This file is indexed.

/usr/lib/python3/dist-packages/bitstring.py is in python3-bitstring 3.1.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
#!/usr/bin/env python
"""
This package defines classes that simplify bit-wise creation, manipulation and
interpretation of data.

Classes:

Bits -- An immutable container for binary data.
BitArray -- A mutable container for binary data.
ConstBitStream -- An immutable container with streaming methods.
BitStream -- A mutable container with streaming methods.

                      Bits (base class)
                     /    \
 + mutating methods /      \ + streaming methods
                   /        \
              BitArray   ConstBitStream
                   \        /
                    \      /
                     \    /
                    BitStream

Functions:

pack -- Create a BitStream from a format string.

Exceptions:

Error -- Module exception base class.
CreationError -- Error during creation.
InterpretError -- Inappropriate interpretation of binary data.
ByteAlignError -- Whole byte position or length needed.
ReadError -- Reading or peeking past the end of a bitstring.

https://github.com/scott-griffiths/bitstring
"""

__licence__ = """
The MIT License

Copyright (c) 2006-2016 Scott Griffiths (dr.scottgriffiths@gmail.com)

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""

__version__ = "3.1.4"

__author__ = "Scott Griffiths"

import numbers
import copy
import sys
import re
import binascii
import mmap
import os
import struct
import operator
import collections

byteorder = sys.byteorder

bytealigned = False
"""Determines whether a number of methods default to working only on byte boundaries."""

# Maximum number of digits to use in __str__ and __repr__.
MAX_CHARS = 250

# Maximum size of caches used for speed optimisations.
CACHE_SIZE = 1000

class Error(Exception):
    """Base class for errors in the bitstring module."""

    def __init__(self, *params):
        self.msg = params[0] if params else ''
        self.params = params[1:]

    def __str__(self):
        if self.params:
            return self.msg.format(*self.params)
        return self.msg


class ReadError(Error, IndexError):
    """Reading or peeking past the end of a bitstring."""

    def __init__(self, *params):
        Error.__init__(self, *params)


class InterpretError(Error, ValueError):
    """Inappropriate interpretation of binary data."""

    def __init__(self, *params):
        Error.__init__(self, *params)


class ByteAlignError(Error):
    """Whole-byte position or length needed."""

    def __init__(self, *params):
        Error.__init__(self, *params)


class CreationError(Error, ValueError):
    """Inappropriate argument during bitstring creation."""

    def __init__(self, *params):
        Error.__init__(self, *params)


class ConstByteStore(object):
    """Stores raw bytes together with a bit offset and length.

    Used internally - not part of public interface.
    """

    __slots__ = ('offset', '_rawarray', 'bitlength')

    def __init__(self, data, bitlength=None, offset=None):
        """data is either a bytearray or a MmapByteArray"""
        self._rawarray = data
        if offset is None:
            offset = 0
        if bitlength is None:
            bitlength = 8 * len(data) - offset
        self.offset = offset
        self.bitlength = bitlength

    def getbit(self, pos):
        assert 0 <= pos < self.bitlength
        byte, bit = divmod(self.offset + pos, 8)
        return bool(self._rawarray[byte] & (128 >> bit))

    def getbyte(self, pos):
        """Direct access to byte data."""
        return self._rawarray[pos]

    def getbyteslice(self, start, end):
        """Direct access to byte data."""
        c = self._rawarray[start:end]
        return c

    @property
    def bytelength(self):
        if not self.bitlength:
            return 0
        sb = self.offset // 8
        eb = (self.offset + self.bitlength - 1) // 8
        return eb - sb + 1

    def __copy__(self):
        return ByteStore(self._rawarray[:], self.bitlength, self.offset)

    def _appendstore(self, store):
        """Join another store on to the end of this one."""
        if not store.bitlength:
            return
        # Set new array offset to the number of bits in the final byte of current array.
        store = offsetcopy(store, (self.offset + self.bitlength) % 8)
        if store.offset:
            # first do the byte with the join.
            joinval = (self._rawarray.pop() & (255 ^ (255 >> store.offset)) |
                       (store.getbyte(0) & (255 >> store.offset)))
            self._rawarray.append(joinval)
            self._rawarray.extend(store._rawarray[1:])
        else:
            self._rawarray.extend(store._rawarray)
        self.bitlength += store.bitlength

    def _prependstore(self, store):
        """Join another store on to the start of this one."""
        if not store.bitlength:
            return
            # Set the offset of copy of store so that it's final byte
        # ends in a position that matches the offset of self,
        # then join self on to the end of it.
        store = offsetcopy(store, (self.offset - store.bitlength) % 8)
        assert (store.offset + store.bitlength) % 8 == self.offset % 8
        bit_offset = self.offset % 8
        if bit_offset:
            # first do the byte with the join.
            store.setbyte(-1, (store.getbyte(-1) & (255 ^ (255 >> bit_offset)) | \
                               (self._rawarray[self.byteoffset] & (255 >> bit_offset))))
            store._rawarray.extend(self._rawarray[self.byteoffset + 1: self.byteoffset + self.bytelength])
        else:
            store._rawarray.extend(self._rawarray[self.byteoffset: self.byteoffset + self.bytelength])
        self._rawarray = store._rawarray
        self.offset = store.offset
        self.bitlength += store.bitlength

    @property
    def byteoffset(self):
        return self.offset // 8

    @property
    def rawbytes(self):
        return self._rawarray


class ByteStore(ConstByteStore):
    """Adding mutating methods to ConstByteStore

    Used internally - not part of public interface.
    """
    __slots__ = ()

    def setbit(self, pos):
        assert 0 <= pos < self.bitlength
        byte, bit = divmod(self.offset + pos, 8)
        self._rawarray[byte] |= (128 >> bit)

    def unsetbit(self, pos):
        assert 0 <= pos < self.bitlength
        byte, bit = divmod(self.offset + pos, 8)
        self._rawarray[byte] &= ~(128 >> bit)

    def invertbit(self, pos):
        assert 0 <= pos < self.bitlength
        byte, bit = divmod(self.offset + pos, 8)
        self._rawarray[byte] ^= (128 >> bit)

    def setbyte(self, pos, value):
        self._rawarray[pos] = value

    def setbyteslice(self, start, end, value):
        self._rawarray[start:end] = value


def offsetcopy(s, newoffset):
    """Return a copy of a ByteStore with the newoffset.

    Not part of public interface.
    """
    assert 0 <= newoffset < 8
    if not s.bitlength:
        return copy.copy(s)
    else:
        if newoffset == s.offset % 8:
            return ByteStore(s.getbyteslice(s.byteoffset, s.byteoffset + s.bytelength), s.bitlength, newoffset)
        newdata = []
        d = s._rawarray
        assert newoffset != s.offset % 8
        if newoffset < s.offset % 8:
            # We need to shift everything left
            shiftleft = s.offset % 8 - newoffset
            # First deal with everything except for the final byte
            for x in range(s.byteoffset, s.byteoffset + s.bytelength - 1):
                newdata.append(((d[x] << shiftleft) & 0xff) +\
                               (d[x + 1] >> (8 - shiftleft)))
            bits_in_last_byte = (s.offset + s.bitlength) % 8
            if not bits_in_last_byte:
                bits_in_last_byte = 8
            if bits_in_last_byte > shiftleft:
                newdata.append((d[s.byteoffset + s.bytelength - 1] << shiftleft) & 0xff)
        else: # newoffset > s._offset % 8
            shiftright = newoffset - s.offset % 8
            newdata.append(s.getbyte(0) >> shiftright)
            for x in range(s.byteoffset + 1, s.byteoffset + s.bytelength):
                newdata.append(((d[x - 1] << (8 - shiftright)) & 0xff) +\
                               (d[x] >> shiftright))
            bits_in_last_byte = (s.offset + s.bitlength) % 8
            if not bits_in_last_byte:
                bits_in_last_byte = 8
            if bits_in_last_byte + shiftright > 8:
                newdata.append((d[s.byteoffset + s.bytelength - 1] << (8 - shiftright)) & 0xff)
        new_s = ByteStore(bytearray(newdata), s.bitlength, newoffset)
        assert new_s.offset == newoffset
        return new_s


def equal(a, b):
    """Return True if ByteStores a == b.

    Not part of public interface.
    """
    # We want to return False for inequality as soon as possible, which
    # means we get lots of special cases.
    # First the easy one - compare lengths:
    a_bitlength = a.bitlength
    b_bitlength = b.bitlength
    if a_bitlength != b_bitlength:
        return False
    if not a_bitlength:
        assert b_bitlength == 0
        return True
    # Make 'a' the one with the smaller offset
    if (a.offset % 8) > (b.offset % 8):
        a, b = b, a
    # and create some aliases
    a_bitoff = a.offset % 8
    b_bitoff = b.offset % 8
    a_byteoffset = a.byteoffset
    b_byteoffset = b.byteoffset
    a_bytelength = a.bytelength
    b_bytelength = b.bytelength
    da = a._rawarray
    db = b._rawarray

    # If they are pointing to the same data, they must be equal
    if da is db and a.offset == b.offset:
        return True

    if a_bitoff == b_bitoff:
        bits_spare_in_last_byte = 8 - (a_bitoff + a_bitlength) % 8
        if bits_spare_in_last_byte == 8:
            bits_spare_in_last_byte = 0
        # Special case for a, b contained in a single byte
        if a_bytelength == 1:
            a_val = ((da[a_byteoffset] << a_bitoff) & 0xff) >> (8 - a_bitlength)
            b_val = ((db[b_byteoffset] << b_bitoff) & 0xff) >> (8 - b_bitlength)
            return a_val == b_val
        # Otherwise check first byte
        if da[a_byteoffset] & (0xff >> a_bitoff) != db[b_byteoffset] & (0xff >> b_bitoff):
            return False
        # then everything up to the last
        b_a_offset = b_byteoffset - a_byteoffset
        for x in range(1 + a_byteoffset, a_byteoffset + a_bytelength - 1):
            if da[x] != db[b_a_offset + x]:
                return False
        # and finally the last byte
        return (da[a_byteoffset + a_bytelength - 1] >> bits_spare_in_last_byte ==
                db[b_byteoffset + b_bytelength - 1] >> bits_spare_in_last_byte)

    assert a_bitoff != b_bitoff
    # This is how much we need to shift a to the right to compare with b:
    shift = b_bitoff - a_bitoff
    # Special case for b only one byte long
    if b_bytelength == 1:
        assert a_bytelength == 1
        a_val = ((da[a_byteoffset] << a_bitoff) & 0xff) >> (8 - a_bitlength)
        b_val = ((db[b_byteoffset] << b_bitoff) & 0xff) >> (8 - b_bitlength)
        return a_val == b_val
    # Special case for a only one byte long
    if a_bytelength == 1:
        assert b_bytelength == 2
        a_val = ((da[a_byteoffset] << a_bitoff) & 0xff) >> (8 - a_bitlength)
        b_val = ((db[b_byteoffset] << 8) + db[b_byteoffset + 1]) << b_bitoff
        b_val &= 0xffff
        b_val >>= 16 - b_bitlength
        return a_val == b_val

    # Compare first byte of b with bits from first byte of a
    if (da[a_byteoffset] & (0xff >> a_bitoff)) >> shift != db[b_byteoffset] & (0xff >> b_bitoff):
        return False
    # Now compare every full byte of b with bits from 2 bytes of a
    for x in range(1, b_bytelength - 1):
        # Construct byte from 2 bytes in a to compare to byte in b
        b_val = db[b_byteoffset + x]
        a_val = ((da[a_byteoffset + x - 1] << 8) + da[a_byteoffset + x]) >> shift
        a_val &= 0xff
        if a_val != b_val:
            return False

    # Now check bits in final byte of b
    final_b_bits = (b.offset + b_bitlength) % 8
    if not final_b_bits:
        final_b_bits = 8
    b_val = db[b_byteoffset + b_bytelength - 1] >> (8 - final_b_bits)
    final_a_bits = (a.offset + a_bitlength) % 8
    if not final_a_bits:
        final_a_bits = 8
    if b.bytelength > a_bytelength:
        assert b_bytelength == a_bytelength + 1
        a_val = da[a_byteoffset + a_bytelength - 1] >> (8 - final_a_bits)
        a_val &= 0xff >> (8 - final_b_bits)
        return a_val == b_val
    assert a_bytelength == b_bytelength
    a_val = da[a_byteoffset + a_bytelength - 2] << 8
    a_val += da[a_byteoffset + a_bytelength - 1]
    a_val >>= (8 - final_a_bits)
    a_val &= 0xff >> (8 - final_b_bits)
    return a_val == b_val


class MmapByteArray(object):
    """Looks like a bytearray, but from an mmap.

    Not part of public interface.
    """

    __slots__ = ('filemap', 'filelength', 'source', 'byteoffset', 'bytelength')

    def __init__(self, source, bytelength=None, byteoffset=None):
        self.source = source
        source.seek(0, os.SEEK_END)
        self.filelength = source.tell()
        if byteoffset is None:
            byteoffset = 0
        if bytelength is None:
            bytelength = self.filelength - byteoffset
        self.byteoffset = byteoffset
        self.bytelength = bytelength
        self.filemap = mmap.mmap(source.fileno(), 0, access=mmap.ACCESS_READ)

    def __getitem__(self, key):
        try:
            start = key.start
            stop = key.stop
        except AttributeError:
            try:
                assert 0 <= key < self.bytelength
                return ord(self.filemap[key + self.byteoffset])
            except TypeError:
                # for Python 3
                return self.filemap[key + self.byteoffset]
        else:
            if start is None:
                start = 0
            if stop is None:
                stop = self.bytelength
            assert key.step is None
            assert 0 <= start < self.bytelength
            assert 0 <= stop <= self.bytelength
            s = slice(start + self.byteoffset, stop + self.byteoffset)
            return bytearray(self.filemap.__getitem__(s))

    def __len__(self):
        return self.bytelength


# This creates a dictionary for every possible byte with the value being
# the key with its bits reversed.
BYTE_REVERSAL_DICT = dict()

# For Python 2.x/ 3.x coexistence
# Yes this is very very hacky.
try:
    xrange
    for i in range(256):
        BYTE_REVERSAL_DICT[i] = chr(int("{0:08b}".format(i)[::-1], 2))
except NameError:
    for i in range(256):
        BYTE_REVERSAL_DICT[i] = bytes([int("{0:08b}".format(i)[::-1], 2)])
    from io import IOBase as file
    xrange = range
    basestring = str

# Python 2.x octals start with '0', in Python 3 it's '0o'
LEADING_OCT_CHARS = len(oct(1)) - 1

def tidy_input_string(s):
    """Return string made lowercase and with all whitespace removed."""
    s = ''.join(s.split()).lower()
    return s

INIT_NAMES = ('uint', 'int', 'ue', 'se', 'sie', 'uie', 'hex', 'oct', 'bin', 'bits',
              'uintbe', 'intbe', 'uintle', 'intle', 'uintne', 'intne',
              'float', 'floatbe', 'floatle', 'floatne', 'bytes', 'bool', 'pad')

TOKEN_RE = re.compile(r'(?P<name>' + '|'.join(INIT_NAMES) +
                      r')((:(?P<len>[^=]+)))?(=(?P<value>.*))?$', re.IGNORECASE)
DEFAULT_UINT = re.compile(r'(?P<len>[^=]+)?(=(?P<value>.*))?$', re.IGNORECASE)

MULTIPLICATIVE_RE = re.compile(r'(?P<factor>.*)\*(?P<token>.+)')

# Hex, oct or binary literals
LITERAL_RE = re.compile(r'(?P<name>0(x|o|b))(?P<value>.+)', re.IGNORECASE)

# An endianness indicator followed by one or more struct.pack codes
STRUCT_PACK_RE = re.compile(r'(?P<endian><|>|@)?(?P<fmt>(?:\d*[bBhHlLqQfd])+)$')

# A number followed by a single character struct.pack code
STRUCT_SPLIT_RE = re.compile(r'\d*[bBhHlLqQfd]')

# These replicate the struct.pack codes
# Big-endian
REPLACEMENTS_BE = {'b': 'intbe:8', 'B': 'uintbe:8',
                   'h': 'intbe:16', 'H': 'uintbe:16',
                   'l': 'intbe:32', 'L': 'uintbe:32',
                   'q': 'intbe:64', 'Q': 'uintbe:64',
                   'f': 'floatbe:32', 'd': 'floatbe:64'}
# Little-endian
REPLACEMENTS_LE = {'b': 'intle:8', 'B': 'uintle:8',
                   'h': 'intle:16', 'H': 'uintle:16',
                   'l': 'intle:32', 'L': 'uintle:32',
                   'q': 'intle:64', 'Q': 'uintle:64',
                   'f': 'floatle:32', 'd': 'floatle:64'}

# Size in bytes of all the pack codes.
PACK_CODE_SIZE = {'b': 1, 'B': 1, 'h': 2, 'H': 2, 'l': 4, 'L': 4,
                  'q': 8, 'Q': 8, 'f': 4, 'd': 8}

_tokenname_to_initialiser = {'hex': 'hex', '0x': 'hex', '0X': 'hex', 'oct': 'oct',
                             '0o': 'oct', '0O': 'oct', 'bin': 'bin', '0b': 'bin',
                             '0B': 'bin', 'bits': 'auto', 'bytes': 'bytes', 'pad': 'pad'}

def structparser(token):
    """Parse struct-like format string token into sub-token list."""
    m = STRUCT_PACK_RE.match(token)
    if not m:
        return [token]
    else:
        endian = m.group('endian')
        if endian is None:
            return [token]
        # Split the format string into a list of 'q', '4h' etc.
        formatlist = re.findall(STRUCT_SPLIT_RE, m.group('fmt'))
        # Now deal with mulitiplicative factors, 4h -> hhhh etc.
        fmt = ''.join([f[-1] * int(f[:-1]) if len(f) != 1 else
                       f for f in formatlist])
        if endian == '@':
            # Native endianness
            if byteorder == 'little':
                endian = '<'
            else:
                assert byteorder == 'big'
                endian = '>'
        if endian == '<':
            tokens = [REPLACEMENTS_LE[c] for c in fmt]
        else:
            assert endian == '>'
            tokens = [REPLACEMENTS_BE[c] for c in fmt]
    return tokens

def tokenparser(fmt, keys=None, token_cache={}):
    """Divide the format string into tokens and parse them.

