other):
        if isinstance(other, EmptySearchQuerySet):
            return other._clone()
        combined = self._clone()
        combined.query.combine(other.query, SQ.AND)
        return combined

    def __or__(self, other):
        combined = self._clone()
        if isinstance(other, EmptySearchQuerySet):
            return combined
        combined.query.combine(other.query, SQ.OR)
        return combined

    def _cache_is_full(self):
        if not self.query.has_run():
            return False

        if len(self) <= 0:
            return True

        try:
            self._result_cache.index(None)
            return False
        except ValueError:
            # No ``None``s found in the results. Check the length of the cache.
            return len(self._result_cache) > 0

    def _manual_iter(self):
        # If we're here, our cache isn't fully populated.
        # For efficiency, fill the cache as we go if we run out of results.
        # Also, this can't be part of the __iter__ method due to Python's rules
        # about generator functions.
        current_position = 0
        current_cache_max = 0

        while True:
            if len(self._result_cache) > 0:
                try:
                    current_cache_max = self._result_cache.index(None)
                except ValueError:
                    current_cache_max = len(self._result_cache)

            while current_position < current_cache_max:
                yield self._result_cache[current_position]
                current_position += 1

            if self._cache_is_full():
                raise StopIteration

            # We've run out of results and haven't hit our limit.
            # Fill more of the cache.
            if not self._fill_cache(current_position, current_position + ITERATOR_LOAD_PER_QUERY):
                raise StopIteration

    def _fill_cache(self, start, end, **kwargs):
        # Tell the query where to start from and how many we'd like.
        self.query._reset()
        self.query.set_limits(start, end)
        results = self.query.get_results(**kwargs)

        if results is None or len(results) == 0:
            return False

        # Setup the full cache now that we know how many results there are.
        # We need the ``None``s as placeholders to know what parts of the
        # cache we have/haven't filled.
        # Using ``None`` like this takes up very little memory. In testing,
        # an array of 100,000 ``None``s consumed less than .5 Mb, which ought
        # to be an acceptable loss for consistent and more efficient caching.
        if len(self._result_cache) == 0:
            self._result_cache = [None] * self.query.get_count()

        if start is None:
            start = 0

        if end is None:
            end = self.query.get_count()

        to_cache = self.post_process_results(results)

        # Assign by slice.
        self._result_cache[start:start + len(to_cache)] = to_cache
        return True

    def post_process_results(self, results):
        to_cache = []

        # Check if we wish to load all objects.
        if self._load_all:
            models_pks = {}
            loaded_objects = {}

            # Remember the search position for each result so we don't have to resort later.
            for result in results:
                models_pks.setdefault(result.model, []).append(result.pk)

            # Load the objects for each model in turn.
            for model in models_pks:
                try:
                    ui = connections[self.query._using].get_unified_index()
                    index = ui.get_index(model)
                    objects = index.read_queryset(using=self.query._using)
                    loaded_objects[model] = objects.in_bulk(models_pks[model])
                except NotHandled:
                    self.log.warning("Model '%s' not handled by the routers", model)
                    # Revert to old behaviour
                    loaded_objects[model] = model._default_manager.in_bulk(models_pks[model])

        for result in results:
            if self._load_all:
                # We have to deal with integer keys being cast from strings
                model_objects = loaded_objects.get(result.model, {})
                if result.pk not in model_objects:
                    try:
                        result.pk = int(result.pk)
                    except ValueError:
                        pass
                try:
                    result._object = model_objects[result.pk]
                except KeyError:
                    # The object was either deleted since we indexed or should
                    # be ignored; fail silently.
                    self._ignored_result_count += 1
                    continue

            to_cache.append(result)

        return to_cache

    def __getitem__(self, k):
        """
        Retrieves an item or slice from the set of results.
        """
        if not isinstance(k, (slice, six.integer_types)):
            raise TypeError
        assert ((not isinstance(k, slice) and (k >= 0))
                or (isinstance(k, slice) and (k.start is None or k.start >= 0)
                    and (k.stop is None or k.stop >= 0))), \
                "Negative indexing is not supported."

