/usr/lib/python3/dist-packages/haystack/query.py is in python3-django-haystack 2.4.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 | # encoding: utf-8
from __future__ import absolute_import, division, print_function, unicode_literals
import operator
import warnings
from django.utils import six
from haystack import connection_router, connections
from haystack.backends import SQ
from haystack.constants import DEFAULT_OPERATOR, ITERATOR_LOAD_PER_QUERY, REPR_OUTPUT_SIZE
from haystack.exceptions import NotHandled
from haystack.inputs import AutoQuery, Raw
from haystack.utils import log as logging
class SearchQuerySet(object):
"""
Provides a way to specify search parameters and lazily load results.
Supports chaining (a la QuerySet) to narrow the search.
"""
def __init__(self, using=None, query=None):
# ``_using`` should only ever be a value other than ``None`` if it's
# been forced with the ``.using`` method.
self._using = using
self.query = None
self._determine_backend()
# If ``query`` is present, it should override even what the routers
# think.
if query is not None:
self.query = query
self._result_cache = []
self._result_count = None
self._cache_full = False
self._load_all = False
self._ignored_result_count = 0
self.log = logging.getLogger('haystack')
def _determine_backend(self):
from haystack import connections
# A backend has been manually selected. Use it instead.
if self._using is not None:
self.query = connections[self._using].get_query()
return
# No backend, so rely on the routers to figure out what's right.
hints = {}
if self.query:
hints['models'] = self.query.models
backend_alias = connection_router.for_read(**hints)
if isinstance(backend_alias, (list, tuple)) and len(backend_alias):
# We can only effectively read from one engine.
backend_alias = backend_alias[0]
# The ``SearchQuery`` might swap itself out for a different variant
# here.
if self.query:
self.query = self.query.using(backend_alias)
else:
self.query = connections[backend_alias].get_query()
def __getstate__(self):
"""
For pickling.
"""
len(self)
obj_dict = self.__dict__.copy()
obj_dict['_iter'] = None
obj_dict['log'] = None
return obj_dict
def __setstate__(self, data_dict):
"""
For unpickling.
"""
self.__dict__ = data_dict
self.log = logging.getLogger('haystack')
def __repr__(self):
data = list(self[:REPR_OUTPUT_SIZE])
if len(self) > REPR_OUTPUT_SIZE:
data[-1] = "...(remaining elements truncated)..."
return repr(data)
def __len__(self):
if not self._result_count:
self._result_count = self.query.get_count()
# Some backends give weird, false-y values here. Convert to zero.
if not self._result_count:
self._result_count = 0
# This needs to return the actual number of hits, not what's in the cache.
return self._result_count - self._ignored_result_count
def __iter__(self):
if self._cache_is_full():
# We've got a fully populated cache. Let Python do the hard work.
return iter(self._result_cache)
return self._manual_iter()
def __and__(self, other):
if isinstance(other, EmptySearchQuerySet):
return other._clone()
combined = self._clone()
combined.query.combine(other.query, SQ.AND)
return combined
def __or__(self, other):
combined = self._clone()
if isinstance(other, EmptySearchQuerySet):
return combined
combined.query.combine(other.query, SQ.OR)
return combined
def _cache_is_full(self):
if not self.query.has_run():
return False
if len(self) <= 0:
return True
try:
self._result_cache.index(None)
return False
except ValueError:
# No ``None``s found in the results. Check the length of the cache.
return len(self._result_cache) > 0
def _manual_iter(self):
# If we're here, our cache isn't fully populated.
# For efficiency, fill the cache as we go if we run out of results.
# Also, this can't be part of the __iter__ method due to Python's rules
# about generator functions.
current_position = 0
current_cache_max = 0
while True:
if len(self._result_cache) > 0:
try:
current_cache_max = self._result_cache.index(None)
except ValueError:
current_cache_max = len(self._result_cache)
while current_position < current_cache_max:
yield self._result_cache[current_position]
current_position += 1
if self._cache_is_full():
raise StopIteration
# We've run out of results and haven't hit our limit.
# Fill more of the cache.
if not self._fill_cache(current_position, current_position + ITERATOR_LOAD_PER_QUERY):
raise StopIteration
def _fill_cache(self, start, end, **kwargs):
# Tell the query where to start from and how many we'd like.
self.query._reset()
self.query.set_limits(start, end)
results = self.query.get_results(**kwargs)
if results is None or len(results) == 0:
return False
# Setup the full cache now that we know how many results there are.
# We need the ``None``s as placeholders to know what parts of the
# cache we have/haven't filled.
# Using ``None`` like this takes up very little memory. In testing,
# an array of 100,000 ``None``s consumed less than .5 Mb, which ought
# to be an acceptable loss for consistent and more efficient caching.
if len(self._result_cache) == 0:
self._result_cache = [None] * self.query.get_count()
if start is None:
start = 0
if end is None:
end = self.query.get_count()
to_cache = self.post_process_results(results)
# Assign by slice.
self._result_cache[start:start + len(to_cache)] = to_cache
return True
def post_process_results(self, results):
to_cache = []
# Check if we wish to load all objects.
if self._load_all:
models_pks = {}
loaded_objects = {}
# Remember the search position for each result so we don't have to resort later.
for result in results:
models_pks.setdefault(result.model, []).append(result.pk)
# Load the objects for each model in turn.
for model in models_pks:
try:
ui = connections[self.query._using].get_unified_index()
index = ui.get_index(model)
objects = index.read_queryset(using=self.query._using)
loaded_objects[model] = objects.in_bulk(models_pks[model])
except NotHandled:
self.log.warning("Model '%s' not handled by the routers", model)
# Revert to old behaviour
loaded_objects[model] = model._default_manager.in_bulk(models_pks[model])
for result in results:
if self._load_all:
# We have to deal with integer keys being cast from strings
model_objects = loaded_objects.get(result.model, {})
if result.pk not in model_objects:
try:
result.pk = int(result.pk)
except ValueError:
pass
try:
result._object = model_objects[result.pk]
except KeyError:
# The object was either deleted since we indexed or should
# be ignored; fail silently.
self._ignored_result_count += 1
continue
to_cache.append(result)
return to_cache
def __getitem__(self, k):
"""
Retrieves an item or slice from the set of results.
"""
if not isinstance(k, (slice, six.integer_types)):
raise TypeError
assert ((not isinstance(k, slice) and (k >= 0))
or (isinstance(k, slice) and (k.start is None or k.start >= 0)
and (k.stop is None or k.stop >= 0))), \
"Negative indexing is not supported."
# Remember if it's a slice or not. We're going to treat everything as
# a slice to simply the logic and will `.pop()` at the end as needed.
if isinstance(k, slice):
is_slice = True
start = k.start
if k.stop is not None:
bound = int(k.stop)
else:
bound = None
else:
is_slice = False
start = k
bound = k + 1
# We need check to see if we need to populate more of the cache.
if len(self._result_cache) <= 0 or (None in self._result_cache[start:bound]
and not self._cache_is_full()):
try:
self._fill_cache(start, bound)
except StopIteration:
# There's nothing left, even though the bound is higher.
pass
# Cache should be full enough for our needs.
if is_slice:
return self._result_cache[start:bound]
else:
return self._result_cache[start]
# Methods that return a SearchQuerySet.
def all(self):
"""Returns all results for the query."""
return self._clone()
def none(self):
"""Returns an empty result list for the query."""
return self._clone(klass=EmptySearchQuerySet)
def filter(self, *args, **kwargs):
"""Narrows the search based on certain attributes and the default operator."""
if DEFAULT_OPERATOR == 'OR':
return self.filter_or(*args, **kwargs)
else:
return self.filter_and(*args, **kwargs)
def exclude(self, *args, **kwargs):
"""Narrows the search by ensuring certain attributes are not included."""
clone = self._clone()
clone.query.add_filter(~SQ(*args, **kwargs))
return clone
def filter_and(self, *args, **kwargs):
"""Narrows the search by looking for (and including) certain attributes."""
clone = self._clone()
clone.query.add_filter(SQ(*args, **kwargs))
return clone
def filter_or(self, *args, **kwargs):
"""Narrows the search by ensuring certain attributes are not included."""
clone = self._clone()
clone.query.add_filter(SQ(*args, **kwargs), use_or=True)
return clone
def order_by(self, *args):
"""Alters the order in which the results should appear."""
clone = self._clone()
for field in args:
clone.query.add_order_by(field)
return clone
def highlight(self):
"""Adds highlighting to the results."""
clone = self._clone()
clone.query.add_highlight()
return clone
def models(self, *models):
"""Accepts an arbitrary number of Model classes to include in the search."""
clone = self._clone()
for model in models:
if model not in connections[self.query._using].get_unified_index().get_indexed_models():
warnings.warn('The model %r is not registered for search.' % (model,))
clone.query.add_model(model)
return clone
def result_class(self, klass):
"""
Allows specifying a different class to use for results.