    Return stretchy token and list of [initialiser, length, value]
    initialiser is one of: hex, oct, bin, uint, int, se, ue, 0x, 0o, 0b etc.
    length is None if not known, as is value.

    If the token is in the keyword dictionary (keys) then it counts as a
    special case and isn't messed with.

    tokens must be of the form: [factor*][initialiser][:][length][=value]

    """
    try:
        return token_cache[(fmt, keys)]
    except KeyError:
        token_key = (fmt, keys)
    # Very inefficient expanding of brackets.
    fmt = expand_brackets(fmt)
    # Split tokens by ',' and remove whitespace
    # The meta_tokens can either be ordinary single tokens or multiple
    # struct-format token strings.
    meta_tokens = (''.join(f.split()) for f in fmt.split(','))
    return_values = []
    stretchy_token = False
    for meta_token in meta_tokens:
        # See if it has a multiplicative factor
        m = MULTIPLICATIVE_RE.match(meta_token)
        if not m:
            factor = 1
        else:
            factor = int(m.group('factor'))
            meta_token = m.group('token')
        # See if it's a struct-like format
        tokens = structparser(meta_token)
        ret_vals = []
        for token in tokens:
            if keys and token in keys:
                # Don't bother parsing it, it's a keyword argument
                ret_vals.append([token, None, None])
                continue
            value = length = None
            if token == '':
                continue
            # Match literal tokens of the form 0x... 0o... and 0b...
            m = LITERAL_RE.match(token)
            if m:
                name = m.group('name')
                value = m.group('value')
                ret_vals.append([name, length, value])
                continue
            # Match everything else:
            m1 = TOKEN_RE.match(token)
            if not m1:
                # and if you don't specify a 'name' then the default is 'uint':
                m2 = DEFAULT_UINT.match(token)
                if not m2:
                    raise ValueError("Don't understand token '{0}'.".format(token))
            if m1:
                name = m1.group('name')
                length = m1.group('len')
                if m1.group('value'):
                    value = m1.group('value')
            else:
                assert m2
                name = 'uint'
                length = m2.group('len')
                if m2.group('value'):
                    value = m2.group('value')
            if name == 'bool':
                if length is not None:
                    raise ValueError("You can't specify a length with bool tokens - they are always one bit.")
                length = 1
            if length is None and name not in ('se', 'ue', 'sie', 'uie'):
                stretchy_token = True
            if length is not None:
                # Try converting length to int, otherwise check it's a key.
                try:
                    length = int(length)
                    if length < 0:
                        raise Error
                    # For the 'bytes' token convert length to bits.
                    if name == 'bytes':
                        length *= 8
                except Error:
                    raise ValueError("Can't read a token with a negative length.")
                except ValueError:
                    if not keys or length not in keys:
                        raise ValueError("Don't understand length '{0}' of token.".format(length))
            ret_vals.append([name, length, value])
        # This multiplies by the multiplicative factor, but this means that
        # we can't allow keyword values as multipliers (e.g. n*uint:8).
        # The only way to do this would be to return the factor in some fashion
        # (we can't use the key's value here as it would mean that we couldn't
        # sensibly continue to cache the function's results. (TODO).
        return_values.extend(ret_vals * factor)
    return_values = [tuple(x) for x in return_values]
    if len(token_cache) < CACHE_SIZE:
        token_cache[token_key] = stretchy_token, return_values
    return stretchy_token, return_values

# Looks for first number*(
BRACKET_RE = re.compile(r'(?P<factor>\d+)\*\(')

def expand_brackets(s):
    """Remove whitespace and expand all brackets."""
    s = ''.join(s.split())
    while True:
        start = s.find('(')
        if start == -1:
            break
        count = 1 # Number of hanging open brackets
        p = start + 1
        while p < len(s):
            if s[p] == '(':
                count += 1
            if s[p] == ')':
                count -= 1
            if not count:
                break
            p += 1
        if count:
            raise ValueError("Unbalanced parenthesis in '{0}'.".format(s))
        if start == 0 or s[start - 1] != '*':
            s = s[0:start] + s[start + 1:p] + s[p + 1:]
        else:
            m = BRACKET_RE.search(s)
            if m:
                factor = int(m.group('factor'))
                matchstart = m.start('factor')
                s = s[0:matchstart] + (factor - 1) * (s[start + 1:p] + ',') + s[start + 1:p] + s[p + 1:]
            else:
                raise ValueError("Failed to parse '{0}'.".format(s))
    return s


# This converts a single octal digit to 3 bits.
OCT_TO_BITS = ['{0:03b}'.format(i) for i in xrange(8)]

# A dictionary of number of 1 bits contained in binary representation of any byte
BIT_COUNT = dict(zip(xrange(256), [bin(i).count('1') for i in xrange(256)]))


class Bits(object):
    """A container holding an immutable sequence of bits.

    For a mutable container use the BitArray class instead.

    Methods:

    all() -- Check if all specified bits are set to 1 or 0.
    any() -- Check if any of specified bits are set to 1 or 0.
    count() -- Count the number of bits set to 1 or 0.
    cut() -- Create generator of constant sized chunks.
    endswith() -- Return whether the bitstring ends with a sub-string.
    find() -- Find a sub-bitstring in the current bitstring.
    findall() -- Find all occurrences of a sub-bitstring in the current bitstring.
    join() -- Join bitstrings together using current bitstring.
    rfind() -- Seek backwards to find a sub-bitstring.
    split() -- Create generator of chunks split by a delimiter.
    startswith() -- Return whether the bitstring starts with a sub-bitstring.
    tobytes() -- Return bitstring as bytes, padding if needed.
    tofile() -- Write bitstring to file, padding if needed.
    unpack() -- Interpret bits using format string.

    Special methods:

    Also available are the operators [], ==, !=, +, *, ~, <<, >>, &, |, ^.

    Properties:

    bin -- The bitstring as a binary string.
    bool -- For single bit bitstrings, interpret as True or False.
    bytes -- The bitstring as a bytes object.
    float -- Interpret as a floating point number.
    floatbe -- Interpret as a big-endian floating point number.
    floatle -- Interpret as a little-endian floating point number.
    floatne -- Interpret as a native-endian floating point number.
    hex -- The bitstring as a hexadecimal string.
    int -- Interpret as a two's complement signed integer.
    intbe -- Interpret as a big-endian signed integer.
    intle -- Interpret as a little-endian signed integer.
    intne -- Interpret as a native-endian signed integer.
    len -- Length of the bitstring in bits.
    oct -- The bitstring as an octal string.
    se -- Interpret as a signed exponential-Golomb code.
    ue -- Interpret as an unsigned exponential-Golomb code.
    sie -- Interpret as a signed interleaved exponential-Golomb code.
    uie -- Interpret as an unsigned interleaved exponential-Golomb code.
    uint -- Interpret as a two's complement unsigned integer.
    uintbe -- Interpret as a big-endian unsigned integer.
    uintle -- Interpret as a little-endian unsigned integer.
    uintne -- Interpret as a native-endian unsigned integer.

    """

    __slots__ = ('_datastore')

    def __init__(self, auto=None, length=None, offset=None, **kwargs):
        """Either specify an 'auto' initialiser:
        auto -- a string of comma separated tokens, an integer, a file object,
                a bytearray, a boolean iterable or another bitstring.

        Or initialise via **kwargs with one (and only one) of:
        bytes -- raw data as a string, for example read from a binary file.
        bin -- binary string representation, e.g. '0b001010'.
        hex -- hexadecimal string representation, e.g. '0x2ef'
        oct -- octal string representation, e.g. '0o777'.
        uint -- an unsigned integer.
        int -- a signed integer.
        float -- a floating point number.
        uintbe -- an unsigned big-endian whole byte integer.
        intbe -- a signed big-endian whole byte integer.
        floatbe - a big-endian floating point number.
        uintle -- an unsigned little-endian whole byte integer.
        intle -- a signed little-endian whole byte integer.
        floatle -- a little-endian floating point number.
        uintne -- an unsigned native-endian whole byte integer.
        intne -- a signed native-endian whole byte integer.
        floatne -- a native-endian floating point number.
        se -- a signed exponential-Golomb code.
        ue -- an unsigned exponential-Golomb code.
        sie -- a signed interleaved exponential-Golomb code.
        uie -- an unsigned interleaved exponential-Golomb code.
        bool -- a boolean (True or False).
        filename -- a file which will be opened in binary read-only mode.

        Other keyword arguments:
        length -- length of the bitstring in bits, if needed and appropriate.
                  It must be supplied for all integer and float initialisers.
        offset -- bit offset to the data. These offset bits are
                  ignored and this is mainly intended for use when
                  initialising using 'bytes' or 'filename'.

        """
        pass

    def __new__(cls, auto=None, length=None, offset=None, _cache={}, **kwargs):
        # For instances auto-initialised with a string we intern the
        # instance for re-use.
        try:
            if isinstance(auto, basestring):
                try:
                    return _cache[auto]
                except KeyError:
                    x = object.__new__(Bits)
                    try:
                        _, tokens = tokenparser(auto)
                    except ValueError as e:
                        raise CreationError(*e.args)
                    x._datastore = ConstByteStore(bytearray(0), 0, 0)
                    for token in tokens:
                        x._datastore._appendstore(Bits._init_with_token(*token)._datastore)
                    assert x._assertsanity()
                    if len(_cache) < CACHE_SIZE:
                        _cache[auto] = x
                    return x
            if type(auto) == Bits:
                return auto
        except TypeError:
            pass
        x = super(Bits, cls).__new__(cls)
        x._initialise(auto, length, offset, **kwargs)
        return x

    def _initialise(self, auto, length, offset, **kwargs):
        if length is not None and length < 0:
            raise CreationError("bitstring length cannot be negative.")
        if offset is not None and offset < 0:
            raise CreationError("offset must be >= 0.")
        if auto is not None:
            self._initialise_from_auto(auto, length, offset)
            return
        if not kwargs:
            # No initialisers, so initialise with nothing or zero bits
            if length is not None and length != 0:
                data = bytearray((length + 7) // 8)
                self._setbytes_unsafe(data, length, 0)
                return
            self._setbytes_unsafe(bytearray(0), 0, 0)
            return
        k, v = kwargs.popitem()
        try:
            init_without_length_or_offset[k](self, v)
            if length is not None or offset is not None:
                raise CreationError("Cannot use length or offset with this initialiser.")
        except KeyError:
            try:
                init_with_length_only[k](self, v, length)
                if offset is not None:
                    raise CreationError("Cannot use offset with this initialiser.")
            except KeyError:
                if offset is None:
                    offset = 0
                try:
                    init_with_length_and_offset[k](self, v, length, offset)
                except KeyError:
                    raise CreationError("Unrecognised keyword '{0}' used to initialise.", k)

    def _initialise_from_auto(self, auto, length, offset):
        if offset is None:
            offset = 0
        self._setauto(auto, length, offset)
        return

    def __copy__(self):
        """Return a new copy of the Bits for the copy module."""
        # Note that if you want a new copy (different ID), use _copy instead.
        # The copy can return self as it's immutable.
        return self

    def __lt__(self, other):
        raise TypeError("unorderable type: {0}".format(type(self).__name__))

    def __gt__(self, other):
        raise TypeError("unorderable type: {0}".format(type(self).__name__))

    def __le__(self, other):
        raise TypeError("unorderable type: {0}".format(type(self).__name__))

    def __ge__(self, other):
        raise TypeError("unorderable type: {0}".format(type(self).__name__))

    def __add__(self, bs):
        """Concatenate bitstrings and return new bitstring.

        bs -- the bitstring to append.

        """
        bs = Bits(bs)
        if bs.len <= self.len:
            s = self._copy()
            s._append(bs)
        else:
            s = bs._copy()
            s = self.__class__(s)
            s._prepend(self)
        return s

    def __radd__(self, bs):
        """Append current bitstring to bs and return new bitstring.

        bs -- the string for the 'auto' initialiser that will be appended to.

        """
        bs = self._converttobitstring(bs)
        return bs.__add__(self)

    def __getitem__(self, key):
        """Return a new bitstring representing a slice of the current bitstring.

        Indices are in units of the step parameter (default 1 bit).
        Stepping is used to specify the number of bits in each item.

        >>> print BitArray('0b00110')[1:4]
        '0b011'
        >>> print BitArray('0x00112233')[1:3:8]
        '0x1122'

        """
        length = self.len
        try:
            step = key.step if key.step is not None else 1
        except AttributeError:
            # single element
            if key < 0:
                key += length
            if not 0 <= key < length:
                raise IndexError("Slice index out of range.")
            # Single bit, return True or False
            return self._datastore.getbit(key)
        else:
            if step != 1:
                # convert to binary string and use string slicing
                bs = self.__class__()
                bs._setbin_unsafe(self._getbin().__getitem__(key))
                return bs
            start, stop = 0, length
            if key.start is not None:
                start = key.start
                if key.start < 0:
                    start += stop
            if key.stop is not None:
                stop = key.stop
                if key.stop < 0:
                    stop += length
            start = max(start, 0)
            stop = min(stop, length)
            if start < stop:
                return self._slice(start, stop)
            else:
                return self.__class__()

    def __len__(self):
        """Return the length of the bitstring in bits."""
        return self._getlength()

    def __str__(self):
        """Return approximate string representation of bitstring for printing.

        Short strings will be given wholly in hexadecimal or binary. Longer
        strings may be part hexadecimal and part binary. Very long strings will
        be truncated with '...'.

        """
        length = self.len
        if not length:
            return ''
        if length > MAX_CHARS * 4:
            # Too long for hex. Truncate...
            return ''.join(('0x', self._readhex(MAX_CHARS * 4, 0), '...'))
        # If it's quite short and we can't do hex then use bin
        if length < 32 and length % 4 != 0:
            return '0b' + self.bin
        # If we can use hex then do so
        if not length % 4:
            return '0x' + self.hex
        # Otherwise first we do as much as we can in hex
        # then add on 1, 2 or 3 bits on at the end
        bits_at_end = length % 4
        return ''.join(('0x', self._readhex(length - bits_at_end, 0),
                        ', ', '0b',
                        self._readbin(bits_at_end, length - bits_at_end)))

    def __repr__(self):
        """Return representation that could be used to recreate the bitstring.

        If the returned string is too long it will be truncated. See __str__().

        """
        length = self.len
        if isinstance(self._datastore._rawarray, MmapByteArray):
            offsetstring = ''
            if self._datastore.byteoffset or self._offset:
                offsetstring = ", offset=%d" % (self._datastore._rawarray.byteoffset * 8 + self._offset)
            lengthstring = ", length=%d" % length
            return "{0}(filename='{1}'{2}{3})".format(self.__class__.__name__,
                    self._datastore._rawarray.source.name, lengthstring, offsetstring)
        else:
            s = self.__str__()
            lengthstring = ''
            if s.endswith('...'):
                lengthstring = " # length={0}".format(length)
            return "{0}('{1}'){2}".format(self.__class__.__name__, s, lengthstring)

    def __eq__(self, bs):
        """Return True if two bitstrings have the same binary representation.

        >>> BitArray('0b1110') == '0xe'
        True

        """
        try:
            bs = Bits(bs)
        except TypeError:
            return False
        return equal(self._datastore, bs._datastore)

    def __ne__(self, bs):
        """Return False if two bitstrings have the same binary representation.

        >>> BitArray('0b111') == '0x7'
        False

        """
        return not self.__eq__(bs)

    def __invert__(self):
        """Return bitstring with every bit inverted.

        Raises Error if the bitstring is empty.

        """
        if not self.len:
            raise Error("Cannot invert empty bitstring.")
        s = self._copy()
        s._invert_all()
        return s

    def __lshift__(self, n):
        """Return bitstring with bits shifted by n to the left.

        n -- the number of bits to shift. Must be >= 0.

        """
        if n < 0:
            raise ValueError("Cannot shift by a negative amount.")
        if not self.len:
            raise ValueError("Cannot shift an empty bitstring.")
        n = min(n, self.len)
        s = self._slice(n, self.len)
        s._append(Bits(n))
        return s

    def __rshift__(self, n):
        """Return bitstring with bits shifted by n to the right.

        n -- the number of bits to shift. Must be >= 0.

        """
        if n < 0:
            raise ValueError("Cannot shift by a negative amount.")
        if not self.len:
            raise ValueError("Cannot shift an empty bitstring.")
        if not n:
            return self._copy()
        s = self.__class__(length=min(n, self.len))
        s._append(self[:-n])
        return s

    def __mul__(self, n):
        """Return bitstring consisting of n concatenations of self.

        Called for expression of the form 'a = b*3'.
        n -- The number of concatenations. Must be >= 0.

        """
        if n < 0:
            raise ValueError("Cannot multiply by a negative integer.")
        if not n:
            return self.__class__()
        s = self._copy()
        s._imul(n)
        return s

    def __rmul__(self, n):
        """Return bitstring consisting of n concatenations of self.

        Called for expressions of the form 'a = 3*b'.
        n -- The number of concatenations. Must be >= 0.