        # Remember if it's a slice or not. We're going to treat everything as
        # a slice to simply the logic and will `.pop()` at the end as needed.
        if isinstance(k, slice):
            is_slice = True
            start = k.start

            if k.stop is not None:
                bound = int(k.stop)
            else:
                bound = None
        else:
            is_slice = False
            start = k
            bound = k + 1

        # We need check to see if we need to populate more of the cache.
        if len(self._result_cache) <= 0 or (None in self._result_cache[start:bound]
                                            and not self._cache_is_full()):
            try:
                self._fill_cache(start, bound)
            except StopIteration:
                # There's nothing left, even though the bound is higher.
                pass

        # Cache should be full enough for our needs.
        if is_slice:
            return self._result_cache[start:bound]
        else:
            return self._result_cache[start]

    # Methods that return a SearchQuerySet.
    def all(self):
        """Returns all results for the query."""
        return self._clone()

    def none(self):
        """Returns an empty result list for the query."""
        return self._clone(klass=EmptySearchQuerySet)

    def filter(self, *args, **kwargs):
        """Narrows the search based on certain attributes and the default operator."""
        if DEFAULT_OPERATOR == 'OR':
            return self.filter_or(*args, **kwargs)
        else:
            return self.filter_and(*args, **kwargs)

    def exclude(self, *args, **kwargs):
        """Narrows the search by ensuring certain attributes are not included."""
        clone = self._clone()
        clone.query.add_filter(~SQ(*args, **kwargs))
        return clone

    def filter_and(self, *args, **kwargs):
        """Narrows the search by looking for (and including) certain attributes."""
        clone = self._clone()
        clone.query.add_filter(SQ(*args, **kwargs))
        return clone

    def filter_or(self, *args, **kwargs):
        """Narrows the search by ensuring certain attributes are not included."""
        clone = self._clone()
        clone.query.add_filter(SQ(*args, **kwargs), use_or=True)
        return clone

    def order_by(self, *args):
        """Alters the order in which the results should appear."""
        clone = self._clone()

        for field in args:
            clone.query.add_order_by(field)

        return clone

    def highlight(self):
        """Adds highlighting to the results."""
        clone = self._clone()
        clone.query.add_highlight()
        return clone

    def models(self, *models):
        """Accepts an arbitrary number of Model classes to include in the search."""
        clone = self._clone()

        for model in models:
            if model not in connections[self.query._using].get_unified_index().get_indexed_models():
                warnings.warn('The model %r is not registered for search.' % (model,))

            clone.query.add_model(model)

        return clone

    def result_class(self, klass):
        """
        Allows specifying a different class to use for results.

        Overrides any previous usages. If ``None`` is provided, Haystack will
        revert back to the default ``SearchResult`` object.
        """
        clone = self._clone()
        clone.query.set_result_class(klass)
        return clone

    def boost(self, term, boost):
        """Boosts a certain aspect of the query."""
        clone = self._clone()
        clone.query.add_boost(term, boost)
        return clone

    def facet(self, field, **options):
        """Adds faceting to a query for the provided field."""
        clone = self._clone()
        clone.query.add_field_facet(field, **options)
        return clone

    def within(self, field, point_1, point_2):
        """Spatial: Adds a bounding box search to the query."""
        clone = self._clone()
        clone.query.add_within(field, point_1, point_2)
        return clone

    def dwithin(self, field, point, distance):
        """Spatial: Adds a distance-based search to the query."""
        clone = self._clone()
        clone.query.add_dwithin(field, point, distance)
        return clone

    def stats(self, field):
        """Adds stats to a query for the provided field."""
        return self.stats_facet(field, facet_fields=None)

    def stats_facet(self, field, facet_fields=None):
        """Adds stats facet for the given field and facet_fields represents
        the faceted fields."""
        clone = self._clone()
        stats_facets = []
        try:
            stats_facets.append(sum(facet_fields, []))
        except TypeError:
            if facet_fields:
                stats_facets.append(facet_fields)
        clone.query.add_stats_query(field, stats_facets)
        return clone

    def distance(self, field, point):
        """
        Spatial: Denotes results must have distance measurements from the
        provided point.
        """
        clone = self._clone()
        clone.query.add_distance(field, point)
        return clone

    def date_facet(self, field, start_date, end_date, gap_by, gap_amount=1):
        """Adds faceting to a query for the provided field by date."""
        clone = self._clone()
        clone.query.add_date_facet(field, start_date, end_date, gap_by, gap_amount=gap_amount)
        return clone

    def query_facet(self, field, query):
        """Adds faceting to a query for the provided field with a custom query."""
        clone = self._clone()
        clone.query.add_query_facet(field, query)
        return clone

    def narrow(self, query):
        """Pushes existing facet choices into the search."""

