This file is indexed.

/usr/lib/python2.7/dist-packages/twext/enterprise/dal/syntax.py is in python-twext 0.1.b2.dev15059-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
# -*- test-case-name: twext.enterprise.dal.test.test_sqlsyntax -*-
##
# Copyright (c) 2010-2015 Apple Inc. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##

"""
Syntax wrappers and generators for SQL.
"""

__all__ = [
    "DALError",
    "QueryPlaceholder",
    "FixedPlaceholder",
    "NumericPlaceholder",
    "defaultPlaceholder",
    "QueryGenerator",
    "TableMismatch",
    "NotEnoughValues",
    "Syntax",
    "comparison",
    "ExpressionSyntax",
    "FunctionInvocation",
    "Constant",
    "NamedValue",
    "Function",
    "SchemaSyntax",
    "SequenceSyntax",
    "TableSyntax",
    "TableAlias",
    "Join",
    "ColumnSyntax",
    "ResultAliasSyntax",
    "AliasReferenceSyntax",
    "AliasedColumnSyntax",
    "Comparison",
    "Not",
    "NullComparison",
    "CompoundComparison",
    "ColumnComparison",
    "Column",
    "Tuple",
    "SetExpression",
    "Union",
    "Intersect",
    "Except",
    "Select",
    "Insert",
    "Update",
    "Delete",
    "Lock",
    "DatabaseLock",
    "DatabaseUnlock",
    "RollbackToSavepoint",
    "ReleaseSavepoint",
    "SavepointAction",
    "NoOp",
    "SQLFragment",
    "Parameter",
]

from itertools import count, repeat
from functools import partial
from operator import eq, ne

from zope.interface import implements

from twisted.internet.defer import succeed

from twext.enterprise.dal.model import Schema, Table, Column, Sequence, SQLType
from twext.enterprise.ienterprise import (
    POSTGRES_DIALECT, ORACLE_DIALECT, SQLITE_DIALECT, IDerivedParameter
)
from twext.enterprise.util import mapOracleOutputType

from twisted.internet.defer import inlineCallbacks, returnValue

try:
    import cx_Oracle
    cx_Oracle
except ImportError:
    cx_Oracle = None



class DALError(Exception):
    """
    Base class for exceptions raised by this module.  This can be raised
    directly for API violations.  This exception represents a serious
    programming error and should normally never be caught or ignored.
    """



class QueryPlaceholder(object):
    """
    Representation of the placeholders required to generate some SQL, for a
    single statement.  Contains information necessary to generate place holder
    strings based on the database dialect.
    """

    def placeholder(self):
        raise NotImplementedError("See subclasses.")



class FixedPlaceholder(QueryPlaceholder):
    """
    Fixed string used as the place holder.
    """

    def __init__(self, placeholder):
        self._placeholder = placeholder


    def placeholder(self):
        return self._placeholder



class NumericPlaceholder(QueryPlaceholder):
    """
    Numeric counter used as the place holder.
    """

    def __init__(self):
        self._next = count(1).next


    def placeholder(self):
        return ":" + str(self._next())



def defaultPlaceholder():
    """
    Generate a default L{QueryPlaceholder}
    """
    return FixedPlaceholder("?")



class QueryGenerator(object):
    """
    Maintains various pieces of transient information needed when building a
    query. This includes the SQL dialect, the format of the place holder and
    and automated id generator.
    """

    def __init__(self, dialect=None, placeholder=None):
        self.dialect = dialect if dialect else POSTGRES_DIALECT
        if placeholder is None:
            placeholder = defaultPlaceholder()
        self.placeholder = placeholder

        self.generatedID = count(1).next


    def nextGeneratedID(self):
        return "genid_%d" % (self.generatedID(),)


    def shouldQuote(self, name):
        return (self.dialect == ORACLE_DIALECT and name.lower() in _KEYWORDS)



class TableMismatch(Exception):
    """
    A table in a statement did not match with a column.
    """



class NotEnoughValues(DALError):
    """
    Not enough values were supplied for an L{Insert}.
    """



class _Statement(object):
    """
    An SQL statement that may be executed.  (An abstract base class, must
    implement several methods.)
    """

    _paramstyles = {
        "pyformat": partial(FixedPlaceholder, "%s"),
        "numeric": NumericPlaceholder,
        "qmark": defaultPlaceholder,
    }


    def toSQL(self, queryGenerator=None):
        if queryGenerator is None:
            queryGenerator = QueryGenerator()
        return self._toSQL(queryGenerator)


    def _extraVars(self, txn, queryGenerator):
        """
        A hook for subclasses to provide additional keyword arguments to the
        C{bind} call when L{_Statement.on} is executed.  Currently this is used
        only for "out" parameters to capture results when executing statements
        that do not normally have a result (L{Insert}, L{Delete}, L{Update}).
        """
        return {}


    def _extraResult(self, result, outvars, queryGenerator):
        """
        A hook for subclasses to manipulate the results of "on", after they've
        been retrieved by the database but before they've been given to
        application code.

        @param result: a L{Deferred} that will fire with the rows as returned
            by the database.
        @type result: C{list} of rows, which are C{list}s or C{tuple}s.

        @param outvars: a dictionary of extra variables returned by
            C{self._extraVars}.

        @param queryGenerator: information about the connection where the
            statement was executed.

        @type queryGenerator: L{QueryGenerator} (a subclass thereof)

        @return: the result to be returned from L{_Statement.on}.
        @rtype: L{Deferred} firing result rows
        """
        return result


    def on(self, txn, raiseOnZeroRowCount=None, **kw):
        """
        Execute this statement on a given L{IAsyncTransaction} and return the
        resulting L{Deferred}.

        @param txn: the L{IAsyncTransaction} to execute this on.

        @param raiseOnZeroRowCount: a 0-argument callable which returns an
            exception to raise if the executed SQL does not affect any rows.

        @param kw: keyword arguments, mapping names of L{Parameter} objects
            located somewhere in C{self}

        @return: results from the database.
        @rtype: a L{Deferred} firing a C{list} of records (C{tuple}s or
            C{list}s)
        """
        queryGenerator = QueryGenerator(
            txn.dialect, self._paramstyles[txn.paramstyle]()
        )
        outvars = self._extraVars(txn, queryGenerator)
        kw.update(outvars)
        fragment = self.toSQL(queryGenerator).bind(**kw)
        result = txn.execSQL(
            fragment.text, fragment.parameters, raiseOnZeroRowCount
        )
        result = self._extraResult(result, outvars, queryGenerator)
        if queryGenerator.dialect == ORACLE_DIALECT and result:
            result.addCallback(self._fixOracleNulls)
        return result


    def _resultColumns(self):
        """
        Subclasses must implement this to return a description of the columns
        expected to be returned.  This is a list of L{ColumnSyntax} objects,
        and possibly other expression syntaxes which will be converted to
        C{None}.
        """
        raise NotImplementedError(
            "Each statement subclass must describe its result"
        )


    def _resultShape(self):
        """
        Process the result of the subclass's C{_resultColumns}, as described in
        the docstring above.
        """
        for expectation in self._resultColumns():
            if isinstance(expectation, ColumnSyntax):
                yield expectation.model
            else:
                yield None


    def _fixOracleNulls(self, rows):
        """
        Oracle treats empty strings as C{NULL}.  Fix this by looking at the
        columns we expect to have returned, and replacing any C{None}s with
        empty strings in the appropriate position.
        """
        if rows is None:
            return None

        newRows = []

        for row in rows:
            newRow = []

            for column, description in zip(row, self._resultShape()):
                if (
                    description is not None and
                    # FIXME: "is the python type str" is what I mean; this list
                    # should be more centrally maintained
                    description.type.name in ("varchar", "text", "char") and
                    column is None
                ):
                    column = ""
                newRow.append(column)

            newRows.append(newRow)

        return newRows



class Syntax(object):
    """
    Base class for syntactic convenience.