        """
        return self.__mul__(n)

    def __and__(self, bs):
        """Bit-wise 'and' between two bitstrings. Returns new bitstring.

        bs -- The bitstring to '&' with.

        Raises ValueError if the two bitstrings have differing lengths.

        """
        bs = Bits(bs)
        if self.len != bs.len:
            raise ValueError("Bitstrings must have the same length "
                             "for & operator.")
        s = self._copy()
        s._iand(bs)
        return s

    def __rand__(self, bs):
        """Bit-wise 'and' between two bitstrings. Returns new bitstring.

        bs -- the bitstring to '&' with.

        Raises ValueError if the two bitstrings have differing lengths.

        """
        return self.__and__(bs)

    def __or__(self, bs):
        """Bit-wise 'or' between two bitstrings. Returns new bitstring.

        bs -- The bitstring to '|' with.

        Raises ValueError if the two bitstrings have differing lengths.

        """
        bs = Bits(bs)
        if self.len != bs.len:
            raise ValueError("Bitstrings must have the same length "
                             "for | operator.")
        s = self._copy()
        s._ior(bs)
        return s

    def __ror__(self, bs):
        """Bit-wise 'or' between two bitstrings. Returns new bitstring.

        bs -- The bitstring to '|' with.

        Raises ValueError if the two bitstrings have differing lengths.

        """
        return self.__or__(bs)

    def __xor__(self, bs):
        """Bit-wise 'xor' between two bitstrings. Returns new bitstring.

        bs -- The bitstring to '^' with.

        Raises ValueError if the two bitstrings have differing lengths.

        """
        bs = Bits(bs)
        if self.len != bs.len:
            raise ValueError("Bitstrings must have the same length "
                             "for ^ operator.")
        s = self._copy()
        s._ixor(bs)
        return s

    def __rxor__(self, bs):
        """Bit-wise 'xor' between two bitstrings. Returns new bitstring.

        bs -- The bitstring to '^' with.

        Raises ValueError if the two bitstrings have differing lengths.

        """
        return self.__xor__(bs)

    def __contains__(self, bs):
        """Return whether bs is contained in the current bitstring.

        bs -- The bitstring to search for.

        """
        # Don't want to change pos
        try:
            pos = self._pos
        except AttributeError:
            pass
        found = Bits.find(self, bs, bytealigned=False)
        try:
            self._pos = pos
        except AttributeError:
            pass
        return bool(found)

    def __hash__(self):
        """Return an integer hash of the object."""
        # We can't in general hash the whole bitstring (it could take hours!)
        # So instead take some bits from the start and end.
        if self.len <= 160:
            # Use the whole bitstring.
            shorter = self
        else:
            # Take 10 bytes from start and end
            shorter = self[:80] + self[-80:]
        h = 0
        for byte in shorter.tobytes():
            try:
                h = (h << 4) + ord(byte)
            except TypeError:
                # Python 3
                h = (h << 4) + byte
            g = h & 0xf0000000
            if g & (1 << 31):
                h ^= (g >> 24)
                h ^= g
        return h % 1442968193

    # This is only used in Python 2.x...
    def __nonzero__(self):
        """Return True if any bits are set to 1, otherwise return False."""
        return self.any(True)

    # ...whereas this is used in Python 3.x
    __bool__ = __nonzero__

    def _assertsanity(self):
        """Check internal self consistency as a debugging aid."""
        assert self.len >= 0
        assert 0 <= self._offset, "offset={0}".format(self._offset)
        assert (self.len + self._offset + 7) // 8 == self._datastore.bytelength + self._datastore.byteoffset
        return True

    @classmethod
    def _init_with_token(cls, name, token_length, value):
        if token_length is not None:
            token_length = int(token_length)
        if token_length == 0:
            return cls()
        # For pad token just return the length in zero bits
        if name == 'pad':
            return cls(token_length)

        if value is None:
            if token_length is None:
                error = "Token has no value ({0}=???).".format(name)
            else:
                error = "Token has no value ({0}:{1}=???).".format(name, token_length)
            raise ValueError(error)
        try:
            b = cls(**{_tokenname_to_initialiser[name]: value})
        except KeyError:
            if name in ('se', 'ue', 'sie', 'uie'):
                b = cls(**{name: int(value)})
            elif name in ('uint', 'int', 'uintbe', 'intbe', 'uintle', 'intle', 'uintne', 'intne'):
                b = cls(**{name: int(value), 'length': token_length})
            elif name in ('float', 'floatbe', 'floatle', 'floatne'):
                b = cls(**{name: float(value), 'length': token_length})
            elif name == 'bool':
                if value in (1, 'True', '1'):
                    b = cls(bool=True)
                elif value in (0, 'False', '0'):
                    b = cls(bool=False)
                else:
                    raise CreationError("bool token can only be 'True' or 'False'.")
            else:
                raise CreationError("Can't parse token name {0}.", name)
        if token_length is not None and b.len != token_length:
            msg = "Token with length {0} packed with value of length {1} ({2}:{3}={4})."
            raise CreationError(msg, token_length, b.len, name, token_length, value)
        return b

    def _clear(self):
        """Reset the bitstring to an empty state."""
        self._datastore = ByteStore(bytearray(0))

    def _setauto(self, s, length, offset):
        """Set bitstring from a bitstring, file, bool, integer, iterable or string."""
        # As s can be so many different things it's important to do the checks
        # in the correct order, as some types are also other allowed types.
        # So basestring must be checked before Iterable
        # and bytes/bytearray before Iterable but after basestring!
        if isinstance(s, Bits):
            if length is None:
                length = s.len - offset
            self._setbytes_unsafe(s._datastore.rawbytes, length, s._offset + offset)
            return
        if isinstance(s, file):
            if offset is None:
                offset = 0
            if length is None:
                length = os.path.getsize(s.name) * 8 - offset
            byteoffset, offset = divmod(offset, 8)
            bytelength = (length + byteoffset * 8 + offset + 7) // 8 - byteoffset
            m = MmapByteArray(s, bytelength, byteoffset)
            if length + byteoffset * 8 + offset > m.filelength * 8:
                raise CreationError("File is not long enough for specified "
                                    "length and offset.")
            self._datastore = ConstByteStore(m, length, offset)
            return
        if length is not None:
            raise CreationError("The length keyword isn't applicable to this initialiser.")
        if offset:
            raise CreationError("The offset keyword isn't applicable to this initialiser.")
        if isinstance(s, basestring):
            bs = self._converttobitstring(s)
            assert bs._offset == 0
            self._setbytes_unsafe(bs._datastore.rawbytes, bs.length, 0)
            return
        if isinstance(s, (bytes, bytearray)):
            self._setbytes_unsafe(bytearray(s), len(s) * 8, 0)
            return
        if isinstance(s, numbers.Integral):
            # Initialise with s zero bits.
            if s < 0:
                msg = "Can't create bitstring of negative length {0}."
                raise CreationError(msg, s)
            data = bytearray((s + 7) // 8)
            self._datastore = ByteStore(data, s, 0)
            return
        if isinstance(s, collections.Iterable):
            # Evaluate each item as True or False and set bits to 1 or 0.
            self._setbin_unsafe(''.join(str(int(bool(x))) for x in s))
            return
        raise TypeError("Cannot initialise bitstring from {0}.".format(type(s)))

    def _setfile(self, filename, length, offset):
        """Use file as source of bits."""
        source = open(filename, 'rb')
        if offset is None:
            offset = 0
        if length is None:
            length = os.path.getsize(source.name) * 8 - offset
        byteoffset, offset = divmod(offset, 8)
        bytelength = (length + byteoffset * 8 + offset + 7) // 8 - byteoffset
        m = MmapByteArray(source, bytelength, byteoffset)
        if length + byteoffset * 8 + offset > m.filelength * 8:
            raise CreationError("File is not long enough for specified "
                                "length and offset.")
        self._datastore = ConstByteStore(m, length, offset)

    def _setbytes_safe(self, data, length=None, offset=0):
        """Set the data from a string."""
        data = bytearray(data)
        if length is None:
            # Use to the end of the data
            length = len(data)*8 - offset
            self._datastore = ByteStore(data, length, offset)
        else:
            if length + offset > len(data) * 8:
                msg = "Not enough data present. Need {0} bits, have {1}."
                raise CreationError(msg, length + offset, len(data) * 8)
            if length == 0:
                self._datastore = ByteStore(bytearray(0))
            else:
                self._datastore = ByteStore(data, length, offset)

    def _setbytes_unsafe(self, data, length, offset):
        """Unchecked version of _setbytes_safe."""
        self._datastore = ByteStore(data[:], length, offset)
        assert self._assertsanity()

    def _readbytes(self, length, start):
        """Read bytes and return them. Note that length is in bits."""
        assert length % 8 == 0
        assert start + length <= self.len
        if not (start + self._offset) % 8:
            return bytes(self._datastore.getbyteslice((start + self._offset) // 8,
                                                      (start + self._offset + length) // 8))
        return self._slice(start, start + length).tobytes()

    def _getbytes(self):
        """Return the data as an ordinary string."""
        if self.len % 8:
            raise InterpretError("Cannot interpret as bytes unambiguously - "
                                 "not multiple of 8 bits.")
        return self._readbytes(self.len, 0)

    def _setuint(self, uint, length=None):
        """Reset the bitstring to have given unsigned int interpretation."""
        try:
            if length is None:
                # Use the whole length. Deliberately not using .len here.
                length = self._datastore.bitlength
        except AttributeError:
            # bitstring doesn't have a _datastore as it hasn't been created!
            pass
        # TODO: All this checking code should be hoisted out of here!
        if length is None or length == 0:
            raise CreationError("A non-zero length must be specified with a "
                                "uint initialiser.")
        if uint >= (1 << length):
            msg = "{0} is too large an unsigned integer for a bitstring of length {1}. "\
                  "The allowed range is [0, {2}]."
            raise CreationError(msg, uint, length, (1 << length) - 1)
        if uint < 0:
            raise CreationError("uint cannot be initialsed by a negative number.")
        s = hex(uint)[2:]
        s = s.rstrip('L')
        if len(s) & 1:
            s = '0' + s
        try:
            data = bytes.fromhex(s)
        except AttributeError:
            # the Python 2.x way
            data = binascii.unhexlify(s)
        # Now add bytes as needed to get the right length.
        extrabytes = ((length + 7) // 8) - len(data)
        if extrabytes > 0:
            data = b'\x00' * extrabytes + data
        offset = 8 - (length % 8)
        if offset == 8:
            offset = 0
        self._setbytes_unsafe(bytearray(data), length, offset)

    def _readuint(self, length, start):
        """Read bits and interpret as an unsigned int."""
        if not length:
            raise InterpretError("Cannot interpret a zero length bitstring "
                                           "as an integer.")
        offset = self._offset
        startbyte = (start + offset) // 8
        endbyte = (start + offset + length - 1) // 8

        b = binascii.hexlify(bytes(self._datastore.getbyteslice(startbyte, endbyte + 1)))
        assert b
        i = int(b, 16)
        final_bits = 8 - ((start + offset + length) % 8)
        if final_bits != 8:
            i >>= final_bits
        i &= (1 << length) - 1
        return i

    def _getuint(self):
        """Return data as an unsigned int."""
        return self._readuint(self.len, 0)

    def _setint(self, int_, length=None):
        """Reset the bitstring to have given signed int interpretation."""
        # If no length given, and we've previously been given a length, use it.
        if length is None and hasattr(self, 'len') and self.len != 0:
            length = self.len
        if length is None or length == 0:
            raise CreationError("A non-zero length must be specified with an int initialiser.")
        if int_ >= (1 << (length - 1)) or int_ < -(1 << (length - 1)):
            raise CreationError("{0} is too large a signed integer for a bitstring of length {1}. "
                                "The allowed range is [{2}, {3}].", int_, length, -(1 << (length - 1)),
                                (1 << (length - 1)) - 1)
        if int_ >= 0:
            self._setuint(int_, length)
            return
        # TODO: We should decide whether to just use the _setuint, or to do the bit flipping,
        # based upon which will be quicker. If the -ive number is less than half the maximum
        # possible then it's probably quicker to do the bit flipping...

        # Do the 2's complement thing. Add one, set to minus number, then flip bits.
        int_ += 1
        self._setuint(-int_, length)
        self._invert_all()

    def _readint(self, length, start):
        """Read bits and interpret as a signed int"""
        ui = self._readuint(length, start)
        if not ui >> (length - 1):
            # Top bit not set, number is positive
            return ui
        # Top bit is set, so number is negative
        tmp = (~(ui - 1)) & ((1 << length) - 1)
        return -tmp

    def _getint(self):
        """Return data as a two's complement signed int."""
        return self._readint(self.len, 0)

    def _setuintbe(self, uintbe, length=None):
        """Set the bitstring to a big-endian unsigned int interpretation."""
        if length is not None and length % 8 != 0:
            raise CreationError("Big-endian integers must be whole-byte. "
                                "Length = {0} bits.", length)
        self._setuint(uintbe, length)

    def _readuintbe(self, length, start):
        """Read bits and interpret as a big-endian unsigned int."""
        if length % 8:
            raise InterpretError("Big-endian integers must be whole-byte. "
                                 "Length = {0} bits.", length)
        return self._readuint(length, start)

    def _getuintbe(self):
        """Return data as a big-endian two's complement unsigned int."""
        return self._readuintbe(self.len, 0)

    def _setintbe(self, intbe, length=None):
        """Set bitstring to a big-endian signed int interpretation."""
        if length is not None and length % 8 != 0:
            raise CreationError("Big-endian integers must be whole-byte. "
                                "Length = {0} bits.", length)
        self._setint(intbe, length)

    def _readintbe(self, length, start):
        """Read bits and interpret as a big-endian signed int."""
        if length % 8:
            raise InterpretError("Big-endian integers must be whole-byte. "
                                 "Length = {0} bits.", length)
        return self._readint(length, start)

    def _getintbe(self):
        """Return data as a big-endian two's complement signed int."""
        return self._readintbe(self.len, 0)

    def _setuintle(self, uintle, length=None):
        if length is not None and length % 8 != 0:
            raise CreationError("Little-endian integers must be whole-byte. "
                                "Length = {0} bits.", length)
        self._setuint(uintle, length)
        self._reversebytes(0, self.len)

    def _readuintle(self, length, start):
        """Read bits and interpret as a little-endian unsigned int."""
        if length % 8:
            raise InterpretError("Little-endian integers must be whole-byte. "
                                 "Length = {0} bits.", length)
        assert start + length <= self.len
        absolute_pos = start + self._offset
        startbyte, offset = divmod(absolute_pos, 8)
        val = 0
        if not offset:
            endbyte = (absolute_pos + length - 1) // 8
            chunksize = 4 # for 'L' format
            while endbyte - chunksize + 1 >= startbyte:
                val <<= 8 * chunksize
                val += struct.unpack('<L', bytes(self._datastore.getbyteslice(endbyte + 1 - chunksize, endbyte + 1)))[0]
                endbyte -= chunksize
            for b in xrange(endbyte, startbyte - 1, -1):
                val <<= 8
                val += self._datastore.getbyte(b)
        else:
            data = self._slice(start, start + length)
            assert data.len % 8 == 0
            data._reversebytes(0, self.len)
            for b in bytearray(data.bytes):
                val <<= 8
                val += b
        return val

    def _getuintle(self):
        return self._readuintle(self.len, 0)

    def _setintle(self, intle, length=None):
        if length is not None and length % 8 != 0:
            raise CreationError("Little-endian integers must be whole-byte. "
                                "Length = {0} bits.", length)
        self._setint(intle, length)
        self._reversebytes(0, self.len)

    def _readintle(self, length, start):
        """Read bits and interpret as a little-endian signed int."""
        ui = self._readuintle(length, start)
        if not ui >> (length - 1):
            # Top bit not set, number is positive
            return ui
        # Top bit is set, so number is negative
        tmp = (~(ui - 1)) & ((1 << length) - 1)
        return -tmp

    def _getintle(self):
        return self._readintle(self.len, 0)

    def _setfloat(self, f, length=None):
        # If no length given, and we've previously been given a length, use it.
        if length is None and hasattr(self, 'len') and self.len != 0:
            length = self.len
        if length is None or length == 0:
            raise CreationError("A non-zero length must be specified with a "
                                "float initialiser.")
        if length == 32:
            b = struct.pack('>f', f)
        elif length == 64:
            b = struct.pack('>d', f)
        else:
            raise CreationError("floats can only be 32 or 64 bits long, "
                                "not {0} bits", length)
        self._setbytes_unsafe(bytearray(b), length, 0)

    def _readfloat(self, length, start):
        """Read bits and interpret as a float."""
        if not (start + self._offset) % 8:
            startbyte = (start + self._offset) // 8
            if length == 32:
                f, = struct.unpack('>f', bytes(self._datastore.getbyteslice(startbyte, startbyte + 4)))
            elif length == 64:
                f, = struct.unpack('>d', bytes(self._datastore.getbyteslice(startbyte, startbyte + 8)))
        else:
            if length == 32:
                f, = struct.unpack('>f', self._readbytes(32, start))
            elif length == 64:
                f, = struct.unpack('>d', self._readbytes(64, start))
        try:
            return f
        except NameError:
            raise InterpretError("floats can only be 32 or 64 bits long, not {0} bits", length)

    def _getfloat(self):
        """Interpret the whole bitstring as a float."""
        return self._readfloat(self.len, 0)

    def _setfloatle(self, f, length=None):
        # If no length given, and we've previously been given a length, use it.
        if length is None and hasattr(self, 'len') and self.len != 0:
            length = self.len
        if length is None or length == 0:
            raise CreationError("A non-zero length must be specified with a "
                                "float initialiser.")
        if length == 32:
            b = struct.pack('<f', f)
        elif length == 64:
            b = struct.pack('<d', f)
        else:
            raise CreationError("floats can only be 32 or 64 bits long, "
                                "not {0} bits", length)
        self._setbytes_unsafe(bytearray(b), length, 0)

    def _readfloatle(self, length, start):
        """Read bits and interpret as a little-endian float."""
        startbyte, offset = divmod(start + self._offset, 8)
        if not offset:
            if length == 32:
                f, = struct.unpack('<f', bytes(self._datastore.getbyteslice(startbyte, startbyte + 4)))
            elif length == 64:
                f, = struct.unpack('<d', bytes(self._datastore.getbyteslice(startbyte, startbyte + 8)))
        else:
            if length == 32:
                f, = struct.unpack('<f', self._readbytes(32, start))
            elif length == 64:
                f, = struct.unpack('<d', self._readbytes(64, start))
        try:
            return f
        except NameError:
            raise InterpretError("floats can only be 32 or 64 bits long, "
                                 "not {0} bits", length)

    def _getfloatle(self):
        """Interpret the whole bitstring as a little-endian float."""
        return self._readfloatle(self.len, 0)

    def _setue(self, i):
        """Initialise bitstring with unsigned exponential-Golomb code for integer i.

