/usr/share/doc/python-tablib/README.rst is in python-tablib 0.9.11-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 | Tablib: format-agnostic tabular dataset library
===============================================
::
_____ ______ ___________ ______
__ /_______ ____ /_ ___ /___(_)___ /_
_ __/_ __ `/__ __ \__ / __ / __ __ \
/ /_ / /_/ / _ /_/ /_ / _ / _ /_/ /
\__/ \__,_/ /_.___/ /_/ /_/ /_.___/
Tablib is a format-agnostic tabular dataset library, written in Python.
Output formats supported:
- Excel (Sets + Books)
- JSON (Sets + Books)
- YAML (Sets + Books)
- HTML (Sets)
- TSV (Sets)
- CSV (Sets)
Note that tablib *purposefully* excludes XML support. It always will. (Note: This is a joke. Pull requests are welcome.)
Overview
--------
`tablib.Dataset()`
A Dataset is a table of tabular data. It may or may not have a header row. They can be build and manipulated as raw Python datatypes (Lists of tuples|dictionaries). Datasets can be imported from JSON, YAML, and CSV; they can be exported to XLSX, XLS, ODS, JSON, YAML, CSV, TSV, and HTML.
`tablib.Databook()`
A Databook is a set of Datasets. The most common form of a Databook is an Excel file with multiple spreadsheets. Databooks can be imported from JSON and YAML; they can be exported to XLSX, XLS, ODS, JSON, and YAML.
Usage
-----
Populate fresh data files: ::
headers = ('first_name', 'last_name')
data = [
('John', 'Adams'),
('George', 'Washington')
]
data = tablib.Dataset(*data, headers=headers)
Intelligently add new rows: ::
>>> data.append(('Henry', 'Ford'))
Intelligently add new columns: ::
>>> data.append(col=(90, 67, 83), header='age')
Slice rows: ::
>>> print data[:2]
[('John', 'Adams', 90), ('George', 'Washington', 67)]
Slice columns by header: ::
>>> print data['first_name']
['John', 'George', 'Henry']
Easily delete rows: ::
>>> del data[1]
Exports
-------
Drumroll please...........
JSON!
+++++
::
>>> print data.json
[
{
"last_name": "Adams",
"age": 90,
"first_name": "John"
},
{
"last_name": "Ford",
"age": 83,
"first_name": "Henry"
}
]
YAML!
+++++
::
>>> print data.yaml
- {age: 90, first_name: John, last_name: Adams}
- {age: 83, first_name: Henry, last_name: Ford}
CSV...
++++++
::
>>> print data.csv
first_name,last_name,age
John,Adams,90
Henry,Ford,83
EXCEL!
++++++
::
>>> open('people.xls', 'wb').write(data.xls)
It's that easy.
Installation
------------
To install tablib, simply: ::
$ pip install tablib
Or, if you absolutely must: ::
$ easy_install tablib
Contribute
----------
If you'd like to contribute, simply fork `the repository`_, commit your
changes to the **develop** branch (or branch off of it), and send a pull
request. Make sure you add yourself to AUTHORS_.
.. _`the repository`: http://github.com/kennethreitz/tablib
.. _AUTHORS: http://github.com/kennethreitz/tablib/blob/master/AUTHORS
|