    This class will define dynamic attribute access to represent its underlying
    model as a Python namespace.

    You can access the underlying model as ".model".
    """

    modelType = None
    model = None

    def __init__(self, model):
        if not isinstance(model, self.modelType):
            # make sure we don't get a misleading repr()
            raise DALError("type mismatch: %r %r", type(self), model)
        self.model = model


    def __repr__(self):
        if self.model is not None:
            return "<Syntax for: %r>" % (self.model,)
        return super(Syntax, self).__repr__()



def comparison(comparator):
    def __(self, other):
        if other is None:
            return NullComparison(self, comparator)
        if isinstance(other, Select):
            return NotImplemented
        if isinstance(other, ColumnSyntax):
            return ColumnComparison(self, comparator, other)
        if isinstance(other, ExpressionSyntax):
            return CompoundComparison(self, comparator, other)
        else:
            return CompoundComparison(self, comparator, Constant(other))
    return __



class ExpressionSyntax(Syntax):
    __eq__ = comparison("=")
    __ne__ = comparison("!=")

    # NB: these operators "cannot be used with lists" (see ORA-01796)
    __gt__ = comparison(">")
    __ge__ = comparison(">=")
    __lt__ = comparison("<")
    __le__ = comparison("<=")

    # TODO: operators aren't really comparisons; these should behave slightly
    # differently.  (For example; in Oracle, C{select 3 = 4 from dual} doesn't
    # work, but C{select 3 + 4 from dual} does; similarly, you can't do
    # C{select * from foo where 3 + 4}, but you can do C{select * from foo
    # where 3 + 4 > 0}.)
    __add__ = comparison("+")
    __sub__ = comparison("-")
    __div__ = comparison("/")
    __mul__ = comparison("*")


    def __nonzero__(self):
        raise DALError(
            "SQL expressions should not be tested for truth value in Python.")


    def In(self, other):
        """
        We support two forms of the SQL "IN" syntax: one where a list of values
        is supplied, the other where a sub-select is used to provide a set of
        values.

        @param other: a constant parameter or sub-select
        @type other: L{Parameter} or L{Select}
        """
        return self._commonIn('in', other)


    def NotIn(self, other):
        """
        We support two forms of the SQL "NOT IN" syntax: one where a list of values
        is supplied, the other where a sub-select is used to provide a set of
        values.

        @param other: a constant parameter or sub-select
        @type other: L{Parameter} or L{Select}
        """
        return self._commonIn('not in', other)


    def _commonIn(self, op, other):
        """
        We support two forms of the SQL "IN" and "NOT IN" syntax: one where a list
        of values is supplied, the other where a sub-select is used to provide a set
        of values.

        @param other: a constant parameter or sub-select
        @type other: L{Parameter} or L{Select}
        """

        if isinstance(other, Parameter):
            if other.count is None:
                raise DALError(
                    "{} expression needs an explicit count of parameters".format(op.upper())
                )
            return CompoundComparison(self, op, Constant(other))
        elif isinstance(other, set) or isinstance(other, frozenset) or isinstance(other, list) or isinstance(other, tuple):
            return CompoundComparison(self, op, Constant(other))
        else:
            # Can't be Select.__contains__ because __contains__ gets
            # __nonzero__ called on its result by the "in" syntax.
            return CompoundComparison(self, op, other)


    def StartsWith(self, other):
        return CompoundComparison(
            self, "like",
            CompoundComparison(Constant(other), "||", Constant("%"))
        )


    def NotStartsWith(self, other):
        return CompoundComparison(
            self, "not like",
            CompoundComparison(Constant(other), "||", Constant("%"))
        )


    def EndsWith(self, other):
        return CompoundComparison(
            self, "like",
            CompoundComparison(Constant("%"), "||", Constant(other))
        )


    def NotEndsWith(self, other):
        return CompoundComparison(
            self, "not like",
            CompoundComparison(Constant("%"), "||", Constant(other))
        )


    def Contains(self, other):
        return CompoundComparison(
            self, "like",
            CompoundComparison(
                Constant("%"), "||",
                CompoundComparison(Constant(other), "||", Constant("%"))
            )
        )


    def NotContains(self, other):
        return CompoundComparison(
            self, "not like",
            CompoundComparison(
                Constant("%"), "||",
                CompoundComparison(Constant(other), "||", Constant("%"))
            )
        )



class FunctionInvocation(ExpressionSyntax):
    def __init__(self, function, *args):
        self.function = function
        self.args = args


    def allColumns(self):
        """
        All of the columns in all of the arguments' columns.
        """
        def ac():
            for arg in self.args:
                for column in arg.allColumns():
                    yield column
        return list(ac())


    def subSQL(self, queryGenerator, allTables):
        result = SQLFragment(self.function.nameFor(queryGenerator))
        result.append(_inParens(
            _commaJoined(
                _convert(arg).subSQL(queryGenerator, allTables)
                for arg in self.args
            )
        ))
        return result



class Constant(ExpressionSyntax):
    """
    Generates an expression for a place holder where a value will be bound to
    the query. If the constant is a Parameter with count > 1 then a
    parenthesized, comma-separated list of place holders will be generated.
    """
    def __init__(self, value):
        self.value = value


    def allColumns(self):
        return []


    def subSQL(self, queryGenerator, allTables):
        if isinstance(self.value, Parameter) and self.value.count is not None:
            return _inParens(
                _CommaList([
                    SQLFragment(
                        queryGenerator.placeholder.placeholder(),
                        [self.value] if counter == 0 else []
                    )
                    for counter in range(self.value.count)
                ]).subSQL(queryGenerator, allTables)
            )
        elif isinstance(self.value, set) or isinstance(self.value, frozenset) or isinstance(self.value, list) or isinstance(self.value, tuple):
            return _inParens(
                _CommaList([
                    SQLFragment(queryGenerator.placeholder.placeholder(), [value])
                    for value in self.value
                ]).subSQL(queryGenerator, allTables)
            )
        else:
            return SQLFragment(
                queryGenerator.placeholder.placeholder(), [self.value]
            )



class NamedValue(ExpressionSyntax):
    """
    A constant within the database; something predefined, such as
    CURRENT_TIMESTAMP.
    """
    def __init__(self, name):
        self.name = name


    def subSQL(self, queryGenerator, allTables):
        return SQLFragment(self.name)



class Function(object):
    """
    An L{Function} is a representation of an SQL Function function.
    """

    def __init__(self, name, oracleName=None):
        self.name = name
        self.oracleName = oracleName


    def nameFor(self, queryGenerator):
        if (
            queryGenerator.dialect == ORACLE_DIALECT and
            self.oracleName is not None
        ):
            return self.oracleName

        return self.name


    def __call__(self, *args):
        """
        Produce an L{FunctionInvocation}
        """
        return FunctionInvocation(self, *args)