        Raises CreationError if i < 0.

        """
        if i < 0:
            raise CreationError("Cannot use negative initialiser for unsigned "
                                "exponential-Golomb.")
        if not i:
            self._setbin_unsafe('1')
            return
        tmp = i + 1
        leadingzeros = -1
        while tmp > 0:
            tmp >>= 1
            leadingzeros += 1
        remainingpart = i + 1 - (1 << leadingzeros)
        binstring = '0' * leadingzeros + '1' + Bits(uint=remainingpart,
                                                             length=leadingzeros).bin
        self._setbin_unsafe(binstring)

    def _readue(self, pos):
        """Return interpretation of next bits as unsigned exponential-Golomb code.

        Raises ReadError if the end of the bitstring is encountered while
        reading the code.

        """
        oldpos = pos
        try:
            while not self[pos]:
                pos += 1
        except IndexError:
            raise ReadError("Read off end of bitstring trying to read code.")
        leadingzeros = pos - oldpos
        codenum = (1 << leadingzeros) - 1
        if leadingzeros > 0:
            if pos + leadingzeros + 1 > self.len:
                raise ReadError("Read off end of bitstring trying to read code.")
            codenum += self._readuint(leadingzeros, pos + 1)
            pos += leadingzeros + 1
        else:
            assert codenum == 0
            pos += 1
        return codenum, pos

    def _getue(self):
        """Return data as unsigned exponential-Golomb code.

        Raises InterpretError if bitstring is not a single exponential-Golomb code.

        """
        try:
            value, newpos = self._readue(0)
            if value is None or newpos != self.len:
                raise ReadError
        except ReadError:
            raise InterpretError("Bitstring is not a single exponential-Golomb code.")
        return value

    def _setse(self, i):
        """Initialise bitstring with signed exponential-Golomb code for integer i."""
        if i > 0:
            u = (i * 2) - 1
        else:
            u = -2 * i
        self._setue(u)

    def _getse(self):
        """Return data as signed exponential-Golomb code.

        Raises InterpretError if bitstring is not a single exponential-Golomb code.

        """
        try:
            value, newpos = self._readse(0)
            if value is None or newpos != self.len:
                raise ReadError
        except ReadError:
            raise InterpretError("Bitstring is not a single exponential-Golomb code.")
        return value

    def _readse(self, pos):
        """Return interpretation of next bits as a signed exponential-Golomb code.

        Advances position to after the read code.

        Raises ReadError if the end of the bitstring is encountered while
        reading the code.

        """
        codenum, pos = self._readue(pos)
        m = (codenum + 1) // 2
        if not codenum % 2:
            return -m, pos
        else:
            return m, pos

    def _setuie(self, i):
        """Initialise bitstring with unsigned interleaved exponential-Golomb code for integer i.

        Raises CreationError if i < 0.

        """
        if i < 0:
            raise CreationError("Cannot use negative initialiser for unsigned "
                                "interleaved exponential-Golomb.")
        self._setbin_unsafe('1' if i == 0 else '0' + '0'.join(bin(i + 1)[3:]) + '1')

    def _readuie(self, pos):
        """Return interpretation of next bits as unsigned interleaved exponential-Golomb code.

        Raises ReadError if the end of the bitstring is encountered while
        reading the code.

        """
        try:
            codenum = 1
            while not self[pos]:
                pos += 1
                codenum <<= 1
                codenum += self[pos]
                pos += 1
            pos += 1
        except IndexError:
            raise ReadError("Read off end of bitstring trying to read code.")
        codenum -= 1
        return codenum, pos

    def _getuie(self):
        """Return data as unsigned interleaved exponential-Golomb code.

        Raises InterpretError if bitstring is not a single exponential-Golomb code.

        """
        try:
            value, newpos = self._readuie(0)
            if value is None or newpos != self.len:
                raise ReadError
        except ReadError:
            raise InterpretError("Bitstring is not a single interleaved exponential-Golomb code.")
        return value

    def _setsie(self, i):
        """Initialise bitstring with signed interleaved exponential-Golomb code for integer i."""
        if not i:
            self._setbin_unsafe('1')
        else:
            self._setuie(abs(i))
            self._append(Bits([i < 0]))

    def _getsie(self):
        """Return data as signed interleaved exponential-Golomb code.

        Raises InterpretError if bitstring is not a single exponential-Golomb code.

        """
        try:
            value, newpos = self._readsie(0)
            if value is None or newpos != self.len:
                raise ReadError
        except ReadError:
            raise InterpretError("Bitstring is not a single interleaved exponential-Golomb code.")
        return value

    def _readsie(self, pos):
        """Return interpretation of next bits as a signed interleaved exponential-Golomb code.

        Advances position to after the read code.

        Raises ReadError if the end of the bitstring is encountered while
        reading the code.

        """
        codenum, pos = self._readuie(pos)
        if not codenum:
            return 0, pos
        try:
            if self[pos]:
                return -codenum, pos + 1
            else:
                return codenum, pos + 1
        except IndexError:
            raise ReadError("Read off end of bitstring trying to read code.")

    def _setbool(self, value):
        # We deliberately don't want to have implicit conversions to bool here.
        # If we did then it would be difficult to deal with the 'False' string.
        if value in (1, 'True'):
            self._setbytes_unsafe(bytearray(b'\x80'), 1, 0)
        elif value in (0, 'False'):
            self._setbytes_unsafe(bytearray(b'\x00'), 1, 0)
        else:
            raise CreationError('Cannot initialise boolean with {0}.', value)

    def _getbool(self):
        if self.length != 1:
            msg = "For a bool interpretation a bitstring must be 1 bit long, not {0} bits."
            raise InterpretError(msg, self.length)
        return self[0]

    def _readbool(self, pos):
        return self[pos], pos + 1

    def _setbin_safe(self, binstring):
        """Reset the bitstring to the value given in binstring."""
        binstring = tidy_input_string(binstring)
        # remove any 0b if present
        binstring = binstring.replace('0b', '')
        self._setbin_unsafe(binstring)

    def _setbin_unsafe(self, binstring):
        """Same as _setbin_safe, but input isn't sanity checked. binstring mustn't start with '0b'."""
        length = len(binstring)
        # pad with zeros up to byte boundary if needed
        boundary = ((length + 7) // 8) * 8
        padded_binstring = binstring + '0' * (boundary - length)\
                           if len(binstring) < boundary else binstring
        try:
            bytelist = [int(padded_binstring[x:x + 8], 2)
                        for x in xrange(0, len(padded_binstring), 8)]
        except ValueError:
            raise CreationError("Invalid character in bin initialiser {0}.", binstring)
        self._setbytes_unsafe(bytearray(bytelist), length, 0)

    def _readbin(self, length, start):
        """Read bits and interpret as a binary string."""
        if not length:
            return ''
        # Get the byte slice containing our bit slice
        startbyte, startoffset = divmod(start + self._offset, 8)
        endbyte = (start + self._offset + length - 1) // 8
        b = self._datastore.getbyteslice(startbyte, endbyte + 1)
        # Convert to a string of '0' and '1's (via a hex string an and int!)
        try:
            c = "{:0{}b}".format(int(binascii.hexlify(b), 16), 8*len(b))
        except TypeError:
            # Hack to get Python 2.6 working
            c = "{0:0{1}b}".format(int(binascii.hexlify(str(b)), 16), 8*len(b))
        # Finally chop off any extra bits.
        return c[startoffset:startoffset + length]

    def _getbin(self):
        """Return interpretation as a binary string."""
        return self._readbin(self.len, 0)

    def _setoct(self, octstring):
        """Reset the bitstring to have the value given in octstring."""
        octstring = tidy_input_string(octstring)
        # remove any 0o if present
        octstring = octstring.replace('0o', '')
        binlist = []
        for i in octstring:
            try:
                if not 0 <= int(i) < 8:
                    raise ValueError
                binlist.append(OCT_TO_BITS[int(i)])
            except ValueError:
                raise CreationError("Invalid symbol '{0}' in oct initialiser.", i)
        self._setbin_unsafe(''.join(binlist))

    def _readoct(self, length, start):
        """Read bits and interpret as an octal string."""
        if length % 3:
            raise InterpretError("Cannot convert to octal unambiguously - "
                                 "not multiple of 3 bits.")
        if not length:
            return ''
        # Get main octal bit by converting from int.
        # Strip starting 0 or 0o depending on Python version.
        end = oct(self._readuint(length, start))[LEADING_OCT_CHARS:]
        if end.endswith('L'):
            end = end[:-1]
        middle = '0' * (length // 3 - len(end))
        return middle + end

    def _getoct(self):
        """Return interpretation as an octal string."""
        return self._readoct(self.len, 0)

    def _sethex(self, hexstring):
        """Reset the bitstring to have the value given in hexstring."""
        hexstring = tidy_input_string(hexstring)
        # remove any 0x if present
        hexstring = hexstring.replace('0x', '')
        length = len(hexstring)
        if length % 2:
            hexstring += '0'
        try:
            try:
                data = bytearray.fromhex(hexstring)
            except TypeError:
                # Python 2.6 needs a unicode string (a bug). 2.7 and 3.x work fine.
                data = bytearray.fromhex(unicode(hexstring))
        except ValueError:
            raise CreationError("Invalid symbol in hex initialiser.")
        self._setbytes_unsafe(data, length * 4, 0)

    def _readhex(self, length, start):
        """Read bits and interpret as a hex string."""
        if length % 4:
            raise InterpretError("Cannot convert to hex unambiguously - "
                                           "not multiple of 4 bits.")
        if not length:
            return ''
        # This monstrosity is the only thing I could get to work for both 2.6 and 3.1.
        # TODO: Is utf-8 really what we mean here?
        s = str(binascii.hexlify(self._slice(start, start + length).tobytes()).decode('utf-8'))
        # If there's one nibble too many then cut it off
        return s[:-1] if (length // 4) % 2 else s

    def _gethex(self):
        """Return the hexadecimal representation as a string prefixed with '0x'.

        Raises an InterpretError if the bitstring's length is not a multiple of 4.

        """
        return self._readhex(self.len, 0)

    def _getoffset(self):
        return self._datastore.offset

    def _getlength(self):
        """Return the length of the bitstring in bits."""
        return self._datastore.bitlength

    def _ensureinmemory(self):
        """Ensure the data is held in memory, not in a file."""
        self._setbytes_unsafe(self._datastore.getbyteslice(0, self._datastore.bytelength),
                              self.len, self._offset)

    @classmethod
    def _converttobitstring(cls, bs, offset=0, cache={}):
        """Convert bs to a bitstring and return it.

        offset gives the suggested bit offset of first significant
        bit, to optimise append etc.

        """
        if isinstance(bs, Bits):
            return bs
        try:
            return cache[(bs, offset)]
        except KeyError:
            if isinstance(bs, basestring):
                b = cls()
                try:
                    _, tokens = tokenparser(bs)
                except ValueError as e:
                    raise CreationError(*e.args)
                if tokens:
                    b._append(Bits._init_with_token(*tokens[0]))
                    b._datastore = offsetcopy(b._datastore, offset)
                    for token in tokens[1:]:
                        b._append(Bits._init_with_token(*token))
                assert b._assertsanity()
                assert b.len == 0 or b._offset == offset
                if len(cache) < CACHE_SIZE:
                    cache[(bs, offset)] = b
                return b
        except TypeError:
            # Unhashable type
            pass
        return cls(bs)

    def _copy(self):
        """Create and return a new copy of the Bits (always in memory)."""
        s_copy = self.__class__()
        s_copy._setbytes_unsafe(self._datastore.getbyteslice(0, self._datastore.bytelength),
                                self.len, self._offset)
        return s_copy

    def _slice(self, start, end):
        """Used internally to get a slice, without error checking."""
        if end == start:
            return self.__class__()
        offset = self._offset
        startbyte, newoffset = divmod(start + offset, 8)
        endbyte = (end + offset - 1) // 8
        bs = self.__class__()
        bs._setbytes_unsafe(self._datastore.getbyteslice(startbyte, endbyte + 1), end - start, newoffset)
        return bs

    def _readtoken(self, name, pos, length):
        """Reads a token from the bitstring and returns the result."""
        if length is not None and int(length) > self.length - pos:
            raise ReadError("Reading off the end of the data. "
                            "Tried to read {0} bits when only {1} available.".format(int(length), self.length - pos))
        try:
            val = name_to_read[name](self, length, pos)
            return val, pos + length
        except KeyError:
            if name == 'pad':
                return None, pos + length
            raise ValueError("Can't parse token {0}:{1}".format(name, length))
        except TypeError:
            # This is for the 'ue', 'se' and 'bool' tokens. They will also return the new pos.
            return name_to_read[name](self, pos)

    def _append(self, bs):
        """Append a bitstring to the current bitstring."""
        self._datastore._appendstore(bs._datastore)

    def _prepend(self, bs):
        """Prepend a bitstring to the current bitstring."""
        self._datastore._prependstore(bs._datastore)

    def _reverse(self):
        """Reverse all bits in-place."""
        # Reverse the contents of each byte
        n = [BYTE_REVERSAL_DICT[b] for b in self._datastore.rawbytes]
        # Then reverse the order of the bytes
        n.reverse()
        # The new offset is the number of bits that were unused at the end.
        newoffset = 8 - (self._offset + self.len) % 8
        if newoffset == 8:
            newoffset = 0
        self._setbytes_unsafe(bytearray().join(n), self.length, newoffset)

    def _truncatestart(self, bits):
        """Truncate bits from the start of the bitstring."""
        assert 0 <= bits <= self.len
        if not bits:
            return
        if bits == self.len:
            self._clear()
            return
        bytepos, offset = divmod(self._offset + bits, 8)
        self._setbytes_unsafe(self._datastore.getbyteslice(bytepos, self._datastore.bytelength), self.len - bits,
                              offset)
        assert self._assertsanity()

    def _truncateend(self, bits):
        """Truncate bits from the end of the bitstring."""
        assert 0 <= bits <= self.len
        if not bits:
            return
        if bits == self.len:
            self._clear()
            return
        newlength_in_bytes = (self._offset + self.len - bits + 7) // 8
        self._setbytes_unsafe(self._datastore.getbyteslice(0, newlength_in_bytes), self.len - bits,
                              self._offset)
        assert self._assertsanity()

    def _insert(self, bs, pos):
        """Insert bs at pos."""
        assert 0 <= pos <= self.len
        if pos > self.len // 2:
            # Inserting nearer end, so cut off end.
            end = self._slice(pos, self.len)
            self._truncateend(self.len - pos)
            self._append(bs)
            self._append(end)
        else:
            # Inserting nearer start, so cut off start.
            start = self._slice(0, pos)
            self._truncatestart(pos)
            self._prepend(bs)
            self._prepend(start)
        try:
            self._pos = pos + bs.len
        except AttributeError:
            pass
        assert self._assertsanity()

    def _overwrite(self, bs, pos):
        """Overwrite with bs at pos."""
        assert 0 <= pos < self.len
        if bs is self:
            # Just overwriting with self, so do nothing.
            assert pos == 0
            return
        firstbytepos = (self._offset + pos) // 8
        lastbytepos = (self._offset + pos + bs.len - 1) // 8
        bytepos, bitoffset = divmod(self._offset + pos, 8)
        if firstbytepos == lastbytepos:
            mask = ((1 << bs.len) - 1) << (8 - bs.len - bitoffset)
            self._datastore.setbyte(bytepos, self._datastore.getbyte(bytepos) & (~mask))
            d = offsetcopy(bs._datastore, bitoffset)
            self._datastore.setbyte(bytepos, self._datastore.getbyte(bytepos) | (d.getbyte(0) & mask))
        else:
            # Do first byte
            mask = (1 << (8 - bitoffset)) - 1
            self._datastore.setbyte(bytepos, self._datastore.getbyte(bytepos) & (~mask))
            d = offsetcopy(bs._datastore, bitoffset)
            self._datastore.setbyte(bytepos, self._datastore.getbyte(bytepos) | (d.getbyte(0) & mask))
            # Now do all the full bytes
            self._datastore.setbyteslice(firstbytepos + 1, lastbytepos, d.getbyteslice(1, lastbytepos - firstbytepos))
            # and finally the last byte
            bitsleft = (self._offset + pos + bs.len) % 8
            if not bitsleft:
                bitsleft = 8
            mask = (1 << (8 - bitsleft)) - 1
            self._datastore.setbyte(lastbytepos, self._datastore.getbyte(lastbytepos) & mask)
            self._datastore.setbyte(lastbytepos,
                                    self._datastore.getbyte(lastbytepos) | (d.getbyte(d.bytelength - 1) & ~mask))
        assert self._assertsanity()