Overrides any previous usages. If ``None`` is provided, Haystack will
revert back to the default ``SearchResult`` object.
"""
clone = self._clone()
clone.query.set_result_class(klass)
return clone
def boost(self, term, boost):
"""Boosts a certain aspect of the query."""
clone = self._clone()
clone.query.add_boost(term, boost)
return clone
def facet(self, field, **options):
"""Adds faceting to a query for the provided field."""
clone = self._clone()
clone.query.add_field_facet(field, **options)
return clone
def within(self, field, point_1, point_2):
"""Spatial: Adds a bounding box search to the query."""
clone = self._clone()
clone.query.add_within(field, point_1, point_2)
return clone
def dwithin(self, field, point, distance):
"""Spatial: Adds a distance-based search to the query."""
clone = self._clone()
clone.query.add_dwithin(field, point, distance)
return clone
def stats(self, field):
"""Adds stats to a query for the provided field."""
return self.stats_facet(field, facet_fields=None)
def stats_facet(self, field, facet_fields=None):
"""Adds stats facet for the given field and facet_fields represents
the faceted fields."""
clone = self._clone()
stats_facets = []
try:
stats_facets.append(sum(facet_fields, []))
except TypeError:
if facet_fields:
stats_facets.append(facet_fields)
clone.query.add_stats_query(field, stats_facets)
return clone
def distance(self, field, point):
"""
Spatial: Denotes results must have distance measurements from the
provided point.
"""
clone = self._clone()
clone.query.add_distance(field, point)
return clone
def date_facet(self, field, start_date, end_date, gap_by, gap_amount=1):
"""Adds faceting to a query for the provided field by date."""
clone = self._clone()
clone.query.add_date_facet(field, start_date, end_date, gap_by, gap_amount=gap_amount)
return clone
def query_facet(self, field, query):
"""Adds faceting to a query for the provided field with a custom query."""
clone = self._clone()
clone.query.add_query_facet(field, query)
return clone
def narrow(self, query):
"""Pushes existing facet choices into the search."""
if isinstance(query, SQ):
# produce query string using empty query of the same class
empty_query = self.query._clone()
empty_query._reset()
query = query.as_query_string(empty_query.build_query_fragment)
clone = self._clone()
clone.query.add_narrow_query(query)
return clone
def raw_search(self, query_string, **kwargs):
"""Passes a raw query directly to the backend."""
return self.filter(content=Raw(query_string, **kwargs))
def load_all(self):
"""Efficiently populates the objects in the search results."""
clone = self._clone()
clone._load_all = True
return clone
def auto_query(self, query_string, fieldname='content'):
"""
Performs a best guess constructing the search query.
This method is somewhat naive but works well enough for the simple,
common cases.
"""
kwargs = {
fieldname: AutoQuery(query_string)
}
return self.filter(**kwargs)
def autocomplete(self, **kwargs):
"""
A shortcut method to perform an autocomplete search.
Must be run against fields that are either ``NgramField`` or
``EdgeNgramField``.
"""
clone = self._clone()
query_bits = []
for field_name, query in kwargs.items():
for word in query.split(' '):
bit = clone.query.clean(word.strip())
if bit:
kwargs = {
field_name: bit,
}
query_bits.append(SQ(**kwargs))
return clone.filter(six.moves.reduce(operator.__and__, query_bits))
def using(self, connection_name):
"""
Allows switching which connection the ``SearchQuerySet`` uses to
search in.
"""
clone = self._clone()
clone.query = self.query.using(connection_name)
clone._using = connection_name
return clone
# Methods that do not return a SearchQuerySet.
def count(self):
"""Returns the total number of matching results."""
return len(self)
def best_match(self):
"""Returns the best/top search result that matches the query."""
return self[0]
def latest(self, date_field):
"""Returns the most recent search result that matches the query."""
clone = self._clone()
clone.query.clear_order_by()
clone.query.add_order_by("-%s" % date_field)
return clone.best_match()
def more_like_this(self, model_instance):
"""Finds similar results to the object passed in."""
clone = self._clone()
clone.query.more_like_this(model_instance)
return clone
def facet_counts(self):
"""
Returns the facet counts found by the query.
This will cause the query to execute and should generally be used when
presenting the data.