Count = Function("count")
Sum = Function("sum")
Max = Function("max")
Min = Function("min")
Len = Function("character_length", "length")
Upper = Function("upper")
Lower = Function("lower")
Coalesce = Function("coalesce")

_sqliteLastInsertRowID = Function("last_insert_rowid")

# Use a specific value here for "the convention for case-insensitive values in
# the database" so we don't need to keep remembering whether it's upper or
# lowercase.
CaseFold = Lower



class SchemaSyntax(Syntax):
    """
    Syntactic convenience for L{Schema}.
    """

    modelType = Schema

    def __getattr__(self, attr):
        try:
            tableModel = self.model.tableNamed(attr)
        except KeyError:
            try:
                seqModel = self.model.sequenceNamed(attr)
            except KeyError:
                raise AttributeError(
                    "schema has no table or sequence %r" % (attr,)
                )
            else:
                return SequenceSyntax(seqModel)
        else:
            syntax = TableSyntax(tableModel)
            # Needs to be preserved here so that aliasing will work.
            setattr(self, attr, syntax)
            return syntax


    def __iter__(self):
        for table in self.model.tables:
            yield TableSyntax(table)



class SequenceSyntax(ExpressionSyntax):
    """
    Syntactic convenience for L{Sequence}.
    """

    modelType = Sequence

    def subSQL(self, queryGenerator, allTables):
        """
        Convert to an SQL fragment.
        """
        if queryGenerator.dialect == ORACLE_DIALECT:
            fmt = "%s.nextval"
        else:
            fmt = "nextval('%s')"
        return SQLFragment(fmt % (self.model.name,))



def _nameForDialect(name, dialect):
    """
    If the given name is being computed in the oracle dialect, truncate it to
    30 characters.
    """
    if dialect == ORACLE_DIALECT:
        name = name[:30]
    return name



class TableSyntax(Syntax):
    """
    Syntactic convenience for L{Table}.
    """

    modelType = Table

    def alias(self):
        """
        Return an alias for this L{TableSyntax} so that it might be joined
        against itself.

        As in SQL, C{someTable.join(someTable)} is an error; you can't join a
        table against itself.  However, C{t = someTable.alias();
        someTable.join(t)} is usable as a C{from} clause.
        """
        return TableAlias(self.model)


    def join(self, otherTableSyntax, on=None, type=""):
        """
        Create a L{Join}, representing a join between two tables.
        """
        if on is None and not type:
            type = "cross"
        return Join(self, type, otherTableSyntax, on)


    def subSQL(self, queryGenerator, allTables):
        """
        Generate the L{SQLFragment} for this table's identification; this is
        for use in a C{from} clause.
        """
        # XXX maybe there should be a specific method which is only invoked
        # from the FROM clause, that only tables and joins would implement?
        return SQLFragment(
            _nameForDialect(self.model.name, queryGenerator.dialect)
        )


    def __getattr__(self, attr):
        """
        Attributes named after columns on a L{TableSyntax} are returned by
        accessing their names as attributes.  For example, if there is a schema
        syntax object created from SQL equivalent to C{create table foo (bar
        integer, baz integer)}, C{schemaSyntax.foo.bar} and
        C{schemaSyntax.foo.baz}
        """
        try:
            column = self.model.columnNamed(attr)
        except KeyError:
            raise AttributeError(
                "table {0} has no column {1}".format(self.model.name, attr)
            )
        else:
            return ColumnSyntax(column)


    def __iter__(self):
        """
        Yield a L{ColumnSyntax} for each L{Column} in this L{TableSyntax}'s
        model's table.
        """
        for column in self.model.columns:
            yield ColumnSyntax(column)


    def tables(self):
        """
        Return a C{list} of tables involved in the query by this table.  (This
        method is expected by anything that can act as the C{From} clause: see
        L{Join.tables})
        """
        return [self]


    def columnAliases(self):
        """
        Inspect the Python aliases for this table in the given schema.  Python
        aliases for a table are created by setting an attribute on the schema.
        For example, in a schema which had "schema.MYTABLE.ID =
        schema.MYTABLE.MYTABLE_ID" applied to it,
        schema.MYTABLE.columnAliases() would return C{[("ID",
        schema.MYTABLE.MYTABLE_ID)]}.

        @return: a list of 2-tuples of (alias (C{str}), column
            (C{ColumnSyntax})), enumerating all of the Python aliases provided.
        """
        result = {}
        for k, v in self.__dict__.items():
            if isinstance(v, ColumnSyntax):
                result[k] = v
        return result


    def __contains__(self, columnSyntax):
        if isinstance(columnSyntax, FunctionInvocation):
            columnSyntax = columnSyntax.arg
        return (columnSyntax.model.table is self.model)



class TableAlias(TableSyntax):
    """
    An alias for a table, under a different name, for the purpose of doing a
    self-join.
    """

    def subSQL(self, queryGenerator, allTables):
        """
        Return an L{SQLFragment} with a string of the form C{"mytable myalias"}
        suitable for use in a FROM clause.
        """
        result = super(TableAlias, self).subSQL(queryGenerator, allTables)
        result.append(SQLFragment(" " + self._aliasName(allTables)))
        return result


    def _aliasName(self, allTables):
        """
        The alias under which this table will be known in the query.

        @param allTables: a C{list}, as passed to a C{subSQL} method during SQL
            generation.

        @return: a string naming this alias, a unique identifier, albeit one
            which is only stable within the query which populated C{allTables}.
        @rtype: C{str}
        """
        anum = [
            t for t in allTables
            if isinstance(t, TableAlias)
        ].index(self) + 1
        return "alias%d" % (anum,)


    def __getattr__(self, attr):
        return AliasedColumnSyntax(self, self.model.columnNamed(attr))



class Join(object):
    """
    A DAL object representing an SQL C{join} statement.

    @ivar leftSide: a L{Join} or L{TableSyntax} representing the left side of
        this join.

    @ivar rightSide: a L{TableSyntax} representing the right side of this join.