    def _delete(self, bits, pos):
        """Delete bits at pos."""
        assert 0 <= pos <= self.len
        assert pos + bits <= self.len
        if not pos:
            # Cutting bits off at the start.
            self._truncatestart(bits)
            return
        if pos + bits == self.len:
            # Cutting bits off at the end.
            self._truncateend(bits)
            return
        if pos > self.len - pos - bits:
            # More bits before cut point than after it, so do bit shifting
            # on the final bits.
            end = self._slice(pos + bits, self.len)
            assert self.len - pos > 0
            self._truncateend(self.len - pos)
            self._append(end)
            return
        # More bits after the cut point than before it.
        start = self._slice(0, pos)
        self._truncatestart(pos + bits)
        self._prepend(start)
        return

    def _reversebytes(self, start, end):
        """Reverse bytes in-place."""
        # Make the start occur on a byte boundary
        # TODO: We could be cleverer here to avoid changing the offset.
        newoffset = 8 - (start % 8)
        if newoffset == 8:
            newoffset = 0
        self._datastore = offsetcopy(self._datastore, newoffset)
        # Now just reverse the byte data
        toreverse = bytearray(self._datastore.getbyteslice((newoffset + start) // 8, (newoffset + end) // 8))
        toreverse.reverse()
        self._datastore.setbyteslice((newoffset + start) // 8, (newoffset + end) // 8, toreverse)

    def _set(self, pos):
        """Set bit at pos to 1."""
        assert 0 <= pos < self.len
        self._datastore.setbit(pos)

    def _unset(self, pos):
        """Set bit at pos to 0."""
        assert 0 <= pos < self.len
        self._datastore.unsetbit(pos)

    def _invert(self, pos):
        """Flip bit at pos 1<->0."""
        assert 0 <= pos < self.len
        self._datastore.invertbit(pos)

    def _invert_all(self):
        """Invert every bit."""
        set = self._datastore.setbyte
        get = self._datastore.getbyte
        for p in xrange(self._datastore.byteoffset, self._datastore.byteoffset + self._datastore.bytelength):
            set(p, 256 + ~get(p))

    def _ilshift(self, n):
        """Shift bits by n to the left in place. Return self."""
        assert 0 < n <= self.len
        self._append(Bits(n))
        self._truncatestart(n)
        return self

    def _irshift(self, n):
        """Shift bits by n to the right in place. Return self."""
        assert 0 < n <= self.len
        self._prepend(Bits(n))
        self._truncateend(n)
        return self

    def _imul(self, n):
        """Concatenate n copies of self in place. Return self."""
        assert n >= 0
        if not n:
            self._clear()
            return self
        m = 1
        old_len = self.len
        while m * 2 < n:
            self._append(self)
            m *= 2
        self._append(self[0:(n - m) * old_len])
        return self

    def _inplace_logical_helper(self, bs, f):
        """Helper function containing most of the __ior__, __iand__, __ixor__ code."""
        # Give the two bitstrings the same offset (modulo 8)
        self_byteoffset, self_bitoffset = divmod(self._offset, 8)
        bs_byteoffset, bs_bitoffset = divmod(bs._offset, 8)
        if bs_bitoffset != self_bitoffset:
            if not self_bitoffset:
                bs._datastore = offsetcopy(bs._datastore, 0)
            else:
                self._datastore = offsetcopy(self._datastore, bs_bitoffset)
        a = self._datastore.rawbytes
        b = bs._datastore.rawbytes
        for i in xrange(len(a)):
            a[i] = f(a[i + self_byteoffset], b[i + bs_byteoffset])
        return self

    def _ior(self, bs):
        return self._inplace_logical_helper(bs, operator.ior)

    def _iand(self, bs):
        return self._inplace_logical_helper(bs, operator.iand)

    def _ixor(self, bs):
        return self._inplace_logical_helper(bs, operator.xor)

    def _readbits(self, length, start):
        """Read some bits from the bitstring and return newly constructed bitstring."""
        return self._slice(start, start + length)

    def _validate_slice(self, start, end):
        """Validate start and end and return them as positive bit positions."""
        if start is None:
            start = 0
        elif start < 0:
            start += self.len
        if end is None:
            end = self.len
        elif end < 0:
            end += self.len
        if not 0 <= end <= self.len:
            raise ValueError("end is not a valid position in the bitstring.")
        if not 0 <= start <= self.len:
            raise ValueError("start is not a valid position in the bitstring.")
        if end < start:
            raise ValueError("end must not be less than start.")
        return start, end

    def unpack(self, fmt, **kwargs):
        """Interpret the whole bitstring using fmt and return list.

        fmt -- A single string or a list of strings with comma separated tokens
               describing how to interpret the bits in the bitstring. Items
               can also be integers, for reading new bitstring of the given length.
        kwargs -- A dictionary or keyword-value pairs - the keywords used in the
                  format string will be replaced with their given value.

        Raises ValueError if the format is not understood. If not enough bits
        are available then all bits to the end of the bitstring will be used.

        See the docstring for 'read' for token examples.

        """
        return self._readlist(fmt, 0, **kwargs)[0]

    def _readlist(self, fmt, pos, **kwargs):
        tokens = []
        stretchy_token = None
        if isinstance(fmt, basestring):
            fmt = [fmt]
        # Not very optimal this, but replace integers with 'bits' tokens
        # TODO: optimise
        for i, f in enumerate(fmt):
            if isinstance(f, numbers.Integral):
                fmt[i] = "bits:{0}".format(f)
        for f_item in fmt:
            stretchy, tkns = tokenparser(f_item, tuple(sorted(kwargs.keys())))
            if stretchy:
                if stretchy_token:
                    raise Error("It's not possible to have more than one 'filler' token.")
                stretchy_token = stretchy
            tokens.extend(tkns)
        if not stretchy_token:
            lst = []
            for name, length, _ in tokens:
                if length in kwargs:
                    length = kwargs[length]
                    if name == 'bytes':
                        length *= 8
                if name in kwargs and length is None:
                    # Using default 'uint' - the name is really the length.
                    value, pos = self._readtoken('uint', pos, kwargs[name])
                    lst.append(value)
                    continue
                value, pos = self._readtoken(name, pos, length)
                if value is not None: # Don't append pad tokens
                    lst.append(value)
            return lst, pos
        stretchy_token = False
        bits_after_stretchy_token = 0
        for token in tokens:
            name, length, _ = token
            if length in kwargs:
                length = kwargs[length]
                if name == 'bytes':
                    length *= 8
            if name in kwargs and length is None:
                # Default 'uint'.
                length = kwargs[name]
            if stretchy_token:
                if name in ('se', 'ue', 'sie', 'uie'):
                    raise Error("It's not possible to parse a variable"
                                "length token after a 'filler' token.")
                else:
                    if length is None:
                        raise Error("It's not possible to have more than "
                                    "one 'filler' token.")
                    bits_after_stretchy_token += length
            if length is None and name not in ('se', 'ue', 'sie', 'uie'):
                assert not stretchy_token
                stretchy_token = token
        bits_left = self.len - pos
        return_values = []
        for token in tokens:
            name, length, _ = token
            if token is stretchy_token:
                # Set length to the remaining bits
                length = max(bits_left - bits_after_stretchy_token, 0)
            if length in kwargs:
                length = kwargs[length]
                if name == 'bytes':
                    length *= 8
            if name in kwargs and length is None:
                # Default 'uint'
                length = kwargs[name]
            if length is not None:
                bits_left -= length
            value, pos = self._readtoken(name, pos, length)
            if value is not None:
                return_values.append(value)
        return return_values, pos

    def _findbytes(self, bytes_, start, end, bytealigned):
        """Quicker version of find when everything's whole byte
        and byte aligned.

        """
        assert self._datastore.offset == 0
        assert bytealigned is True
        # Extract data bytes from bitstring to be found.
        bytepos = (start + 7) // 8
        found = False
        p = bytepos
        finalpos = end // 8
        increment = max(1024, len(bytes_) * 10)
        buffersize = increment + len(bytes_)
        while p < finalpos:
            # Read in file or from memory in overlapping chunks and search the chunks.
            buf = bytearray(self._datastore.getbyteslice(p, min(p + buffersize, finalpos)))
            pos = buf.find(bytes_)
            if pos != -1:
                found = True
                p += pos
                break
            p += increment
        if not found:
            return ()
        return (p * 8,)

    def _findregex(self, reg_ex, start, end, bytealigned):
        """Find first occurrence of a compiled regular expression.

        Note that this doesn't support arbitrary regexes, in particular they
        must match a known length.

        """
        p = start
        length = len(reg_ex.pattern)
        # We grab overlapping chunks of the binary representation and
        # do an ordinary string search within that.
        increment = max(4096, length * 10)
        buffersize = increment + length
        while p < end:
            buf = self._readbin(min(buffersize, end - p), p)
            # Test using regular expressions...
            m = reg_ex.search(buf)
            if m:
                pos = m.start()
            # pos = buf.find(targetbin)
            # if pos != -1:
                # if bytealigned then we only accept byte aligned positions.
                if not bytealigned or (p + pos) % 8 == 0:
                    return (p + pos,)
                if bytealigned:
                    # Advance to just beyond the non-byte-aligned match and try again...
                    p += pos + 1
                    continue
            p += increment
            # Not found, return empty tuple
        return ()

    def find(self, bs, start=None, end=None, bytealigned=None):
        """Find first occurrence of substring bs.

        Returns a single item tuple with the bit position if found, or an
        empty tuple if not found. The bit position (pos property) will
        also be set to the start of the substring if it is found.

        bs -- The bitstring to find.
        start -- The bit position to start the search. Defaults to 0.
        end -- The bit position one past the last bit to search.
               Defaults to self.len.
        bytealigned -- If True the bitstring will only be
                       found on byte boundaries.

        Raises ValueError if bs is empty, if start < 0, if end > self.len or
        if end < start.

        >>> BitArray('0xc3e').find('0b1111')
        (6,)

        """
        bs = Bits(bs)
        if not bs.len:
            raise ValueError("Cannot find an empty bitstring.")
        start, end = self._validate_slice(start, end)
        if bytealigned is None:
            bytealigned = globals()['bytealigned']
        if bytealigned and not bs.len % 8 and not self._datastore.offset:
            p = self._findbytes(bs.bytes, start, end, bytealigned)
        else:
            p = self._findregex(re.compile(bs._getbin()), start, end, bytealigned)
        # If called from a class that has a pos, set it
        try:
            self._pos = p[0]
        except (AttributeError, IndexError):
            pass
        return p

    def findall(self, bs, start=None, end=None, count=None, bytealigned=None):
        """Find all occurrences of bs. Return generator of bit positions.

        bs -- The bitstring to find.
        start -- The bit position to start the search. Defaults to 0.
        end -- The bit position one past the last bit to search.
               Defaults to self.len.
        count -- The maximum number of occurrences to find.
        bytealigned -- If True the bitstring will only be found on
                       byte boundaries.

        Raises ValueError if bs is empty, if start < 0, if end > self.len or
        if end < start.

        Note that all occurrences of bs are found, even if they overlap.

        """
        if count is not None and count < 0:
            raise ValueError("In findall, count must be >= 0.")
        bs = Bits(bs)
        start, end = self._validate_slice(start, end)
        if bytealigned is None:
            bytealigned = globals()['bytealigned']
        c = 0
        if bytealigned and not bs.len % 8 and not self._datastore.offset:
            # Use the quick find method
            f = self._findbytes
            x = bs._getbytes()
        else:
            f = self._findregex
            x = re.compile(bs._getbin())
        while True:

            p = f(x, start, end, bytealigned)
            if not p:
                break
            if count is not None and c >= count:
                return
            c += 1
            try:
                self._pos = p[0]
            except AttributeError:
                pass
            yield p[0]
            if bytealigned:
                start = p[0] + 8
            else:
                start = p[0] + 1
            if start >= end:
                break
        return

    def rfind(self, bs, start=None, end=None, bytealigned=None):
        """Find final occurrence of substring bs.

        Returns a single item tuple with the bit position if found, or an
        empty tuple if not found. The bit position (pos property) will
        also be set to the start of the substring if it is found.

        bs -- The bitstring to find.
        start -- The bit position to end the reverse search. Defaults to 0.
        end -- The bit position one past the first bit to reverse search.
               Defaults to self.len.
        bytealigned -- If True the bitstring will only be found on byte
                       boundaries.

        Raises ValueError if bs is empty, if start < 0, if end > self.len or
        if end < start.

        """
        bs = Bits(bs)
        start, end = self._validate_slice(start, end)
        if bytealigned is None:
            bytealigned = globals()['bytealigned']
        if not bs.len:
            raise ValueError("Cannot find an empty bitstring.")
        # Search chunks starting near the end and then moving back
        # until we find bs.
        increment = max(8192, bs.len * 80)
        buffersize = min(increment + bs.len, end - start)
        pos = max(start, end - buffersize)
        while True:
            found = list(self.findall(bs, start=pos, end=pos + buffersize,
                                      bytealigned=bytealigned))
            if not found:
                if pos == start:
                    return ()
                pos = max(start, pos - increment)
                continue
            return (found[-1],)

    def cut(self, bits, start=None, end=None, count=None):
        """Return bitstring generator by cutting into bits sized chunks.

        bits -- The size in bits of the bitstring chunks to generate.
        start -- The bit position to start the first cut. Defaults to 0.
        end -- The bit position one past the last bit to use in the cut.
               Defaults to self.len.
        count -- If specified then at most count items are generated.
                 Default is to cut as many times as possible.

        """
        start, end = self._validate_slice(start, end)
        if count is not None and count < 0:
            raise ValueError("Cannot cut - count must be >= 0.")
        if bits <= 0:
            raise ValueError("Cannot cut - bits must be >= 0.")
        c = 0
        while count is None or c < count:
            c += 1
            nextchunk = self._slice(start, min(start + bits, end))
            if nextchunk.len != bits:
                return
            assert nextchunk._assertsanity()
            yield nextchunk
            start += bits
        return

    def split(self, delimiter, start=None, end=None, count=None,
              bytealigned=None):
        """Return bitstring generator by splittling using a delimiter.

        The first item returned is the initial bitstring before the delimiter,
        which may be an empty bitstring.

        delimiter -- The bitstring used as the divider.
        start -- The bit position to start the split. Defaults to 0.
        end -- The bit position one past the last bit to use in the split.
               Defaults to self.len.
        count -- If specified then at most count items are generated.
                 Default is to split as many times as possible.
        bytealigned -- If True splits will only occur on byte boundaries.

        Raises ValueError if the delimiter is empty.

        """
        delimiter = Bits(delimiter)
        if not delimiter.len:
            raise ValueError("split delimiter cannot be empty.")
        start, end = self._validate_slice(start, end)
        if bytealigned is None:
            bytealigned = globals()['bytealigned']
        if count is not None and count < 0:
            raise ValueError("Cannot split - count must be >= 0.")
        if count == 0:
            return
        if bytealigned and not delimiter.len % 8 and not self._datastore.offset:
            # Use the quick find method
            f = self._findbytes
            x = delimiter._getbytes()
        else:
            f = self._findregex
            x = re.compile(delimiter._getbin())
        found = f(x, start, end, bytealigned)
        if not found:
            # Initial bits are the whole bitstring being searched
            yield self._slice(start, end)
            return
        # yield the bytes before the first occurrence of the delimiter, even if empty
        yield self._slice(start, found[0])
        startpos = pos = found[0]
        c = 1
        while count is None or c < count:
            pos += delimiter.len
            found = f(x, pos, end, bytealigned)
            if not found:
                # No more occurrences, so return the rest of the bitstring
                yield self._slice(startpos, end)
                return
            c += 1
            yield self._slice(startpos, found[0])
            startpos = pos = found[0]
        # Have generated count bitstrings, so time to quit.
        return

    def join(self, sequence):
        """Return concatenation of bitstrings joined by self.

        sequence -- A sequence of bitstrings.

        """
        s = self.__class__()
        i = iter(sequence)
        try:
            s._append(Bits(next(i)))
            while True:
                n = next(i)
                s._append(self)
                s._append(Bits(n))
        except StopIteration:
            pass
        return s

    def tobytes(self):
        """Return the bitstring as bytes, padding with zero bits if needed.

        Up to seven zero bits will be added at the end to byte align.

        """
        d = offsetcopy(self._datastore, 0).rawbytes
        # Need to ensure that unused bits at end are set to zero
        unusedbits = 8 - self.len % 8
        if unusedbits != 8:
            d[-1] &= (0xff << unusedbits)
        return bytes(d)

    def tofile(self, f):
        """Write the bitstring to a file object, padding with zero bits if needed.

        Up to seven zero bits will be added at the end to byte align.

        """
        # If the bitstring is file based then we don't want to read it all
        # in to memory.
        chunksize = 1024 * 1024 # 1 MB chunks
        if not self._offset:
            a = 0
            bytelen = self._datastore.bytelength
            p = self._datastore.getbyteslice(a, min(a + chunksize, bytelen - 1))
            while len(p) == chunksize:
                f.write(p)
                a += chunksize
                p = self._datastore.getbyteslice(a, min(a + chunksize, bytelen - 1))
            f.write(p)
            # Now the final byte, ensuring that unused bits at end are set to 0.
            bits_in_final_byte = self.len % 8
            if not bits_in_final_byte:
                bits_in_final_byte = 8
            f.write(self[-bits_in_final_byte:].tobytes())
        else:
            # Really quite inefficient...
            a = 0
            b = a + chunksize * 8
            while b <= self.len:
                f.write(self._slice(a, b)._getbytes())
                a += chunksize * 8
                b += chunksize * 8
            if a != self.len:
                f.write(self._slice(a, self.len).tobytes())

    def startswith(self, prefix, start=None, end=None):
        """Return whether the current bitstring starts with prefix.

        prefix -- The bitstring to search for.
        start -- The bit position to start from. Defaults to 0.
        end -- The bit position to end at. Defaults to self.len.