        if isinstance(query, SQ):
            # produce query string using empty query of the same class
            empty_query = self.query._clone()
            empty_query._reset()
            query = query.as_query_string(empty_query.build_query_fragment)

        clone = self._clone()
        clone.query.add_narrow_query(query)
        return clone

    def raw_search(self, query_string, **kwargs):
        """Passes a raw query directly to the backend."""
        return self.filter(content=Raw(query_string, **kwargs))

    def load_all(self):
        """Efficiently populates the objects in the search results."""
        clone = self._clone()
        clone._load_all = True
        return clone

    def auto_query(self, query_string, fieldname='content'):
        """
        Performs a best guess constructing the search query.

        This method is somewhat naive but works well enough for the simple,
        common cases.
        """
        kwargs = {
            fieldname: AutoQuery(query_string)
        }
        return self.filter(**kwargs)

    def autocomplete(self, **kwargs):
        """
        A shortcut method to perform an autocomplete search.

        Must be run against fields that are either ``NgramField`` or
        ``EdgeNgramField``.
        """
        clone = self._clone()
        query_bits = []

        for field_name, query in kwargs.items():
            for word in query.split(' '):
                bit = clone.query.clean(word.strip())
                if bit:
                    kwargs = {
                        field_name: bit,
                    }
                    query_bits.append(SQ(**kwargs))

        return clone.filter(six.moves.reduce(operator.__and__, query_bits))

    def using(self, connection_name):
        """
        Allows switching which connection the ``SearchQuerySet`` uses to
        search in.
        """
        clone = self._clone()
        clone.query = self.query.using(connection_name)
        clone._using = connection_name
        return clone

    # Methods that do not return a SearchQuerySet.

    def count(self):
        """Returns the total number of matching results."""
        return len(self)

    def best_match(self):
        """Returns the best/top search result that matches the query."""
        return self[0]

    def latest(self, date_field):
        """Returns the most recent search result that matches the query."""
        clone = self._clone()
        clone.query.clear_order_by()
        clone.query.add_order_by("-%s" % date_field)
        return clone.best_match()

    def more_like_this(self, model_instance):
        """Finds similar results to the object passed in."""
        clone = self._clone()
        clone.query.more_like_this(model_instance)
        return clone

    def facet_counts(self):
        """
        Returns the facet counts found by the query.

        This will cause the query to execute and should generally be used when
        presenting the data.
        """
        if self.query.has_run():
            return self.query.get_facet_counts()
        else:
            clone = self._clone()
            return clone.query.get_facet_counts()

    def stats_results(self):
        """
        Returns the stats results found by the query.
        """
        if self.query.has_run():
            return self.query.get_stats()
        else:
            clone = self._clone()
            return clone.query.get_stats()

    def spelling_suggestion(self, preferred_query=None):
        """
        Returns the spelling suggestion found by the query.

        To work, you must set ``INCLUDE_SPELLING`` within your connection's
        settings dictionary to ``True``. Otherwise, ``None`` will be returned.

        This will cause the query to execute and should generally be used when
        presenting the data.
        """
        if self.query.has_run():
            return self.query.get_spelling_suggestion(preferred_query)
        else:
            clone = self._clone()
            return clone.query.get_spelling_suggestion(preferred_query)

    def values(self, *fields):
        """
        Returns a list of dictionaries, each containing the key/value pairs for
        the result, exactly like Django's ``ValuesQuerySet``.
        """
        qs = self._clone(klass=ValuesSearchQuerySet)
        qs._fields.extend(fields)
        return qs

    def values_list(self, *fields, **kwargs):
        """
        Returns a list of field values as tuples, exactly like Django's
        ``QuerySet.values``.