    @ivar type: the type of join this is.  For example, for a left outer join,
        this would be C{"left outer"}.
    @type type: C{str}

    @ivar on: the "on" clause of this table.
    @type on: L{ExpressionSyntax}
    """

    def __init__(self, leftSide, type, rightSide, on):
        self.leftSide = leftSide
        self.type = type
        self.rightSide = rightSide
        self.on = on


    def subSQL(self, queryGenerator, allTables):
        stmt = SQLFragment()
        stmt.append(self.leftSide.subSQL(queryGenerator, allTables))
        if self.type == ",":
            stmt.text += ", "
        else:
            stmt.text += " "
            if self.type:
                stmt.text += self.type
                stmt.text += " "
            stmt.text += "join "
        stmt.append(self.rightSide.subSQL(queryGenerator, allTables))
        if self.type not in ("cross", ","):
            stmt.text += " on "
            stmt.append(self.on.subSQL(queryGenerator, allTables))
        return stmt


    def tables(self):
        """
        Return a C{list} of tables which this L{Join} will involve in a query:
        all those present on the left side, as well as all those present on the
        right side.
        """
        return self.leftSide.tables() + self.rightSide.tables()


    def join(self, otherTable, on=None, type=None):
        if on is None:
            type = "cross"
        return Join(self, type, otherTable, on)


_KEYWORDS = [
    # SQL keyword, but we have a column with this name
    "access",

    # Not actually a standard keyword, but a function in oracle, and we have a
    # column with this name.
    "path",

    # not actually sure what this is; only experimentally determined that not
    # quoting it causes an issue.
    "size",
]



class ColumnSyntax(ExpressionSyntax):
    """
    Syntactic convenience for L{Column}.

    @ivar _alwaysQualified: a boolean indicating whether to always qualify the
        column name in generated SQL, regardless of whether the column name is
        specific enough even when unqualified.
    @type _alwaysQualified: C{bool}
    """

    modelType = Column

    _alwaysQualified = False


    def allColumns(self):
        return [self]


    def subSQL(self, queryGenerator, allTables):
        # XXX This, and "model", could in principle conflict with column names.
        # Maybe do something about that.
        name = self.model.name
        if queryGenerator.shouldQuote(name):
            name = '"%s"' % (name,)

        if self._alwaysQualified:
            qualified = True
        else:
            qualified = False
            for tableSyntax in allTables:
                if self.model.table is not tableSyntax.model:
                    if (
                        self.model.name in (
                            c.name for c in
                            tableSyntax.model.columns
                        )
                    ):
                        qualified = True
                        break
        if qualified:
            return SQLFragment(self._qualify(name, allTables))
        else:
            return SQLFragment(name)


    def __hash__(self):
        return hash(self.model) + 10


    def _qualify(self, name, allTables):
        return self.model.table.name + "." + name



class ResultAliasSyntax(ExpressionSyntax):

    def __init__(self, expression, alias=None):
        self.expression = expression
        self.alias = alias


    def aliasName(self, queryGenerator):
        if self.alias is None:
            self.alias = queryGenerator.nextGeneratedID()
        return self.alias


    def columnReference(self):
        return AliasReferenceSyntax(self)


    def allColumns(self):
        return self.expression.allColumns()


    def subSQL(self, queryGenerator, allTables):
        result = SQLFragment()
        result.append(self.expression.subSQL(queryGenerator, allTables))
        result.append(SQLFragment(" %s" % (self.aliasName(queryGenerator),)))
        return result



class AliasReferenceSyntax(ExpressionSyntax):

    def __init__(self, resultAlias):
        self.resultAlias = resultAlias


    def allColumns(self):
        return self.resultAlias.allColumns()


    def subSQL(self, queryGenerator, allTables):
        return SQLFragment(self.resultAlias.aliasName(queryGenerator))



class AliasedColumnSyntax(ColumnSyntax):
    """
    An L{AliasedColumnSyntax} is like a L{ColumnSyntax}, but it generates SQL
    for a column of a table under an alias, rather than directly.  i.e. this is
    used for C{"something.col"} in C{"select something.col from tablename
    something"} rather than the "col" in C{"select col from tablename"}.

    @see: L{TableSyntax.alias}
    """

    _alwaysQualified = True


    def __init__(self, tableAlias, model):
        super(AliasedColumnSyntax, self).__init__(model)
        self._tableAlias = tableAlias


    def _qualify(self, name, allTables):
        return self._tableAlias._aliasName(allTables) + "." + name



class Comparison(ExpressionSyntax):

    def __init__(self, a, op, b):
        self.a = a
        self.op = op
        self.b = b


    def _subexpression(self, expr, queryGenerator, allTables):
        result = expr.subSQL(queryGenerator, allTables)
        if self.op not in ("and", "or") and isinstance(expr, Comparison):
            result = _inParens(result)
        return result


    def booleanOp(self, operand, other):
        return CompoundComparison(self, operand, other)


    def And(self, other):
        return self.booleanOp("and", other)


    def Or(self, other):
        return self.booleanOp("or", other)



class Not(Comparison):
    """
    A L{NotColumn} is a logical NOT of an expression.
    """
    def __init__(self, a):
        # "op" and "b" are always None for this comparison type
        super(Not, self).__init__(a, None, None)


    def subSQL(self, queryGenerator, allTables):
        sqls = SQLFragment()
        sqls.text += "not "
        result = self.a.subSQL(queryGenerator, allTables)
        if isinstance(self.a, CompoundComparison) and self.a.op in ("or", "and"):
            result = _inParens(result)
        sqls.append(result)
        return sqls



class NullComparison(Comparison):
    """
    A L{NullComparison} is a comparison of a column or expression with None.
    """
    def __init__(self, a, op):
        # "b" is always None for this comparison type
        super(NullComparison, self).__init__(a, op, None)


    def subSQL(self, queryGenerator, allTables):
        sqls = SQLFragment()
        sqls.append(self.a.subSQL(queryGenerator, allTables))
        sqls.text += " is "
        if self.op != "=":
            sqls.text += "not "
        sqls.text += "null"
        return sqls



class CompoundComparison(Comparison):
    """
    A compound comparison; two or more constraints, joined by an operation
    (currently only AND or OR).
    """

    def allColumns(self):
        return self.a.allColumns() + self.b.allColumns()


    def subSQL(self, queryGenerator, allTables):
        if (
            queryGenerator.dialect == ORACLE_DIALECT and
            isinstance(self.b, Constant) and
            self.b.value == "" and self.op in ("=", "!=")
        ):
            return NullComparison(self.a, self.op).subSQL(
                queryGenerator, allTables
            )

        stmt = SQLFragment()
        result = self._subexpression(self.a, queryGenerator, allTables)
        if (
            isinstance(self.a, CompoundComparison) and
            self.a.op == "or" and self.op == "and"
        ):
            result = _inParens(result)
        stmt.append(result)

        stmt.text += " %s " % (self.op,)

        result = self._subexpression(self.b, queryGenerator, allTables)
        if (
            isinstance(self.b, CompoundComparison) and
            self.b.op == "or" and self.op == "and"
        ):
            result = _inParens(result)

        if isinstance(self.b, Tuple):
            # If the right-hand side of the comparison is a Tuple, it needs to
            # be double-parenthesized in Oracle, as per
            # http://docs.oracle.com/cd/B28359_01/server.111/b28286/expressions015.htm#i1033664
            # because it is an expression list.
            result = _inParens(result)

        stmt.append(result)

        return stmt



_operators = {"=": eq, "!=": ne}



class ColumnComparison(CompoundComparison):
    """
    Comparing two columns is the same as comparing any other two expressions,
    except that Python can retrieve a truth value, so that columns may be
    compared for value equality in scripts that want to interrogate schemas.
    """

    def __nonzero__(self):
        thunk = _operators.get(self.op)
        if thunk is None:
            return super(ColumnComparison, self).__nonzero__()
        return thunk(self.a.model, self.b.model)



class _AllColumns(NamedValue):

    def __init__(self):
        self.name = "*"


    def allColumns(self):
        return []