        """
        prefix = Bits(prefix)
        start, end = self._validate_slice(start, end)
        if end < start + prefix.len:
            return False
        end = start + prefix.len
        return self._slice(start, end) == prefix

    def endswith(self, suffix, start=None, end=None):
        """Return whether the current bitstring ends with suffix.

        suffix -- The bitstring to search for.
        start -- The bit position to start from. Defaults to 0.
        end -- The bit position to end at. Defaults to self.len.

        """
        suffix = Bits(suffix)
        start, end = self._validate_slice(start, end)
        if start + suffix.len > end:
            return False
        start = end - suffix.len
        return self._slice(start, end) == suffix

    def all(self, value, pos=None):
        """Return True if one or many bits are all set to value.

        value -- If value is True then checks for bits set to 1, otherwise
                 checks for bits set to 0.
        pos -- An iterable of bit positions. Negative numbers are treated in
               the same way as slice indices. Defaults to the whole bitstring.

        """
        value = bool(value)
        length = self.len
        if pos is None:
            pos = xrange(self.len)
        for p in pos:
            if p < 0:
                p += length
            if not 0 <= p < length:
                raise IndexError("Bit position {0} out of range.".format(p))
            if not self._datastore.getbit(p) is value:
                return False
        return True

    def any(self, value, pos=None):
        """Return True if any of one or many bits are set to value.

        value -- If value is True then checks for bits set to 1, otherwise
                 checks for bits set to 0.
        pos -- An iterable of bit positions. Negative numbers are treated in
               the same way as slice indices. Defaults to the whole bitstring.

        """
        value = bool(value)
        length = self.len
        if pos is None:
            pos = xrange(self.len)
        for p in pos:
            if p < 0:
                p += length
            if not 0 <= p < length:
                raise IndexError("Bit position {0} out of range.".format(p))
            if self._datastore.getbit(p) is value:
                return True
        return False

    def count(self, value):
        """Return count of total number of either zero or one bits.

        value -- If True then bits set to 1 are counted, otherwise bits set
                 to 0 are counted.

        >>> Bits('0xef').count(1)
        7

        """
        if not self.len:
            return 0
        # count the number of 1s (from which it's easy to work out the 0s).
        # Don't count the final byte yet.
        count = sum(BIT_COUNT[self._datastore.getbyte(i)] for i in xrange(self._datastore.bytelength - 1))
        # adjust for bits at start that aren't part of the bitstring
        if self._offset:
            count -= BIT_COUNT[self._datastore.getbyte(0) >> (8 - self._offset)]
        # and count the last 1 - 8 bits at the end.
        endbits = self._datastore.bytelength * 8 - (self._offset + self.len)
        count += BIT_COUNT[self._datastore.getbyte(self._datastore.bytelength - 1) >> endbits]
        return count if value else self.len - count

    # Create native-endian functions as aliases depending on the byteorder
    if byteorder == 'little':
        _setfloatne = _setfloatle
        _readfloatne = _readfloatle
        _getfloatne = _getfloatle
        _setuintne = _setuintle
        _readuintne = _readuintle
        _getuintne = _getuintle
        _setintne = _setintle
        _readintne = _readintle
        _getintne = _getintle
    else:
        _setfloatne = _setfloat
        _readfloatne = _readfloat
        _getfloatne = _getfloat
        _setuintne = _setuintbe
        _readuintne = _readuintbe
        _getuintne = _getuintbe
        _setintne = _setintbe
        _readintne = _readintbe
        _getintne = _getintbe

    _offset = property(_getoffset)

    len = property(_getlength,
                   doc="""The length of the bitstring in bits. Read only.
                      """)
    length = property(_getlength,
                      doc="""The length of the bitstring in bits. Read only.
                      """)
    bool = property(_getbool,
                    doc="""The bitstring as a bool (True or False). Read only.
                    """)
    hex = property(_gethex,
                   doc="""The bitstring as a hexadecimal string. Read only.
                   """)
    bin = property(_getbin,
                   doc="""The bitstring as a binary string. Read only.
                   """)
    oct = property(_getoct,
                   doc="""The bitstring as an octal string. Read only.
                   """)
    bytes = property(_getbytes,
                     doc="""The bitstring as a bytes object. Read only.
                      """)
    int = property(_getint,
                   doc="""The bitstring as a two's complement signed int. Read only.
                      """)
    uint = property(_getuint,
                    doc="""The bitstring as a two's complement unsigned int. Read only.
                      """)
    float = property(_getfloat,
                     doc="""The bitstring as a floating point number. Read only.
                      """)
    intbe = property(_getintbe,
                     doc="""The bitstring as a two's complement big-endian signed int. Read only.
                      """)
    uintbe = property(_getuintbe,
                      doc="""The bitstring as a two's complement big-endian unsigned int. Read only.
                      """)
    floatbe = property(_getfloat,
                       doc="""The bitstring as a big-endian floating point number. Read only.
                      """)
    intle = property(_getintle,
                     doc="""The bitstring as a two's complement little-endian signed int. Read only.
                      """)
    uintle = property(_getuintle,
                      doc="""The bitstring as a two's complement little-endian unsigned int. Read only.
                      """)
    floatle = property(_getfloatle,
                       doc="""The bitstring as a little-endian floating point number. Read only.
                      """)
    intne = property(_getintne,
                     doc="""The bitstring as a two's complement native-endian signed int. Read only.
                      """)
    uintne = property(_getuintne,
                      doc="""The bitstring as a two's complement native-endian unsigned int. Read only.
                      """)
    floatne = property(_getfloatne,
                       doc="""The bitstring as a native-endian floating point number. Read only.
                      """)
    ue = property(_getue,
                  doc="""The bitstring as an unsigned exponential-Golomb code. Read only.
                      """)
    se = property(_getse,
                  doc="""The bitstring as a signed exponential-Golomb code. Read only.
                      """)
    uie = property(_getuie,
                   doc="""The bitstring as an unsigned interleaved exponential-Golomb code. Read only.
                      """)
    sie = property(_getsie,
                   doc="""The bitstring as a signed interleaved exponential-Golomb code. Read only.
                      """)


# Dictionary that maps token names to the function that reads them.
name_to_read = {'uint': Bits._readuint,
                'uintle': Bits._readuintle,
                'uintbe': Bits._readuintbe,
                'uintne': Bits._readuintne,
                'int': Bits._readint,
                'intle': Bits._readintle,
                'intbe': Bits._readintbe,
                'intne': Bits._readintne,
                'float': Bits._readfloat,
                'floatbe': Bits._readfloat, # floatbe is a synonym for float
                'floatle': Bits._readfloatle,
                'floatne': Bits._readfloatne,
                'hex': Bits._readhex,
                'oct': Bits._readoct,
                'bin': Bits._readbin,
                'bits': Bits._readbits,
                'bytes': Bits._readbytes,
                'ue': Bits._readue,
                'se': Bits._readse,
                'uie': Bits._readuie,
                'sie': Bits._readsie,
                'bool': Bits._readbool,
                }

# Dictionaries for mapping init keywords with init functions.
init_with_length_and_offset = {'bytes': Bits._setbytes_safe,
                               'filename': Bits._setfile,
                               }

init_with_length_only = {'uint': Bits._setuint,
                         'int': Bits._setint,
                         'float': Bits._setfloat,
                         'uintbe': Bits._setuintbe,
                         'intbe': Bits._setintbe,
                         'floatbe': Bits._setfloat,
                         'uintle': Bits._setuintle,
                         'intle': Bits._setintle,
                         'floatle': Bits._setfloatle,
                         'uintne': Bits._setuintne,
                         'intne': Bits._setintne,
                         'floatne': Bits._setfloatne,
                         }

init_without_length_or_offset = {'bin': Bits._setbin_safe,
                                 'hex': Bits._sethex,
                                 'oct': Bits._setoct,
                                 'ue': Bits._setue,
                                 'se': Bits._setse,
                                 'uie': Bits._setuie,
                                 'sie': Bits._setsie,
                                 'bool': Bits._setbool,
                                 }


class BitArray(Bits):
    """A container holding a mutable sequence of bits.

    Subclass of the immutable Bits class. Inherits all of its
    methods (except __hash__) and adds mutating methods.

    Mutating methods:

    append() -- Append a bitstring.
    byteswap() -- Change byte endianness in-place.
    insert() -- Insert a bitstring.
    invert() -- Flip bit(s) between one and zero.
    overwrite() -- Overwrite a section with a new bitstring.
    prepend() -- Prepend a bitstring.
    replace() -- Replace occurrences of one bitstring with another.
    reverse() -- Reverse bits in-place.
    rol() -- Rotate bits to the left.
    ror() -- Rotate bits to the right.
    set() -- Set bit(s) to 1 or 0.

    Methods inherited from Bits:

    all() -- Check if all specified bits are set to 1 or 0.
    any() -- Check if any of specified bits are set to 1 or 0.
    count() -- Count the number of bits set to 1 or 0.
    cut() -- Create generator of constant sized chunks.
    endswith() -- Return whether the bitstring ends with a sub-string.
    find() -- Find a sub-bitstring in the current bitstring.
    findall() -- Find all occurrences of a sub-bitstring in the current bitstring.
    join() -- Join bitstrings together using current bitstring.
    rfind() -- Seek backwards to find a sub-bitstring.
    split() -- Create generator of chunks split by a delimiter.
    startswith() -- Return whether the bitstring starts with a sub-bitstring.
    tobytes() -- Return bitstring as bytes, padding if needed.
    tofile() -- Write bitstring to file, padding if needed.
    unpack() -- Interpret bits using format string.

    Special methods:

    Mutating operators are available: [], <<=, >>=, +=, *=, &=, |= and ^=
    in addition to the inherited [], ==, !=, +, *, ~, <<, >>, &, | and ^.

    Properties:

    bin -- The bitstring as a binary string.
    bool -- For single bit bitstrings, interpret as True or False.
    bytepos -- The current byte position in the bitstring.
    bytes -- The bitstring as a bytes object.
    float -- Interpret as a floating point number.
    floatbe -- Interpret as a big-endian floating point number.
    floatle -- Interpret as a little-endian floating point number.
    floatne -- Interpret as a native-endian floating point number.
    hex -- The bitstring as a hexadecimal string.
    int -- Interpret as a two's complement signed integer.
    intbe -- Interpret as a big-endian signed integer.
    intle -- Interpret as a little-endian signed integer.
    intne -- Interpret as a native-endian signed integer.
    len -- Length of the bitstring in bits.
    oct -- The bitstring as an octal string.
    pos -- The current bit position in the bitstring.
    se -- Interpret as a signed exponential-Golomb code.
    ue -- Interpret as an unsigned exponential-Golomb code.
    sie -- Interpret as a signed interleaved exponential-Golomb code.
    uie -- Interpret as an unsigned interleaved exponential-Golomb code.
    uint -- Interpret as a two's complement unsigned integer.
    uintbe -- Interpret as a big-endian unsigned integer.
    uintle -- Interpret as a little-endian unsigned integer.
    uintne -- Interpret as a native-endian unsigned integer.

    """

    __slots__ = ()

    # As BitArray objects are mutable, we shouldn't allow them to be hashed.
    __hash__ = None

    def __init__(self, auto=None, length=None, offset=None, **kwargs):
        """Either specify an 'auto' initialiser:
        auto -- a string of comma separated tokens, an integer, a file object,
                a bytearray, a boolean iterable or another bitstring.

        Or initialise via **kwargs with one (and only one) of:
        bytes -- raw data as a string, for example read from a binary file.
        bin -- binary string representation, e.g. '0b001010'.
        hex -- hexadecimal string representation, e.g. '0x2ef'
        oct -- octal string representation, e.g. '0o777'.
        uint -- an unsigned integer.
        int -- a signed integer.
        float -- a floating point number.
        uintbe -- an unsigned big-endian whole byte integer.
        intbe -- a signed big-endian whole byte integer.
        floatbe - a big-endian floating point number.
        uintle -- an unsigned little-endian whole byte integer.
        intle -- a signed little-endian whole byte integer.
        floatle -- a little-endian floating point number.
        uintne -- an unsigned native-endian whole byte integer.
        intne -- a signed native-endian whole byte integer.
        floatne -- a native-endian floating point number.
        se -- a signed exponential-Golomb code.
        ue -- an unsigned exponential-Golomb code.
        sie -- a signed interleaved exponential-Golomb code.
        uie -- an unsigned interleaved exponential-Golomb code.
        bool -- a boolean (True or False).
        filename -- a file which will be opened in binary read-only mode.

        Other keyword arguments:
        length -- length of the bitstring in bits, if needed and appropriate.
                  It must be supplied for all integer and float initialisers.
        offset -- bit offset to the data. These offset bits are
                  ignored and this is intended for use when
                  initialising using 'bytes' or 'filename'.

        """
        # For mutable BitArrays we always read in files to memory:
        if not isinstance(self._datastore, ByteStore):
            self._ensureinmemory()

    def __new__(cls, auto=None, length=None, offset=None, **kwargs):
        x = super(BitArray, cls).__new__(cls)
        y = Bits.__new__(BitArray, auto, length, offset, **kwargs)
        x._datastore = y._datastore
        return x

    def __iadd__(self, bs):
        """Append bs to current bitstring. Return self.

        bs -- the bitstring to append.

        """
        self.append(bs)
        return self

    def __copy__(self):
        """Return a new copy of the BitArray."""
        s_copy = BitArray()
        if not isinstance(self._datastore, ByteStore):
            # Let them both point to the same (invariant) array.
            # If either gets modified then at that point they'll be read into memory.
            s_copy._datastore = self._datastore
        else:
            s_copy._datastore = copy.copy(self._datastore)
        return s_copy

    def __setitem__(self, key, value):
        """Set item or range to new value.

        Indices are in units of the step parameter (default 1 bit).
        Stepping is used to specify the number of bits in each item.

        If the length of the bitstring is changed then pos will be moved
        to after the inserted section, otherwise it will remain unchanged.

        >>> s = BitArray('0xff')
        >>> s[0:1:4] = '0xe'
        >>> print s
        '0xef'
        >>> s[4:4] = '0x00'
        >>> print s
        '0xe00f'

        """
        try:
            # A slice
            start, step = 0, 1
            if key.step is not None:
                step = key.step
        except AttributeError:
            # single element
            if key < 0:
                key += self.len
            if not 0 <= key < self.len:
                raise IndexError("Slice index out of range.")
            if isinstance(value, numbers.Integral):
                if not value:
                    self._unset(key)
                    return
                if value in (1, -1):
                    self._set(key)
                    return
                raise ValueError("Cannot set a single bit with integer {0}.".format(value))
            value = Bits(value)
            if value.len == 1:
                # TODO: this can't be optimal
                if value[0]:
                    self._set(key)
                else:
                    self._unset(key)
            else:
                self._delete(1, key)
                self._insert(value, key)
            return
        else:
            if step != 1:
                # convert to binary string and use string slicing
                # TODO: Horribly inefficent
                temp = list(self._getbin())
                v = list(Bits(value)._getbin())
                temp.__setitem__(key, v)
                self._setbin_unsafe(''.join(temp))
                return

            # If value is an integer then we want to set the slice to that
            # value rather than initialise a new bitstring of that length.
            if not isinstance(value, numbers.Integral):
                try:
                    # TODO: Better way than calling constructor here?
                    value = Bits(value)
                except TypeError:
                    raise TypeError("Bitstring, integer or string expected. "
                                    "Got {0}.".format(type(value)))
            if key.start is not None:
                start = key.start
                if key.start < 0:
                    start += self.len
                if start < 0:
                    start = 0
            stop = self.len
            if key.stop is not None:
                stop = key.stop
                if key.stop < 0:
                    stop += self.len
            if start > stop:
                # The standard behaviour for lists is to just insert at the
                # start position if stop < start and step == 1.
                stop = start
            if isinstance(value, numbers.Integral):
                if value >= 0:
                    value = self.__class__(uint=value, length=stop - start)
                else:
                    value = self.__class__(int=value, length=stop - start)
            stop = min(stop, self.len)
            start = max(start, 0)
            start = min(start, stop)
            if (stop - start) == value.len:
                if not value.len:
                    return
                if step >= 0:
                    self._overwrite(value, start)
                else:
                    self._overwrite(value.__getitem__(slice(None, None, 1)), start)
            else:
                # TODO: A delete then insert is wasteful - it could do unneeded shifts.
                # Could be either overwrite + insert or overwrite + delete.
                self._delete(stop - start, start)
                if step >= 0:
                    self._insert(value, start)
                else:
                    self._insert(value.__getitem__(slice(None, None, 1)), start)
                # pos is now after the inserted piece.
            return

    def __delitem__(self, key):
        """Delete item or range.

        Indices are in units of the step parameter (default 1 bit).
        Stepping is used to specify the number of bits in each item.

        >>> a = BitArray('0x001122')
        >>> del a[1:2:8]
        >>> print a
        0x0022

        """
        try:
            # A slice
            start = 0
            step = key.step if key.step is not None else 1
        except AttributeError:
            # single element
            if key < 0:
                key += self.len
            if not 0 <= key < self.len:
                raise IndexError("Slice index out of range.")
            self._delete(1, key)
            return
        else:
            if step != 1:
                # convert to binary string and use string slicing
                # TODO: Horribly inefficent
                temp = list(self._getbin())
                temp.__delitem__(key)
                self._setbin_unsafe(''.join(temp))
                return
            stop = key.stop
            if key.start is not None:
                start = key.start
                if key.start < 0 and stop is None:
                    start += self.len
                if start < 0:
                    start = 0
            if stop is None:
                stop = self.len
            if start > stop:
                return
            stop = min(stop, self.len)
            start = max(start, 0)
            start = min(start, stop)
            self._delete(stop - start, start)
            return

    def __ilshift__(self, n):
        """Shift bits by n to the left in place. Return self.

        n -- the number of bits to shift. Must be >= 0.