        Optionally accepts a ``flat=True`` kwarg, which in the case of a
        single field being provided, will return a flat list of that field
        rather than a list of tuples.
        """
        flat = kwargs.pop("flat", False)

        if flat and len(fields) > 1:
            raise TypeError("'flat' is not valid when values_list is called with more than one field.")

        qs = self._clone(klass=ValuesListSearchQuerySet)
        qs._fields.extend(fields)
        qs._flat = flat
        return qs

    # Utility methods.

    def _clone(self, klass=None):
        if klass is None:
            klass = self.__class__

        query = self.query._clone()
        clone = klass(query=query)
        clone._load_all = self._load_all
        return clone


class EmptySearchQuerySet(SearchQuerySet):
    """
    A stubbed SearchQuerySet that behaves as normal but always returns no
    results.
    """
    def __len__(self):
        return 0

    def _cache_is_full(self):
        # Pretend the cache is always full with no results.
        return True

    def _clone(self, klass=None):
        clone = super(EmptySearchQuerySet, self)._clone(klass=klass)
        clone._result_cache = []
        return clone

    def _fill_cache(self, start, end):
        return False

    def facet_counts(self):
        return {}


class ValuesListSearchQuerySet(SearchQuerySet):
    """
    A ``SearchQuerySet`` which returns a list of field values as tuples, exactly
    like Django's ``ValuesListQuerySet``.
    """
    def __init__(self, *args, **kwargs):
        super(ValuesListSearchQuerySet, self).__init__(*args, **kwargs)
        self._flat = False
        self._fields = []

        # Removing this dependency would require refactoring much of the backend
        # code (_process_results, etc.) and these aren't large enough to make it
        # an immediate priority:
        self._internal_fields = ['id', 'django_ct', 'django_id', 'score']

    def _clone(self, klass=None):
        clone = super(ValuesListSearchQuerySet, self)._clone(klass=klass)
        clone._fields = self._fields
        clone._flat = self._flat
        return clone

    def _fill_cache(self, start, end):
        query_fields = set(self._internal_fields)
        query_fields.update(self._fields)
        kwargs = {
            'fields': query_fields
        }
        return super(ValuesListSearchQuerySet, self)._fill_cache(start, end, **kwargs)

    def post_process_results(self, results):
        to_cache = []

        if self._flat:
            accum = to_cache.extend
        else:
            accum = to_cache.append

        for result in results:
            accum([getattr(result, i, None) for i in self._fields])

        return to_cache


class ValuesSearchQuerySet(ValuesListSearchQuerySet):
    """
    A ``SearchQuerySet`` which returns a list of dictionaries, each containing
    the key/value pairs for the result, exactly like Django's
    ``ValuesQuerySet``.
    """
    def _fill_cache(self, start, end):
        query_fields = set(self._internal_fields)
        query_fields.update(self._fields)
        kwargs = {
            'fields': query_fields
        }
        return super(ValuesListSearchQuerySet, self)._fill_cache(start, end, **kwargs)

    def post_process_results(self, results):
        to_cache = []

        for result in results:
            to_cache.append(dict((i, getattr(result, i, None)) for i in self._fields))

        return to_cache


class RelatedSearchQuerySet(SearchQuerySet):
    """
    A variant of the SearchQuerySet that can handle `load_all_queryset`s.

    This is predominantly different in the `_fill_cache` method, as it is
    far less efficient but needs to fill the cache before it to maintain
    consistency.
    """

    def __init__(self, *args, **kwargs):
        super(RelatedSearchQuerySet, self).__init__(*args, **kwargs)
        self._load_all_querysets = {}
        self._result_cache = []

    def _cache_is_full(self):
        return len(self._result_cache) >= len(self)

    def _manual_iter(self):
        # If we're here, our cache isn't fully populated.
        # For efficiency, fill the cache as we go if we run out of results.
        # Also, this can't be part of the __iter__ method due to Python's rules
        # about generator functions.
        current_position = 0
        current_cache_max = 0

        while True:
            current_cache_max = len(self._result_cache)

            while current_position < current_cache_max:
                yield self._result_cache[current_position]
                current_position += 1

            if self._cache_is_full():
                raise StopIteration

            # We've run out of results and haven't hit our limit.
            # Fill more of the cache.
            start = current_position + self._ignored_result_count

            if not self._fill_cache(start, start + ITERATOR_LOAD_PER_QUERY):
                raise StopIteration

    def _fill_cache(self, start, end):
        # Tell the query where to start from and how many we'd like.
        self.query._reset()
        self.query.set_limits(start, end)
        results = self.query.get_results()

        if len(results) == 0:
            return False

        if start is None:
            start = 0

        if end is None:
            end = self.query.get_count()