ALL_COLUMNS = _AllColumns()



class _SomeColumns(object):

    def __init__(self, columns):
        self.columns = columns


    def subSQL(self, queryGenerator, allTables):
        first = True
        cstatement = SQLFragment()
        for column in self.columns:
            if first:
                first = False
            else:
                cstatement.append(SQLFragment(", "))
            cstatement.append(column.subSQL(queryGenerator, allTables))
        return cstatement



def _checkColumnsMatchTables(columns, tables):
    """
    Verify that the given C{columns} match the given C{tables}; that is, that
    every L{TableSyntax} referenced by every L{ColumnSyntax} referenced by
    every L{ExpressionSyntax} in the given C{columns} list is present in the
    given C{tables} list.

    @param columns: a L{list} of L{ExpressionSyntax}, each of which references
        some set of L{ColumnSyntax}es via its C{allColumns} method.

    @param tables: a L{list} of L{TableSyntax}

    @return: L{None}
    @rtype: L{NoneType}

    @raise TableMismatch: if any table referenced by a column is I{not} found
        in C{tables}
    """
    for expression in columns:
        for column in expression.allColumns():
            for table in tables:
                if column in table:
                    break
            else:
                raise TableMismatch(
                    "{} not found in {}".format(column, tables)
                )
    return None



class Tuple(ExpressionSyntax):

    def __init__(self, columns):
        self.columns = columns


    def __iter__(self):
        return iter(self.columns)


    def subSQL(self, queryGenerator, allTables):
        return _inParens(_commaJoined(
            c.subSQL(queryGenerator, allTables)
            for c in self.columns
        ))


    def allColumns(self):
        return self.columns



class SetExpression(object):
    """
    A UNION, INTERSECT, or EXCEPT construct used inside a SELECT.
    """

    OPTYPE_ALL = "all"
    OPTYPE_DISTINCT = "distinct"

    def __init__(self, selects, optype=None):
        """
        @param selects: a single Select or a list of Selects
        @type selects: C{list} or L{Select}

        @param optype: whether to use the ALL, DISTINCT constructs: C{None} use
            neither, OPTYPE_ALL, or OPTYPE_DISTINCT
        @type optype: C{str}
        """

        if isinstance(selects, Select):
            selects = (selects,)
        self.selects = selects
        self.optype = optype

        for select in self.selects:
            if not isinstance(select, Select):
                raise DALError(
                    "Must have SELECT statements in a set expression"
                )
        if self.optype not in (
            None, SetExpression.OPTYPE_ALL, SetExpression.OPTYPE_DISTINCT,
        ):
            raise DALError(
                "Must have either 'all' or 'distinct' in a set expression"
            )


    def subSQL(self, queryGenerator, allTables):
        result = SQLFragment()
        for select in self.selects:
            result.append(self.setOpSQL(queryGenerator))
            if self.optype == SetExpression.OPTYPE_ALL:
                result.append(SQLFragment("ALL "))
            elif self.optype == SetExpression.OPTYPE_DISTINCT:
                result.append(SQLFragment("DISTINCT "))
            result.append(select.subSQL(queryGenerator, allTables))
        return result


    def allColumns(self):
        return []



class Union(SetExpression):
    """
    A UNION construct used inside a SELECT.
    """
    def setOpSQL(self, queryGenerator):
        return SQLFragment(" UNION ")



class Intersect(SetExpression):
    """
    An INTERSECT construct used inside a SELECT.
    """
    def setOpSQL(self, queryGenerator):
        return SQLFragment(" INTERSECT ")



class Except(SetExpression):
    """
    An EXCEPT construct used inside a SELECT.
    """
    def setOpSQL(self, queryGenerator):
        if queryGenerator.dialect == POSTGRES_DIALECT:
            return SQLFragment(" EXCEPT ")
        elif queryGenerator.dialect == ORACLE_DIALECT:
            return SQLFragment(" MINUS ")
        else:
            raise NotImplementedError("Unsupported dialect")



class Select(_Statement):
    """
    C{select} statement.
    """

    def __init__(
        self,
        columns=None, Where=None, From=None,
        OrderBy=None, GroupBy=None,
        Limit=None, ForUpdate=False, NoWait=False, Ascending=None,
        Having=None, Distinct=False, As=None, SetExpression=None
    ):
        self.From = From
        self.Where = Where
        self.Distinct = Distinct
        if not isinstance(OrderBy, (Tuple, list, tuple, type(None))):
            OrderBy = [OrderBy]
        self.OrderBy = OrderBy
        if not isinstance(GroupBy, (list, tuple, type(None))):
            GroupBy = [GroupBy]
        self.GroupBy = GroupBy
        self.Limit = Limit
        self.Having = Having
        self.SetExpression = SetExpression

        if columns is None:
            columns = ALL_COLUMNS
        else:
            _checkColumnsMatchTables(columns, From.tables())
            columns = _SomeColumns(columns)
        self.columns = columns

        self.ForUpdate = ForUpdate
        self.NoWait = NoWait
        self.Ascending = Ascending
        self.As = As

        # A FROM that uses a sub-select will need the AS alias name
        if isinstance(self.From, Select):
            if self.From.As is None:
                self.From.As = ""


    def __eq__(self, other):
        """
        Create a comparison.
        """
        if isinstance(other, (list, tuple)):
            other = Tuple(other)
        return CompoundComparison(other, "=", self)


    def _toSQL(self, queryGenerator):
        """
        @return: a C{select} statement with placeholders and arguments
        @rtype: L{SQLFragment}
        """
        if self.SetExpression is not None:
            stmt = SQLFragment("(")
        else:
            stmt = SQLFragment()

        stmt.append(SQLFragment("select "))
        if self.Distinct:
            stmt.text += "distinct "

        allTables = self.From.tables()
        stmt.append(self.columns.subSQL(queryGenerator, allTables))
        stmt.text += " from "
        stmt.append(self.From.subSQL(queryGenerator, allTables))

        if self.Where is not None:
            wherestmt = self.Where.subSQL(queryGenerator, allTables)
            stmt.text += " where "
            stmt.append(wherestmt)