        """
        if n < 0:
            raise ValueError("Cannot shift by a negative amount.")
        if not self.len:
            raise ValueError("Cannot shift an empty bitstring.")
        if not n:
            return self
        n = min(n, self.len)
        return self._ilshift(n)

    def __irshift__(self, n):
        """Shift bits by n to the right in place. Return self.

        n -- the number of bits to shift. Must be >= 0.

        """
        if n < 0:
            raise ValueError("Cannot shift by a negative amount.")
        if not self.len:
            raise ValueError("Cannot shift an empty bitstring.")
        if not n:
            return self
        n = min(n, self.len)
        return self._irshift(n)

    def __imul__(self, n):
        """Concatenate n copies of self in place. Return self.

        Called for expressions of the form 'a *= 3'.
        n -- The number of concatenations. Must be >= 0.

        """
        if n < 0:
            raise ValueError("Cannot multiply by a negative integer.")
        return self._imul(n)

    def __ior__(self, bs):
        bs = Bits(bs)
        if self.len != bs.len:
            raise ValueError("Bitstrings must have the same length "
                             "for |= operator.")
        return self._ior(bs)

    def __iand__(self, bs):
        bs = Bits(bs)
        if self.len != bs.len:
            raise ValueError("Bitstrings must have the same length "
                             "for &= operator.")
        return self._iand(bs)

    def __ixor__(self, bs):
        bs = Bits(bs)
        if self.len != bs.len:
            raise ValueError("Bitstrings must have the same length "
                             "for ^= operator.")
        return self._ixor(bs)

    def replace(self, old, new, start=None, end=None, count=None,
                bytealigned=None):
        """Replace all occurrences of old with new in place.

        Returns number of replacements made.

        old -- The bitstring to replace.
        new -- The replacement bitstring.
        start -- Any occurrences that start before this will not be replaced.
                 Defaults to 0.
        end -- Any occurrences that finish after this will not be replaced.
               Defaults to self.len.
        count -- The maximum number of replacements to make. Defaults to
                 replace all occurrences.
        bytealigned -- If True replacements will only be made on byte
                       boundaries.

        Raises ValueError if old is empty or if start or end are
        out of range.

        """
        old = Bits(old)
        new = Bits(new)
        if not old.len:
            raise ValueError("Empty bitstring cannot be replaced.")
        start, end = self._validate_slice(start, end)
        if bytealigned is None:
            bytealigned = globals()['bytealigned']
        # Adjust count for use in split()
        if count is not None:
            count += 1
        sections = self.split(old, start, end, count, bytealigned)
        lengths = [s.len for s in sections]
        if len(lengths) == 1:
            # Didn't find anything to replace.
            return 0 # no replacements done
        if new is self:
            # Prevent self assignment woes
            new = copy.copy(self)
        positions = [lengths[0] + start]
        for l in lengths[1:-1]:
            # Next position is the previous one plus the length of the next section.
            positions.append(positions[-1] + l)
        # We have all the positions that need replacements. We do them
        # in reverse order so that they won't move around as we replace.
        positions.reverse()
        try:
            # Need to calculate new pos, if this is a bitstream
            newpos = self._pos
            for p in positions:
                self[p:p + old.len] = new
            if old.len != new.len:
                diff = new.len - old.len
                for p in positions:
                    if p >= newpos:
                        continue
                    if p + old.len <= newpos:
                        newpos += diff
                    else:
                        newpos = p
            self._pos = newpos
        except AttributeError:
            for p in positions:
                self[p:p + old.len] = new
        assert self._assertsanity()
        return len(lengths) - 1

    def insert(self, bs, pos=None):
        """Insert bs at bit position pos.

        bs -- The bitstring to insert.
        pos -- The bit position to insert at.

        Raises ValueError if pos < 0 or pos > self.len.

        """
        bs = Bits(bs)
        if not bs.len:
            return self
        if bs is self:
            bs = self.__copy__()
        if pos is None:
            try:
                pos = self._pos
            except AttributeError:
                raise TypeError("insert require a bit position for this type.")
        if pos < 0:
            pos += self.len
        if not 0 <= pos <= self.len:
            raise ValueError("Invalid insert position.")
        self._insert(bs, pos)

    def overwrite(self, bs, pos=None):
        """Overwrite with bs at bit position pos.

        bs -- The bitstring to overwrite with.
        pos -- The bit position to begin overwriting from.

        Raises ValueError if pos < 0 or pos + bs.len > self.len

        """
        bs = Bits(bs)
        if not bs.len:
            return
        if pos is None:
            try:
                pos = self._pos
            except AttributeError:
                raise TypeError("overwrite require a bit position for this type.")
        if pos < 0:
            pos += self.len
        if pos < 0 or pos + bs.len > self.len:
            raise ValueError("Overwrite exceeds boundary of bitstring.")
        self._overwrite(bs, pos)
        try:
            self._pos = pos + bs.len
        except AttributeError:
            pass

    def append(self, bs):
        """Append a bitstring to the current bitstring.

        bs -- The bitstring to append.

        """
        # The offset is a hint to make bs easily appendable.
        bs = self._converttobitstring(bs, offset=(self.len + self._offset) % 8)
        self._append(bs)

    def prepend(self, bs):
        """Prepend a bitstring to the current bitstring.

        bs -- The bitstring to prepend.

        """
        bs = Bits(bs)
        self._prepend(bs)

    def reverse(self, start=None, end=None):
        """Reverse bits in-place.

        start -- Position of first bit to reverse. Defaults to 0.
        end -- One past the position of the last bit to reverse.
               Defaults to self.len.

        Using on an empty bitstring will have no effect.

        Raises ValueError if start < 0, end > self.len or end < start.

        """
        start, end = self._validate_slice(start, end)
        if start == 0 and end == self.len:
            self._reverse()
            return
        s = self._slice(start, end)
        s._reverse()
        self[start:end] = s

    def set(self, value, pos=None):
        """Set one or many bits to 1 or 0.

        value -- If True bits are set to 1, otherwise they are set to 0.
        pos -- Either a single bit position or an iterable of bit positions.
               Negative numbers are treated in the same way as slice indices.
               Defaults to the entire bitstring.

        Raises IndexError if pos < -self.len or pos >= self.len.

        """
        f = self._set if value else self._unset
        if pos is None:
            pos = xrange(self.len)
        try:
            length = self.len
            for p in pos:
                if p < 0:
                    p += length
                if not 0 <= p < length:
                    raise IndexError("Bit position {0} out of range.".format(p))
                f(p)
        except TypeError:
            # Single pos
            if pos < 0:
                pos += self.len
            if not 0 <= pos < length:
                raise IndexError("Bit position {0} out of range.".format(pos))
            f(pos)

    def invert(self, pos=None):
        """Invert one or many bits from 0 to 1 or vice versa.

        pos -- Either a single bit position or an iterable of bit positions.
               Negative numbers are treated in the same way as slice indices.

        Raises IndexError if pos < -self.len or pos >= self.len.

        """
        if pos is None:
            self._invert_all()
            return
        if not isinstance(pos, collections.Iterable):
            pos = (pos,)
        length = self.len

        for p in pos:
            if p < 0:
                p += length
            if not 0 <= p < length:
                raise IndexError("Bit position {0} out of range.".format(p))
            self._invert(p)

    def ror(self, bits, start=None, end=None):
        """Rotate bits to the right in-place.

        bits -- The number of bits to rotate by.
        start -- Start of slice to rotate. Defaults to 0.
        end -- End of slice to rotate. Defaults to self.len.

        Raises ValueError if bits < 0.

        """
        if not self.len:
            raise Error("Cannot rotate an empty bitstring.")
        if bits < 0:
            raise ValueError("Cannot rotate right by negative amount.")
        start, end = self._validate_slice(start, end)
        bits %= (end - start)
        if not bits:
            return
        rhs = self._slice(end - bits, end)
        self._delete(bits, end - bits)
        self._insert(rhs, start)

    def rol(self, bits, start=None, end=None):
        """Rotate bits to the left in-place.

        bits -- The number of bits to rotate by.
        start -- Start of slice to rotate. Defaults to 0.
        end -- End of slice to rotate. Defaults to self.len.

        Raises ValueError if bits < 0.

        """
        if not self.len:
            raise Error("Cannot rotate an empty bitstring.")
        if bits < 0:
            raise ValueError("Cannot rotate left by negative amount.")
        start, end = self._validate_slice(start, end)
        bits %= (end - start)
        if not bits:
            return
        lhs = self._slice(start, start + bits)
        self._delete(bits, start)
        self._insert(lhs, end - bits)

    def byteswap(self, fmt=None, start=None, end=None, repeat=True):
        """Change the endianness in-place. Return number of repeats of fmt done.

        fmt -- A compact structure string, an integer number of bytes or
               an iterable of integers. Defaults to 0, which byte reverses the
               whole bitstring.
        start -- Start bit position, defaults to 0.
        end -- End bit position, defaults to self.len.
        repeat -- If True (the default) the byte swapping pattern is repeated
                  as much as possible.

        """
        start, end = self._validate_slice(start, end)
        if fmt is None or fmt == 0:
            # reverse all of the whole bytes.
            bytesizes = [(end - start) // 8]
        elif isinstance(fmt, numbers.Integral):
            if fmt < 0:
                raise ValueError("Improper byte length {0}.".format(fmt))
            bytesizes = [fmt]
        elif isinstance(fmt, basestring):
            m = STRUCT_PACK_RE.match(fmt)
            if not m:
                raise ValueError("Cannot parse format string {0}.".format(fmt))
            # Split the format string into a list of 'q', '4h' etc.
            formatlist = re.findall(STRUCT_SPLIT_RE, m.group('fmt'))
            # Now deal with multiplicative factors, 4h -> hhhh etc.
            bytesizes = []
            for f in formatlist:
                if len(f) == 1:
                    bytesizes.append(PACK_CODE_SIZE[f])
                else:
                    bytesizes.extend([PACK_CODE_SIZE[f[-1]]] * int(f[:-1]))
        elif isinstance(fmt, collections.Iterable):
            bytesizes = fmt
            for bytesize in bytesizes:
                if not isinstance(bytesize, numbers.Integral) or bytesize < 0:
                    raise ValueError("Improper byte length {0}.".format(bytesize))
        else:
            raise TypeError("Format must be an integer, string or iterable.")

        repeats = 0
        totalbitsize = 8 * sum(bytesizes)
        if not totalbitsize:
            return 0
        if repeat:
            # Try to repeat up to the end of the bitstring.
            finalbit = end
        else:
            # Just try one (set of) byteswap(s).
            finalbit = start + totalbitsize
        for patternend in xrange(start + totalbitsize, finalbit + 1, totalbitsize):
            bytestart = patternend - totalbitsize
            for bytesize in bytesizes:
                byteend = bytestart + bytesize * 8
                self._reversebytes(bytestart, byteend)
                bytestart += bytesize * 8
            repeats += 1
        return repeats

    def clear(self):
        """Remove all bits, reset to zero length."""
        self._clear()

    def copy(self):
        """Return a copy of the bitstring."""
        return self._copy()

    int = property(Bits._getint, Bits._setint,
                   doc="""The bitstring as a two's complement signed int. Read and write.
                      """)
    uint = property(Bits._getuint, Bits._setuint,
                    doc="""The bitstring as a two's complement unsigned int. Read and write.
                      """)
    float = property(Bits._getfloat, Bits._setfloat,
                     doc="""The bitstring as a floating point number. Read and write.
                      """)
    intbe = property(Bits._getintbe, Bits._setintbe,
                     doc="""The bitstring as a two's complement big-endian signed int. Read and write.
                      """)
    uintbe = property(Bits._getuintbe, Bits._setuintbe,
                      doc="""The bitstring as a two's complement big-endian unsigned int. Read and write.
                      """)
    floatbe = property(Bits._getfloat, Bits._setfloat,
                       doc="""The bitstring as a big-endian floating point number. Read and write.
                      """)
    intle = property(Bits._getintle, Bits._setintle,
                     doc="""The bitstring as a two's complement little-endian signed int. Read and write.
                      """)
    uintle = property(Bits._getuintle, Bits._setuintle,
                      doc="""The bitstring as a two's complement little-endian unsigned int. Read and write.
                      """)
    floatle = property(Bits._getfloatle, Bits._setfloatle,
                       doc="""The bitstring as a little-endian floating point number. Read and write.
                      """)
    intne = property(Bits._getintne, Bits._setintne,
                     doc="""The bitstring as a two's complement native-endian signed int. Read and write.
                      """)
    uintne = property(Bits._getuintne, Bits._setuintne,
                      doc="""The bitstring as a two's complement native-endian unsigned int. Read and write.
                      """)
    floatne = property(Bits._getfloatne, Bits._setfloatne,
                       doc="""The bitstring as a native-endian floating point number. Read and write.
                      """)
    ue = property(Bits._getue, Bits._setue,
                  doc="""The bitstring as an unsigned exponential-Golomb code. Read and write.
                      """)
    se = property(Bits._getse, Bits._setse,
                  doc="""The bitstring as a signed exponential-Golomb code. Read and write.
                      """)
    uie = property(Bits._getuie, Bits._setuie,
                  doc="""The bitstring as an unsigned interleaved exponential-Golomb code. Read and write.
                      """)
    sie = property(Bits._getsie, Bits._setsie,
                  doc="""The bitstring as a signed interleaved exponential-Golomb code. Read and write.
                      """)
    hex = property(Bits._gethex, Bits._sethex,
                   doc="""The bitstring as a hexadecimal string. Read and write.
                       """)
    bin = property(Bits._getbin, Bits._setbin_safe,
                   doc="""The bitstring as a binary string. Read and write.
                       """)
    oct = property(Bits._getoct, Bits._setoct,
                   doc="""The bitstring as an octal string. Read and write.
                       """)
    bool = property(Bits._getbool, Bits._setbool,
                    doc="""The bitstring as a bool (True or False). Read and write.
                    """)
    bytes = property(Bits._getbytes, Bits._setbytes_safe,
                     doc="""The bitstring as a ordinary string. Read and write.
                      """)



class ConstBitStream(Bits):
    """A container or stream holding an immutable sequence of bits.

    For a mutable container use the BitStream class instead.

    Methods inherited from Bits:

    all() -- Check if all specified bits are set to 1 or 0.
    any() -- Check if any of specified bits are set to 1 or 0.
    count() -- Count the number of bits set to 1 or 0.
    cut() -- Create generator of constant sized chunks.
    endswith() -- Return whether the bitstring ends with a sub-string.
    find() -- Find a sub-bitstring in the current bitstring.
    findall() -- Find all occurrences of a sub-bitstring in the current bitstring.
    join() -- Join bitstrings together using current bitstring.
    rfind() -- Seek backwards to find a sub-bitstring.
    split() -- Create generator of chunks split by a delimiter.
    startswith() -- Return whether the bitstring starts with a sub-bitstring.
    tobytes() -- Return bitstring as bytes, padding if needed.
    tofile() -- Write bitstring to file, padding if needed.
    unpack() -- Interpret bits using format string.

    Other methods:

    bytealign() -- Align to next byte boundary.
    peek() -- Peek at and interpret next bits as a single item.
    peeklist() -- Peek at and interpret next bits as a list of items.
    read() -- Read and interpret next bits as a single item.
    readlist() -- Read and interpret next bits as a list of items.

    Special methods:

    Also available are the operators [], ==, !=, +, *, ~, <<, >>, &, |, ^.

    Properties:

    bin -- The bitstring as a binary string.
    bool -- For single bit bitstrings, interpret as True or False.
    bytepos -- The current byte position in the bitstring.
    bytes -- The bitstring as a bytes object.
    float -- Interpret as a floating point number.
    floatbe -- Interpret as a big-endian floating point number.
    floatle -- Interpret as a little-endian floating point number.
    floatne -- Interpret as a native-endian floating point number.
    hex -- The bitstring as a hexadecimal string.
    int -- Interpret as a two's complement signed integer.
    intbe -- Interpret as a big-endian signed integer.
    intle -- Interpret as a little-endian signed integer.
    intne -- Interpret as a native-endian signed integer.
    len -- Length of the bitstring in bits.
    oct -- The bitstring as an octal string.
    pos -- The current bit position in the bitstring.
    se -- Interpret as a signed exponential-Golomb code.
    ue -- Interpret as an unsigned exponential-Golomb code.
    sie -- Interpret as a signed interleaved exponential-Golomb code.
    uie -- Interpret as an unsigned interleaved exponential-Golomb code.
    uint -- Interpret as a two's complement unsigned integer.
    uintbe -- Interpret as a big-endian unsigned integer.
    uintle -- Interpret as a little-endian unsigned integer.
    uintne -- Interpret as a native-endian unsigned integer.

    """

    __slots__ = ('_pos')

    def __init__(self, auto=None, length=None, offset=None, **kwargs):
        """Either specify an 'auto' initialiser:
        auto -- a string of comma separated tokens, an integer, a file object,
                a bytearray, a boolean iterable or another bitstring.