        # Check if we wish to load all objects.
        if self._load_all:
            models_pks = {}
            loaded_objects = {}

            # Remember the search position for each result so we don't have to resort later.
            for result in results:
                models_pks.setdefault(result.model, []).append(result.pk)

            # Load the objects for each model in turn.
            for model in models_pks:
                if model in self._load_all_querysets:
                    # Use the overriding queryset.
                    loaded_objects[model] = self._load_all_querysets[model].in_bulk(models_pks[model])
                else:
                    # Check the SearchIndex for the model for an override.
                    try:
                        index = connections[self.query._using].get_unified_index().get_index(model)
                        qs = index.load_all_queryset()
                        loaded_objects[model] = qs.in_bulk(models_pks[model])
                    except NotHandled:
                        # The model returned doesn't seem to be handled by the
                        # routers. We should silently fail and populate
                        # nothing for those objects.
                        loaded_objects[model] = []

        if len(results) + len(self._result_cache) < len(self) and len(results) < ITERATOR_LOAD_PER_QUERY:
            self._ignored_result_count += ITERATOR_LOAD_PER_QUERY - len(results)

        for result in results:
            if self._load_all:
                # We have to deal with integer keys being cast from strings; if this
                # fails we've got a character pk.
                try:
                    result.pk = int(result.pk)
                except ValueError:
                    pass
                try:
                    result._object = loaded_objects[result.model][result.pk]
                except (KeyError, IndexError):
                    # The object was either deleted since we indexed or should
                    # be ignored; fail silently.
                    self._ignored_result_count += 1
                    continue

            self._result_cache.append(result)

        return True

    def __getitem__(self, k):
        """
        Retrieves an item or slice from the set of results.
        """
        if not isinstance(k, (slice, six.integer_types)):
            raise TypeError

        assert ((not isinstance(k, slice) and (k >= 0))
                or (isinstance(k, slice) and (k.start is None or k.start >= 0)
                    and (k.stop is None or k.stop >= 0))), \
                "Negative indexing is not supported."

        # Remember if it's a slice or not. We're going to treat everything as
        # a slice to simply the logic and will `.pop()` at the end as needed.
        if isinstance(k, slice):
            is_slice = True
            start = k.start

            if k.stop is not None:
                bound = int(k.stop)
            else:
                bound = None
        else:
            is_slice = False
            start = k
            bound = k + 1

        # We need check to see if we need to populate more of the cache.
        if len(self._result_cache) <= 0 or not self._cache_is_full():
            try:
                while len(self._result_cache) < bound and not self._cache_is_full():
                    current_max = len(self._result_cache) + self._ignored_result_count
                    self._fill_cache(current_max, current_max + ITERATOR_LOAD_PER_QUERY)
            except StopIteration:
                # There's nothing left, even though the bound is higher.
                pass

        # Cache should be full enough for our needs.
        if is_slice:
            return self._result_cache[start:bound]
        else:
            return self._result_cache[start]

    def load_all_queryset(self, model, queryset):
        """
        Allows for specifying a custom ``QuerySet`` that changes how ``load_all``
        will fetch records for the provided model.

        This is useful for post-processing the results from the query, enabling
        things like adding ``select_related`` or filtering certain data.
        """
        clone = self._clone()
        clone._load_all_querysets[model] = queryset
        return clone

    def _clone(self, klass=None):
        if klass is None:
            klass = self.__class__

        query = self.query._clone()
        clone = klass(query=query)
        clone._load_all = self._load_all
        clone._load_all_querysets = self._load_all_querysets
        return clone