        if self.GroupBy is not None:
            stmt.text += " group by "
            fst = True
            for subthing in self.GroupBy:
                if fst:
                    fst = False
                else:
                    stmt.text += ", "
                stmt.append(subthing.subSQL(queryGenerator, allTables))

        if self.Having is not None:
            havingstmt = self.Having.subSQL(queryGenerator, allTables)
            stmt.text += " having "
            stmt.append(havingstmt)

        if self.SetExpression is not None:
            stmt.append(SQLFragment(")"))
            stmt.append(self.SetExpression.subSQL(queryGenerator, allTables))

        if self.OrderBy is not None:
            stmt.text += " order by "
            fst = True
            for subthing in self.OrderBy:
                if fst:
                    fst = False
                else:
                    stmt.text += ", "
                stmt.append(subthing.subSQL(queryGenerator, allTables))
            if self.Ascending is not None:
                if self.Ascending:
                    kw = " asc"
                else:
                    kw = " desc"
                stmt.append(SQLFragment(kw))

        if self.ForUpdate:
            # FOR UPDATE not supported with sqlite - but that is probably not relevant
            # given that sqlite does file level locking of the DB
            if queryGenerator.dialect != SQLITE_DIALECT:
                # Oracle turns this statement into a sub-select if Limit is non-zero, but we can't have
                # the "for update" in the sub-select. So suppress it here and add it in the outer limit
                # select later.
                if self.Limit is None or queryGenerator.dialect != ORACLE_DIALECT:
                    stmt.text += " for update"
                    if self.NoWait:
                        stmt.text += " nowait"

        if self.Limit is not None:
            limitConst = Constant(self.Limit).subSQL(queryGenerator, allTables)
            if queryGenerator.dialect == ORACLE_DIALECT:
                wrapper = SQLFragment("select * from (")
                wrapper.append(stmt)
                wrapper.append(SQLFragment(") where ROWNUM <= "))
                stmt = wrapper
            else:
                stmt.text += " limit "
            stmt.append(limitConst)

            # Add in any Oracle "for update"
            if self.ForUpdate and queryGenerator.dialect == ORACLE_DIALECT:
                stmt.text += " for update"
                if self.NoWait:
                    stmt.text += " nowait"

        return stmt


    def subSQL(self, queryGenerator, allTables):
        result = SQLFragment("(")
        result.append(self.toSQL(queryGenerator))
        result.append(SQLFragment(")"))

        if self.As is not None:
            if self.As == "":
                self.As = queryGenerator.nextGeneratedID()
            result.append(SQLFragment(" %s" % (self.As,)))

        return result


    def _resultColumns(self):
        """
        Determine the list of L{ColumnSyntax} objects that will represent the
        result.  Normally just the list of selected columns; if wildcard syntax
        is used though, determine the ordering from the database.
        """
        if self.columns is ALL_COLUMNS:
            # TODO: Possibly this rewriting should always be done, before even
            # executing the query, so that if we develop a schema mismatch with
            # the database (additional columns), the application will still see
            # the right rows.
            for table in self.From.tables():
                for column in table:
                    yield column
        else:
            for column in self.columns.columns:
                yield column


    def tables(self):
        """
        Determine the tables used by the result columns.
        """
        if self.columns is ALL_COLUMNS:
            # TODO: Possibly this rewriting should always be done, before even
            # executing the query, so that if we develop a schema mismatch with
            # the database (additional columns), the application will still see
            # the right rows.
            return self.From.tables()
        else:
            tables = set([
                column.model.table for column in self.columns.columns
                if isinstance(column, ColumnSyntax)
            ])
            for table in self.From.tables():
                tables.add(table.model)
            return [TableSyntax(table) for table in tables]



def _commaJoined(stmts):
    first = True
    cstatement = SQLFragment()
    for stmt in stmts:
        if first:
            first = False
        else:
            cstatement.append(SQLFragment(", "))
        cstatement.append(stmt)
    return cstatement



def _inParens(stmt):
    result = SQLFragment("(")
    result.append(stmt)
    result.append(SQLFragment(")"))
    return result



def _fromSameTable(columns):
    """
    Extract the common table used by a list of L{Column} objects, raising
    L{TableMismatch}.
    """
    table = columns[0].table
    for column in columns:
        if table is not column.table:
            raise TableMismatch("Columns must all be from the same table.")
    return table



def _modelsFromMap(columnMap):
    """
    Get the L{Column} objects from a mapping of L{ColumnSyntax} to values.
    """
    return [c.model for c in columnMap.keys()]



class _CommaList(object):
    def __init__(self, subfragments):
        self.subfragments = subfragments


    def subSQL(self, queryGenerator, allTables):
        return _commaJoined(
            f.subSQL(queryGenerator, allTables)
            for f in self.subfragments
        )



class _DMLStatement(_Statement):
    """
    Common functionality of Insert/Update/Delete statements.
    """

    def _returningClause(self, queryGenerator, stmt, allTables):
        """
        Add a dialect-appropriate C{returning} clause to the end of the given
        SQL statement.

        @param queryGenerator: describes the database we are generating the
            statement for.
        @type queryGenerator: L{QueryGenerator}

        @param stmt: the SQL fragment generated without the C{returning} clause
        @type stmt: L{SQLFragment}

        @param allTables: all tables involved in the query; see any C{subSQL}
            method.

        @return: the C{stmt} parameter.
        """
        retclause = self.Return

        if retclause is None:
            return stmt

        if isinstance(retclause, (tuple, list)):
            retclause = _CommaList(retclause)

        if queryGenerator.dialect == SQLITE_DIALECT:
            # sqlite does this another way.
            return stmt

        if retclause is not None:
            stmt.text += " returning "
            stmt.append(retclause.subSQL(queryGenerator, allTables))
            if queryGenerator.dialect == ORACLE_DIALECT:
                stmt.text += " into "
                params = []
                retvals = self._returnAsList()
                for n, _ignore_v in enumerate(retvals):
                    params.append(
                        Constant(Parameter("oracle_out_" + str(n)))
                        .subSQL(queryGenerator, allTables)
                    )
                stmt.append(_commaJoined(params))

        return stmt


    def _returnAsList(self):
        if not isinstance(self.Return, (tuple, list)):
            return [self.Return]
        else:
            return self.Return


    def _extraVars(self, txn, queryGenerator):
        if self.Return is None:
            return []
        result = []
        rvars = self._returnAsList()
        if queryGenerator.dialect == ORACLE_DIALECT:
            for n, v in enumerate(rvars):
                result.append(("oracle_out_" + str(n), _OracleOutParam(v)))
        return result


    def _extraResult(self, result, outvars, queryGenerator):
        if (
            queryGenerator.dialect == ORACLE_DIALECT and
            self.Return is not None
        ):
            def processIt(emptyListResult):
                # See comment in L{adbapi2._ConnectedTxn._reallyExecSQL}. If the
                # result is L{None} then also return L{None}. If the result is a
                # L{list} of empty L{list} then there are return into rows to return.
                if emptyListResult:
                    emptyListResult = [[v.value for _ignore_k, v in outvars]]
                return emptyListResult
            return result.addCallback(processIt)
        else:
            return result