        Or initialise via **kwargs with one (and only one) of:
        bytes -- raw data as a string, for example read from a binary file.
        bin -- binary string representation, e.g. '0b001010'.
        hex -- hexadecimal string representation, e.g. '0x2ef'
        oct -- octal string representation, e.g. '0o777'.
        uint -- an unsigned integer.
        int -- a signed integer.
        float -- a floating point number.
        uintbe -- an unsigned big-endian whole byte integer.
        intbe -- a signed big-endian whole byte integer.
        floatbe - a big-endian floating point number.
        uintle -- an unsigned little-endian whole byte integer.
        intle -- a signed little-endian whole byte integer.
        floatle -- a little-endian floating point number.
        uintne -- an unsigned native-endian whole byte integer.
        intne -- a signed native-endian whole byte integer.
        floatne -- a native-endian floating point number.
        se -- a signed exponential-Golomb code.
        ue -- an unsigned exponential-Golomb code.
        sie -- a signed interleaved exponential-Golomb code.
        uie -- an unsigned interleaved exponential-Golomb code.
        bool -- a boolean (True or False).
        filename -- a file which will be opened in binary read-only mode.

        Other keyword arguments:
        length -- length of the bitstring in bits, if needed and appropriate.
                  It must be supplied for all integer and float initialisers.
        offset -- bit offset to the data. These offset bits are
                  ignored and this is intended for use when
                  initialising using 'bytes' or 'filename'.

        """
        self._pos = 0

    def __new__(cls, auto=None, length=None, offset=None, **kwargs):
        x = super(ConstBitStream, cls).__new__(cls)
        x._initialise(auto, length, offset, **kwargs)
        return x

    def _setbytepos(self, bytepos):
        """Move to absolute byte-aligned position in stream."""
        self._setbitpos(bytepos * 8)

    def _getbytepos(self):
        """Return the current position in the stream in bytes. Must be byte aligned."""
        if self._pos % 8:
            raise ByteAlignError("Not byte aligned in _getbytepos().")
        return self._pos // 8

    def _setbitpos(self, pos):
        """Move to absolute postion bit in bitstream."""
        if pos < 0:
            raise ValueError("Bit position cannot be negative.")
        if pos > self.len:
            raise ValueError("Cannot seek past the end of the data.")
        self._pos = pos

    def _getbitpos(self):
        """Return the current position in the stream in bits."""
        return self._pos

    def _clear(self):
        Bits._clear(self)
        self._pos = 0

    def __copy__(self):
        """Return a new copy of the ConstBitStream for the copy module."""
        # Note that if you want a new copy (different ID), use _copy instead.
        # The copy can use the same datastore as it's immutable.
        s = ConstBitStream()
        s._datastore = self._datastore
        # Reset the bit position, don't copy it.
        s._pos = 0
        return s

    def __add__(self, bs):
        """Concatenate bitstrings and return new bitstring.

        bs -- the bitstring to append.

        """
        s = Bits.__add__(self, bs)
        s._pos = 0
        return s

    def read(self, fmt):
        """Interpret next bits according to the format string and return result.

        fmt -- Token string describing how to interpret the next bits.

        Token examples: 'int:12'    : 12 bits as a signed integer
                        'uint:8'    : 8 bits as an unsigned integer
                        'float:64'  : 8 bytes as a big-endian float
                        'intbe:16'  : 2 bytes as a big-endian signed integer
                        'uintbe:16' : 2 bytes as a big-endian unsigned integer
                        'intle:32'  : 4 bytes as a little-endian signed integer
                        'uintle:32' : 4 bytes as a little-endian unsigned integer
                        'floatle:64': 8 bytes as a little-endian float
                        'intne:24'  : 3 bytes as a native-endian signed integer
                        'uintne:24' : 3 bytes as a native-endian unsigned integer
                        'floatne:32': 4 bytes as a native-endian float
                        'hex:80'    : 80 bits as a hex string
                        'oct:9'     : 9 bits as an octal string
                        'bin:1'     : single bit binary string
                        'ue'        : next bits as unsigned exp-Golomb code
                        'se'        : next bits as signed exp-Golomb code
                        'uie'       : next bits as unsigned interleaved exp-Golomb code
                        'sie'       : next bits as signed interleaved exp-Golomb code
                        'bits:5'    : 5 bits as a bitstring
                        'bytes:10'  : 10 bytes as a bytes object
                        'bool'      : 1 bit as a bool
                        'pad:3'     : 3 bits of padding to ignore - returns None

        fmt may also be an integer, which will be treated like the 'bits' token.

        The position in the bitstring is advanced to after the read items.

        Raises ReadError if not enough bits are available.
        Raises ValueError if the format is not understood.

        """
        if isinstance(fmt, numbers.Integral):
            if fmt < 0:
                raise ValueError("Cannot read negative amount.")
            if fmt > self.len - self._pos:
                raise ReadError("Cannot read {0} bits, only {1} available.",
                                fmt, self.len - self._pos)
            bs = self._slice(self._pos, self._pos + fmt)
            self._pos += fmt
            return bs
        p = self._pos
        _, token = tokenparser(fmt)
        if len(token) != 1:
            self._pos = p
            raise ValueError("Format string should be a single token, not {0} "
                             "tokens - use readlist() instead.".format(len(token)))
        name, length, _ = token[0]
        if length is None:
            length = self.len - self._pos
        value, self._pos = self._readtoken(name, self._pos, length)
        return value

    def readlist(self, fmt, **kwargs):
        """Interpret next bits according to format string(s) and return list.

        fmt -- A single string or list of strings with comma separated tokens
               describing how to interpret the next bits in the bitstring. Items
               can also be integers, for reading new bitstring of the given length.
        kwargs -- A dictionary or keyword-value pairs - the keywords used in the
                  format string will be replaced with their given value.

        The position in the bitstring is advanced to after the read items.

        Raises ReadError is not enough bits are available.
        Raises ValueError if the format is not understood.

        See the docstring for 'read' for token examples. 'pad' tokens are skipped
        and not added to the returned list.

        >>> h, b1, b2 = s.readlist('hex:20, bin:5, bin:3')
        >>> i, bs1, bs2 = s.readlist(['uint:12', 10, 10])

        """
        value, self._pos = self._readlist(fmt, self._pos, **kwargs)
        return value

    def readto(self, bs, bytealigned=None):
        """Read up to and including next occurrence of bs and return result.

        bs -- The bitstring to find. An integer is not permitted.
        bytealigned -- If True the bitstring will only be
                       found on byte boundaries.

        Raises ValueError if bs is empty.
        Raises ReadError if bs is not found.

        """
        if isinstance(bs, numbers.Integral):
            raise ValueError("Integers cannot be searched for")
        bs = Bits(bs)
        oldpos = self._pos
        p = self.find(bs, self._pos, bytealigned=bytealigned)
        if not p:
            raise ReadError("Substring not found")
        self._pos += bs.len
        return self._slice(oldpos, self._pos)

    def peek(self, fmt):
        """Interpret next bits according to format string and return result.

        fmt -- Token string describing how to interpret the next bits.

        The position in the bitstring is not changed. If not enough bits are
        available then all bits to the end of the bitstring will be used.

        Raises ReadError if not enough bits are available.
        Raises ValueError if the format is not understood.

        See the docstring for 'read' for token examples.

        """
        pos_before = self._pos
        value = self.read(fmt)
        self._pos = pos_before
        return value

    def peeklist(self, fmt, **kwargs):
        """Interpret next bits according to format string(s) and return list.

        fmt -- One or more strings with comma separated tokens describing
               how to interpret the next bits in the bitstring.
        kwargs -- A dictionary or keyword-value pairs - the keywords used in the
                  format string will be replaced with their given value.

        The position in the bitstring is not changed. If not enough bits are
        available then all bits to the end of the bitstring will be used.

        Raises ReadError if not enough bits are available.
        Raises ValueError if the format is not understood.

        See the docstring for 'read' for token examples.

        """
        pos = self._pos
        return_values = self.readlist(fmt, **kwargs)
        self._pos = pos
        return return_values

    def bytealign(self):
        """Align to next byte and return number of skipped bits.

        Raises ValueError if the end of the bitstring is reached before
        aligning to the next byte.

        """
        skipped = (8 - (self._pos % 8)) % 8
        self.pos += self._offset + skipped
        assert self._assertsanity()
        return skipped

    pos = property(_getbitpos, _setbitpos,
                   doc="""The position in the bitstring in bits. Read and write.
                      """)
    bitpos = property(_getbitpos, _setbitpos,
                      doc="""The position in the bitstring in bits. Read and write.
                      """)
    bytepos = property(_getbytepos, _setbytepos,
                       doc="""The position in the bitstring in bytes. Read and write.
                      """)





class BitStream(ConstBitStream, BitArray):
    """A container or stream holding a mutable sequence of bits

    Subclass of the ConstBitStream and BitArray classes. Inherits all of
    their methods.

    Methods:

    all() -- Check if all specified bits are set to 1 or 0.
    any() -- Check if any of specified bits are set to 1 or 0.
    append() -- Append a bitstring.
    bytealign() -- Align to next byte boundary.
    byteswap() -- Change byte endianness in-place.
    count() -- Count the number of bits set to 1 or 0.
    cut() -- Create generator of constant sized chunks.
    endswith() -- Return whether the bitstring ends with a sub-string.
    find() -- Find a sub-bitstring in the current bitstring.
    findall() -- Find all occurrences of a sub-bitstring in the current bitstring.
    insert() -- Insert a bitstring.
    invert() -- Flip bit(s) between one and zero.
    join() -- Join bitstrings together using current bitstring.
    overwrite() -- Overwrite a section with a new bitstring.
    peek() -- Peek at and interpret next bits as a single item.
    peeklist() -- Peek at and interpret next bits as a list of items.
    prepend() -- Prepend a bitstring.
    read() -- Read and interpret next bits as a single item.
    readlist() -- Read and interpret next bits as a list of items.
    replace() -- Replace occurrences of one bitstring with another.
    reverse() -- Reverse bits in-place.
    rfind() -- Seek backwards to find a sub-bitstring.
    rol() -- Rotate bits to the left.
    ror() -- Rotate bits to the right.
    set() -- Set bit(s) to 1 or 0.
    split() -- Create generator of chunks split by a delimiter.
    startswith() -- Return whether the bitstring starts with a sub-bitstring.
    tobytes() -- Return bitstring as bytes, padding if needed.
    tofile() -- Write bitstring to file, padding if needed.
    unpack() -- Interpret bits using format string.

    Special methods:

    Mutating operators are available: [], <<=, >>=, +=, *=, &=, |= and ^=
    in addition to [], ==, !=, +, *, ~, <<, >>, &, | and ^.

    Properties:

    bin -- The bitstring as a binary string.
    bool -- For single bit bitstrings, interpret as True or False.
    bytepos -- The current byte position in the bitstring.
    bytes -- The bitstring as a bytes object.
    float -- Interpret as a floating point number.
    floatbe -- Interpret as a big-endian floating point number.
    floatle -- Interpret as a little-endian floating point number.
    floatne -- Interpret as a native-endian floating point number.
    hex -- The bitstring as a hexadecimal string.
    int -- Interpret as a two's complement signed integer.
    intbe -- Interpret as a big-endian signed integer.
    intle -- Interpret as a little-endian signed integer.
    intne -- Interpret as a native-endian signed integer.
    len -- Length of the bitstring in bits.
    oct -- The bitstring as an octal string.
    pos -- The current bit position in the bitstring.
    se -- Interpret as a signed exponential-Golomb code.
    ue -- Interpret as an unsigned exponential-Golomb code.
    sie -- Interpret as a signed interleaved exponential-Golomb code.
    uie -- Interpret as an unsigned interleaved exponential-Golomb code.
    uint -- Interpret as a two's complement unsigned integer.
    uintbe -- Interpret as a big-endian unsigned integer.
    uintle -- Interpret as a little-endian unsigned integer.
    uintne -- Interpret as a native-endian unsigned integer.

    """

    __slots__ = ()

    # As BitStream objects are mutable, we shouldn't allow them to be hashed.
    __hash__ = None

    def __init__(self, auto=None, length=None, offset=None, **kwargs):
        """Either specify an 'auto' initialiser:
        auto -- a string of comma separated tokens, an integer, a file object,
                a bytearray, a boolean iterable or another bitstring.

        Or initialise via **kwargs with one (and only one) of:
        bytes -- raw data as a string, for example read from a binary file.
        bin -- binary string representation, e.g. '0b001010'.
        hex -- hexadecimal string representation, e.g. '0x2ef'
        oct -- octal string representation, e.g. '0o777'.
        uint -- an unsigned integer.
        int -- a signed integer.
        float -- a floating point number.
        uintbe -- an unsigned big-endian whole byte integer.
        intbe -- a signed big-endian whole byte integer.
        floatbe - a big-endian floating point number.
        uintle -- an unsigned little-endian whole byte integer.
        intle -- a signed little-endian whole byte integer.
        floatle -- a little-endian floating point number.
        uintne -- an unsigned native-endian whole byte integer.
        intne -- a signed native-endian whole byte integer.
        floatne -- a native-endian floating point number.
        se -- a signed exponential-Golomb code.
        ue -- an unsigned exponential-Golomb code.
        sie -- a signed interleaved exponential-Golomb code.
        uie -- an unsigned interleaved exponential-Golomb code.
        bool -- a boolean (True or False).
        filename -- a file which will be opened in binary read-only mode.

        Other keyword arguments:
        length -- length of the bitstring in bits, if needed and appropriate.
                  It must be supplied for all integer and float initialisers.
        offset -- bit offset to the data. These offset bits are
                  ignored and this is intended for use when
                  initialising using 'bytes' or 'filename'.

        """
        self._pos = 0
        # For mutable BitStreams we always read in files to memory:
        if not isinstance(self._datastore, ByteStore):
            self._ensureinmemory()

    def __new__(cls, auto=None, length=None, offset=None, **kwargs):
        x = super(BitStream, cls).__new__(cls)
        x._initialise(auto, length, offset, **kwargs)
        return x

    def __copy__(self):
        """Return a new copy of the BitStream."""
        s_copy = BitStream()
        s_copy._pos = 0
        if not isinstance(self._datastore, ByteStore):
            # Let them both point to the same (invariant) array.
            # If either gets modified then at that point they'll be read into memory.
            s_copy._datastore = self._datastore
        else:
            s_copy._datastore = ByteStore(self._datastore._rawarray[:],
                                          self._datastore.bitlength,
                                          self._datastore.offset)
        return s_copy

    def prepend(self, bs):
        """Prepend a bitstring to the current bitstring.

        bs -- The bitstring to prepend.

        """
        bs = self._converttobitstring(bs)
        self._prepend(bs)
        self._pos += bs.len


def pack(fmt, *values, **kwargs):
    """Pack the values according to the format string and return a new BitStream.

    fmt -- A single string or a list of strings with comma separated tokens
           describing how to create the BitStream.
    values -- Zero or more values to pack according to the format.
    kwargs -- A dictionary or keyword-value pairs - the keywords used in the
              format string will be replaced with their given value.

    Token examples: 'int:12'    : 12 bits as a signed integer
                    'uint:8'    : 8 bits as an unsigned integer
                    'float:64'  : 8 bytes as a big-endian float
                    'intbe:16'  : 2 bytes as a big-endian signed integer
                    'uintbe:16' : 2 bytes as a big-endian unsigned integer
                    'intle:32'  : 4 bytes as a little-endian signed integer
                    'uintle:32' : 4 bytes as a little-endian unsigned integer
                    'floatle:64': 8 bytes as a little-endian float
                    'intne:24'  : 3 bytes as a native-endian signed integer
                    'uintne:24' : 3 bytes as a native-endian unsigned integer
                    'floatne:32': 4 bytes as a native-endian float
                    'hex:80'    : 80 bits as a hex string
                    'oct:9'     : 9 bits as an octal string
                    'bin:1'     : single bit binary string
                    'ue' / 'uie': next bits as unsigned exp-Golomb code
                    'se' / 'sie': next bits as signed exp-Golomb code
                    'bits:5'    : 5 bits as a bitstring object
                    'bytes:10'  : 10 bytes as a bytes object
                    'bool'      : 1 bit as a bool
                    'pad:3'     : 3 zero bits as padding

    >>> s = pack('uint:12, bits', 100, '0xffe')
    >>> t = pack(['bits', 'bin:3'], s, '111')
    >>> u = pack('uint:8=a, uint:8=b, uint:55=a', a=6, b=44)

    """
    tokens = []
    if isinstance(fmt, basestring):
        fmt = [fmt]
    try:
        for f_item in fmt:
            _, tkns = tokenparser(f_item, tuple(sorted(kwargs.keys())))
            tokens.extend(tkns)
    except ValueError as e:
        raise CreationError(*e.args)
    value_iter = iter(values)
    s = BitStream()
    try:
        for name, length, value in tokens:
            # If the value is in the kwd dictionary then it takes precedence.
            if value in kwargs:
                value = kwargs[value]
            # If the length is in the kwd dictionary then use that too.
            if length in kwargs:
                length = kwargs[length]
            # Also if we just have a dictionary name then we want to use it
            if name in kwargs and length is None and value is None:
                s.append(kwargs[name])
                continue
            if length is not None:
                length = int(length)
            if value is None and name != 'pad':
                # Take the next value from the ones provided
                value = next(value_iter)
            s._append(BitStream._init_with_token(name, length, value))
    except StopIteration:
        raise CreationError("Not enough parameters present to pack according to the "
                            "format. {0} values are needed.", len(tokens))
    try:
        next(value_iter)
    except StopIteration:
        # Good, we've used up all the *values.
        return s
    raise CreationError("Too many parameters present to pack according to the format.")


# Aliases for backward compatibility
ConstBitArray = Bits
BitString = BitStream

__all__ = ['ConstBitArray', 'ConstBitStream', 'BitStream', 'BitArray',
           'Bits', 'BitString', 'pack', 'Error', 'ReadError',
           'InterpretError', 'ByteAlignError', 'CreationError', 'bytealigned']