"""
if self.query.has_run():
return self.query.get_facet_counts()
else:
clone = self._clone()
return clone.query.get_facet_counts()
def stats_results(self):
"""
Returns the stats results found by the query.
"""
if self.query.has_run():
return self.query.get_stats()
else:
clone = self._clone()
return clone.query.get_stats()
def spelling_suggestion(self, preferred_query=None):
"""
Returns the spelling suggestion found by the query.
To work, you must set ``INCLUDE_SPELLING`` within your connection's
settings dictionary to ``True``. Otherwise, ``None`` will be returned.
This will cause the query to execute and should generally be used when
presenting the data.
"""
if self.query.has_run():
return self.query.get_spelling_suggestion(preferred_query)
else:
clone = self._clone()
return clone.query.get_spelling_suggestion(preferred_query)
def values(self, *fields):
"""
Returns a list of dictionaries, each containing the key/value pairs for
the result, exactly like Django's ``ValuesQuerySet``.
"""
qs = self._clone(klass=ValuesSearchQuerySet)
qs._fields.extend(fields)
return qs
def values_list(self, *fields, **kwargs):
"""
Returns a list of field values as tuples, exactly like Django's
``QuerySet.values``.
Optionally accepts a ``flat=True`` kwarg, which in the case of a
single field being provided, will return a flat list of that field
rather than a list of tuples.
"""
flat = kwargs.pop("flat", False)
if flat and len(fields) > 1:
raise TypeError("'flat' is not valid when values_list is called with more than one field.")
qs = self._clone(klass=ValuesListSearchQuerySet)
qs._fields.extend(fields)
qs._flat = flat
return qs
# Utility methods.
def _clone(self, klass=None):
if klass is None:
klass = self.__class__
query = self.query._clone()
clone = klass(query=query)
clone._load_all = self._load_all
return clone
class EmptySearchQuerySet(SearchQuerySet):
"""
A stubbed SearchQuerySet that behaves as normal but always returns no
results.
"""
def __len__(self):
return 0
def _cache_is_full(self):
# Pretend the cache is always full with no results.
return True
def _clone(self, klass=None):
clone = super(EmptySearchQuerySet, self)._clone(klass=klass)
clone._result_cache = []
return clone
def _fill_cache(self, start, end):
return False
def facet_counts(self):
return {}
class ValuesListSearchQuerySet(SearchQuerySet):
"""
A ``SearchQuerySet`` which returns a list of field values as tuples, exactly
like Django's ``ValuesListQuerySet``.
"""
def __init__(self, *args, **kwargs):
super(ValuesListSearchQuerySet, self).__init__(*args, **kwargs)
self._flat = False
self._fields = []
# Removing this dependency would require refactoring much of the backend
# code (_process_results, etc.) and these aren't large enough to make it
# an immediate priority:
self._internal_fields = ['id', 'django_ct', 'django_id', 'score']
def _clone(self, klass=None):
clone = super(ValuesListSearchQuerySet, self)._clone(klass=klass)
clone._fields = self._fields
clone._flat = self._flat
return clone
def _fill_cache(self, start, end):
query_fields = set(self._internal_fields)
query_fields.update(self._fields)
kwargs = {
'fields': query_fields
}
return super(ValuesListSearchQuerySet, self)._fill_cache(start, end, **kwargs)
def post_process_results(self, results):
to_cache = []
if self._flat:
accum = to_cache.extend
else:
accum = to_cache.append
for result in results:
accum([getattr(result, i, None) for i in self._fields])
return to_cache
class ValuesSearchQuerySet(ValuesListSearchQuerySet):
"""
A ``SearchQuerySet`` which returns a list of dictionaries, each containing
the key/value pairs for the result, exactly like Django's
``ValuesQuerySet``.
"""
def _fill_cache(self, start, end):
query_fields = set(self._internal_fields)
query_fields.update(self._fields)
kwargs = {
'fields': query_fields
}
return super(ValuesListSearchQuerySet, self)._fill_cache(start, end, **kwargs)
def post_process_results(self, results):
to_cache = []
for result in results:
to_cache.append(dict((i, getattr(result, i, None)) for i in self._fields))
return to_cache
class RelatedSearchQuerySet(SearchQuerySet):
"""
A variant of the SearchQuerySet that can handle `load_all_queryset`s.
This is predominantly different in the `_fill_cache` method, as it is
far less efficient but needs to fill the cache before it to maintain
consistency.