    def _resultColumns(self):
        return self._returnAsList()



class _OracleOutParam(object):
    """
    A parameter that will be populated using the cx_Oracle API for host
    variables.
    """
    implements(IDerivedParameter)

    def __init__(self, columnSyntax):
        self.typeID = columnSyntax.model.type.name.lower()


    def preQuery(self, cursor):
        typeMap = {"integer": cx_Oracle.NUMBER,
                   "text": cx_Oracle.NCLOB,
                   "varchar": cx_Oracle.STRING,
                   "timestamp": cx_Oracle.TIMESTAMP}
        self.var = cursor.var(typeMap[self.typeID])
        return self.var


    def postQuery(self, cursor):
        self.value = mapOracleOutputType(self.var.getvalue())
        self.var = None



class Insert(_DMLStatement):
    """
    C{insert} statement.
    """

    def __init__(self, columnMap, Return=None):
        self.columnMap = columnMap
        self.Return = Return
        columns = _modelsFromMap(columnMap)
        table = _fromSameTable(columns)
        required = [column for column in table.columns if column.needsValue()]
        unspecified = [column for column in required
                       if column not in columns]
        if unspecified:
            raise NotEnoughValues(
                "Columns [%s] required."
                % (", ".join([c.name for c in unspecified]))
            )


    def _toSQL(self, queryGenerator):
        """
        @return: a C{insert} statement with placeholders and arguments

        @rtype: L{SQLFragment}
        """
        columnsAndValues = self.columnMap.items()
        tableModel = columnsAndValues[0][0].model.table
        specifiedColumnModels = [x.model for x in self.columnMap.keys()]

        if queryGenerator.dialect == ORACLE_DIALECT:
            # See test_nextSequenceDefaultImplicitExplicitOracle.
            for column in tableModel.columns:
                if isinstance(column.default, Sequence):
                    columnSyntax = ColumnSyntax(column)
                    if column not in specifiedColumnModels:
                        columnsAndValues.append(
                            (columnSyntax, SequenceSyntax(column.default))
                        )

        sortedColumns = sorted(
            columnsAndValues,
            key=lambda (c, v): c.model.name
        )
        allTables = []

        stmt = SQLFragment("insert into ")
        stmt.append(TableSyntax(tableModel).subSQL(queryGenerator, allTables))
        stmt.append(SQLFragment(" "))
        stmt.append(_inParens(_commaJoined([
            c.subSQL(queryGenerator, allTables)
            for (c, _ignore_v) in sortedColumns
        ])))
        stmt.append(SQLFragment(" values "))
        stmt.append(_inParens(_commaJoined([
            _convert(v).subSQL(queryGenerator, allTables)
            for (c, v) in sortedColumns
        ])))

        return self._returningClause(queryGenerator, stmt, allTables)


    @inlineCallbacks
    def on(self, txn, *a, **kw):
        """
        Override to provide extra logic for L{Insert}s that return values on
        databases that don't provide return values as part of their C{INSERT}
        behavior.
        """
        result = yield super(_DMLStatement, self).on(txn, *a, **kw)
        if self.Return is not None and txn.dialect == SQLITE_DIALECT:
            table = self._returnAsList()[0].model.table
            result = yield Select(
                self._returnAsList(),
                # TODO: error reporting when "return" includes columns
                # foreign to the primary table.
                From=TableSyntax(table),
                Where=(
                    ColumnSyntax(
                        Column(table, "rowid", SQLType("integer", None))
                    ) == _sqliteLastInsertRowID()
                )
            ).on(txn, *a, **kw)
        returnValue(result)



def _convert(x):
    """
    Convert a value to an appropriate SQL AST node.  (Currently a simple
    isinstance, could be promoted to use adaptation if we want to get fancy.)
    """
    if isinstance(x, ExpressionSyntax):
        return x
    else:
        return Constant(x)



class Update(_DMLStatement):
    """
    C{update} statement

    @ivar columnMap: A L{dict} mapping L{ColumnSyntax} objects to values to
        change; values may be simple database values (such as L{str},
        L{unicode}, L{datetime.datetime}, L{float}, L{int} etc) or L{Parameter}
        instances.
    @type columnMap: L{dict}
    """

    def __init__(self, columnMap, Where, Return=None):
        super(Update, self).__init__()
        _fromSameTable(_modelsFromMap(columnMap))
        self.columnMap = columnMap
        self.Where = Where
        self.Return = Return


    @inlineCallbacks
    def on(self, txn, *a, **kw):
        """
        Override to provide extra logic for L{Update}s that return values on
        databases that don't provide return values as part of their C{UPDATE}
        behavior.
        """
        doExtra = self.Return is not None and txn.dialect == SQLITE_DIALECT
        upcall = lambda: super(_DMLStatement, self).on(txn, *a, **kw)

        if doExtra:
            table = self._returnAsList()[0].model.table
            rowidcol = ColumnSyntax(Column(table, "rowid",
                                           SQLType("integer", None)))
            prequery = Select([rowidcol], From=TableSyntax(table),
                              Where=self.Where)
            preresult = prequery.on(txn, *a, **kw)
            before = yield preresult
            yield upcall()
            result = yield Select(
                self._returnAsList(),
                # TODO: error reporting when "return" includes
                # columns foreign to the primary table.
                From=TableSyntax(table),
                Where=reduce(
                    lambda left, right: left.Or(right),
                    ((rowidcol == x) for [x] in before)
                )
            ).on(txn, *a, **kw)
            returnValue(result)
        else:
            returnValue((yield upcall()))


    def _toSQL(self, queryGenerator):
        """
        @return: an C{insert} statement with placeholders and arguments
        @rtype: L{SQLFragment}
        """
        sortedColumns = sorted(
            self.columnMap.items(), key=lambda (c, v): c.model.name
        )
        allTables = []
        result = SQLFragment("update ")
        result.append(
            TableSyntax(sortedColumns[0][0].model.table).subSQL(
                queryGenerator, allTables
            )
        )
        result.text += " set "
        result.append(_commaJoined([
            c.subSQL(queryGenerator, allTables).append(
                SQLFragment(" = ").subSQL(queryGenerator, allTables)
            ).append(
                _convert(v).subSQL(queryGenerator, allTables)
            )
            for (c, v) in sortedColumns
        ]))

        if self.Where is not None:
            result.append(SQLFragment(" where "))
            result.append(self.Where.subSQL(queryGenerator, allTables))

        return self._returningClause(queryGenerator, result, allTables)



class Delete(_DMLStatement):
    """
    C{delete} statement.
    """

    def __init__(self, From, Where, Return=None):
        """
        If Where is None then all rows will be deleted.
        """
        self.From = From
        self.Where = Where
        self.Return = Return


    def _toSQL(self, queryGenerator):
        result = SQLFragment()
        allTables = self.From.tables()
        result.text += "delete from "
        result.append(self.From.subSQL(queryGenerator, allTables))
        if self.Where is not None:
            result.text += " where "
            result.append(self.Where.subSQL(queryGenerator, allTables))
        return self._returningClause(queryGenerator, result, allTables)


    @inlineCallbacks
    def on(self, txn, *a, **kw):
        upcall = lambda: super(Delete, self).on(txn, *a, **kw)
        if txn.dialect == SQLITE_DIALECT and self.Return is not None:
            result = yield Select(
                self._returnAsList(),
                From=self.From, Where=self.Where
            ).on(txn, *a, **kw)
            yield upcall()
        else:
            result = yield upcall()
        returnValue(result)



class _LockingStatement(_Statement):
    """
    A statement related to lock management, which implicitly has no results.
    """
    def _resultColumns(self):
        """
        No columns should be expected, so return an infinite iterator of None.
        """
        return repeat(None)



class Lock(_LockingStatement):
    """
    An SQL "lock" statement.
    """

    def __init__(self, table, mode):
        self.table = table
        self.mode = mode


    @classmethod
    def exclusive(cls, table):
        return cls(table, "exclusive")


    def _toSQL(self, queryGenerator):
        if queryGenerator.dialect == SQLITE_DIALECT:
            # FIXME - this is only stubbed out for testing right now, actual
            # concurrency would require some kind of locking statement here.
            # BEGIN IMMEDIATE maybe, if that's okay in the middle of a
            # transaction or repeatedly?
            return SQLFragment("select null")

        return SQLFragment("lock table ").append(
            self.table.subSQL(queryGenerator, [self.table])
        ).append(
            SQLFragment(" in %s mode" % (self.mode,))
        )



class DatabaseLock(_LockingStatement):
    """
    An SQL exclusive session level advisory lock
    """

    def _toSQL(self, queryGenerator):
        assert(queryGenerator.dialect == POSTGRES_DIALECT)
        return SQLFragment("select pg_advisory_lock(1)")


    def on(self, txn, *a, **kw):
        """
        Override on() to only execute on Postgres
        """
        if txn.dialect == POSTGRES_DIALECT:
            return super(DatabaseLock, self).on(txn, *a, **kw)

        return succeed(None)



class DatabaseUnlock(_LockingStatement):
    """
    An SQL exclusive session level advisory lock
    """

    def _toSQL(self, queryGenerator):
        assert(queryGenerator.dialect == POSTGRES_DIALECT)
        return SQLFragment("select pg_advisory_unlock(1)")


    def on(self, txn, *a, **kw):
        """
        Override on() to only execute on Postgres
        """
        if txn.dialect == POSTGRES_DIALECT:
            return super(DatabaseUnlock, self).on(txn, *a, **kw)

        return succeed(None)



class Savepoint(_LockingStatement):
    """
    An SQL C{savepoint} statement.
    """

    def __init__(self, name):
        self.name = name


    def _toSQL(self, queryGenerator):
        return SQLFragment("savepoint %s" % (self.name,))



class RollbackToSavepoint(_LockingStatement):
    """
    An SQL C{rollback to savepoint} statement.
    """

    def __init__(self, name):
        self.name = name


    def _toSQL(self, queryGenerator):
        return SQLFragment("rollback to savepoint %s" % (self.name,))



class ReleaseSavepoint(_LockingStatement):
    """
    An SQL C{release savepoint} statement.
    """

    def __init__(self, name):
        self.name = name


    def _toSQL(self, queryGenerator):
        return SQLFragment("release savepoint %s" % (self.name,))



class SavepointAction(object):

    def __init__(self, name):
        self._name = name


    def _safeName(self, txn):
        if txn.dialect == ORACLE_DIALECT:
            # Oracle limits the length of identifiers
            return self._name[:30]
        else:
            return self._name


    def acquire(self, txn):
        return Savepoint(self._safeName(txn)).on(txn)


    def rollback(self, txn):
        return RollbackToSavepoint(self._safeName(txn)).on(txn)


    def release(self, txn):
        if txn.dialect == ORACLE_DIALECT:
            # There is no "release savepoint" statement in oracle, but then, we
            # don't need it because there's no resource to manage.  Just don't
            # do anything.
            return NoOp()
        else:
            return ReleaseSavepoint(self._safeName(txn)).on(txn)



class NoOp(object):
    def on(self, *a, **kw):
        return succeed(None)



class SQLFragment(object):
    """
    Combination of SQL text and arguments; a statement which may be executed
    against a database.
    """

    def __init__(self, text="", parameters=None):
        self.text = text
        if parameters is None:
            parameters = []
        self.parameters = parameters


    def bind(self, **kw):
        params = []
        for parameter in self.parameters:
            if isinstance(parameter, Parameter):
                if parameter.count is not None:
                    if parameter.count != len(kw[parameter.name]):
                        raise DALError(
                            "Number of place holders does not match "
                            "number of items to bind"
                        )
                    for item in kw[parameter.name]:
                        params.append(item)
                else:
                    params.append(kw[parameter.name])
            else:
                params.append(parameter)

        return SQLFragment(self.text, params)


    def append(self, anotherStatement):
        self.text += anotherStatement.text
        self.parameters += anotherStatement.parameters
        return self


    def __eq__(self, stmt):
        if not isinstance(stmt, SQLFragment):
            return NotImplemented
        return (self.text, self.parameters) == (stmt.text, stmt.parameters)


    def __ne__(self, stmt):
        if not isinstance(stmt, SQLFragment):
            return NotImplemented
        return not self.__eq__(stmt)


    def __repr__(self):
        return self.__class__.__name__ + repr((self.text, self.parameters))


    def subSQL(self, queryGenerator, allTables):
        return self



class Parameter(object):
    """
    Used to represent a place holder for a value to be bound to the query
    at a later date. If count > 1, then a "set" of parenthesized,
    comma separate place holders will be generated.
    """

    def __init__(self, name, count=None):
        self.name = name
        self.count = count
        if self.count is not None and self.count < 1:
            raise DALError("Must have Parameter.count > 0")


    def __eq__(self, param):
        if not isinstance(param, Parameter):
            return NotImplemented
        return self.name == param.name and self.count == param.count


    def __ne__(self, param):
        if not isinstance(param, Parameter):
            return NotImplemented
        return not self.__eq__(param)


    def __repr__(self):
        return "Parameter(%r)" % (self.name,)



# Common helpers:

# current timestamp in UTC format.  Hack to support standard syntax for this,
# rather than the compatibility procedure found in various databases.
utcNowSQL = NamedValue("CURRENT_TIMESTAMP at time zone 'UTC'")

# You can't insert a column with no rows.  In SQL that just isn't valid syntax,
# and in this DAL you need at least one key or we can't tell what table you're
# talking about.  Luckily there's the C{default} keyword to the rescue, which,
# in the context of an INSERT statement means "use the default value
# explicitly".
# (Although this is a special keyword in a CREATE statement, in an INSERT it
# behaves like an expression to the best of my knowledge.)
default = NamedValue("default")