"""
def __init__(self, *args, **kwargs):
super(RelatedSearchQuerySet, self).__init__(*args, **kwargs)
self._load_all_querysets = {}
self._result_cache = []
def _cache_is_full(self):
return len(self._result_cache) >= len(self)
def _manual_iter(self):
# If we're here, our cache isn't fully populated.
# For efficiency, fill the cache as we go if we run out of results.
# Also, this can't be part of the __iter__ method due to Python's rules
# about generator functions.
current_position = 0
current_cache_max = 0
while True:
current_cache_max = len(self._result_cache)
while current_position < current_cache_max:
yield self._result_cache[current_position]
current_position += 1
if self._cache_is_full():
raise StopIteration
# We've run out of results and haven't hit our limit.
# Fill more of the cache.
start = current_position + self._ignored_result_count
if not self._fill_cache(start, start + ITERATOR_LOAD_PER_QUERY):
raise StopIteration
def _fill_cache(self, start, end):
# Tell the query where to start from and how many we'd like.
self.query._reset()
self.query.set_limits(start, end)
results = self.query.get_results()
if len(results) == 0:
return False
if start is None:
start = 0
if end is None:
end = self.query.get_count()
# Check if we wish to load all objects.
if self._load_all:
models_pks = {}
loaded_objects = {}
# Remember the search position for each result so we don't have to resort later.
for result in results:
models_pks.setdefault(result.model, []).append(result.pk)
# Load the objects for each model in turn.
for model in models_pks:
if model in self._load_all_querysets:
# Use the overriding queryset.
loaded_objects[model] = self._load_all_querysets[model].in_bulk(models_pks[model])
else:
# Check the SearchIndex for the model for an override.
try:
index = connections[self.query._using].get_unified_index().get_index(model)
qs = index.load_all_queryset()
loaded_objects[model] = qs.in_bulk(models_pks[model])
except NotHandled:
# The model returned doesn't seem to be handled by the
# routers. We should silently fail and populate
# nothing for those objects.
loaded_objects[model] = []
if len(results) + len(self._result_cache) < len(self) and len(results) < ITERATOR_LOAD_PER_QUERY:
self._ignored_result_count += ITERATOR_LOAD_PER_QUERY - len(results)
for result in results:
if self._load_all:
# We have to deal with integer keys being cast from strings; if this
# fails we've got a character pk.
try:
result.pk = int(result.pk)
except ValueError:
pass
try:
result._object = loaded_objects[result.model][result.pk]
except (KeyError, IndexError):
# The object was either deleted since we indexed or should
# be ignored; fail silently.
self._ignored_result_count += 1
continue
self._result_cache.append(result)
return True
def __getitem__(self, k):
"""
Retrieves an item or slice from the set of results.
"""
if not isinstance(k, (slice, six.integer_types)):
raise TypeError
assert ((not isinstance(k, slice) and (k >= 0))
or (isinstance(k, slice) and (k.start is None or k.start >= 0)
and (k.stop is None or k.stop >= 0))), \
"Negative indexing is not supported."
# Remember if it's a slice or not. We're going to treat everything as
# a slice to simply the logic and will `.pop()` at the end as needed.
if isinstance(k, slice):
is_slice = True
start = k.start
if k.stop is not None:
bound = int(k.stop)
else:
bound = None
else:
is_slice = False
start = k
bound = k + 1
# We need check to see if we need to populate more of the cache.
if len(self._result_cache) <= 0 or not self._cache_is_full():
try:
while len(self._result_cache) < bound and not self._cache_is_full():
current_max = len(self._result_cache) + self._ignored_result_count
self._fill_cache(current_max, current_max + ITERATOR_LOAD_PER_QUERY)
except StopIteration:
# There's nothing left, even though the bound is higher.
pass
# Cache should be full enough for our needs.
if is_slice:
return self._result_cache[start:bound]
else:
return self._result_cache[start]
def load_all_queryset(self, model, queryset):
"""
Allows for specifying a custom ``QuerySet`` that changes how ``load_all``
will fetch records for the provided model.
This is useful for post-processing the results from the query, enabling
things like adding ``select_related`` or filtering certain data.
"""
clone = self._clone()
clone._load_all_querysets[model] = queryset
return clone
def _clone(self, klass=None):
if klass is None:
klass = self.__class__
query = self.query._clone()
clone = klass(query=query)
clone._load_all = self._load_all
clone._load_all_querysets = self._load_all_querysets
return clone
|