This file is indexed.

/usr/share/doc/python-tablib/README.rst is in python-tablib 0.9.11-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
Tablib: format-agnostic tabular dataset library
===============================================

::

	_____         ______  ___________ ______
	__  /_______ ____  /_ ___  /___(_)___  /_
	_  __/_  __ `/__  __ \__  / __  / __  __ \
	/ /_  / /_/ / _  /_/ /_  /  _  /  _  /_/ /
	\__/  \__,_/  /_.___/ /_/   /_/   /_.___/



Tablib is a format-agnostic tabular dataset library, written in Python.

Output formats supported:

- Excel (Sets + Books)
- JSON (Sets + Books)
- YAML (Sets + Books)
- HTML (Sets)
- TSV (Sets)
- CSV (Sets)

Note that tablib *purposefully* excludes XML support. It always will. (Note: This is a joke. Pull requests are welcome.)

Overview
--------

`tablib.Dataset()`
	A Dataset is a table of tabular data. It may or may not have a header row. They can be build and manipulated as raw Python datatypes (Lists of tuples|dictionaries). Datasets can be imported from JSON, YAML, and CSV; they can be exported to XLSX, XLS, ODS, JSON, YAML, CSV, TSV, and HTML.

`tablib.Databook()`
	A Databook is a set of Datasets. The most common form of a Databook is an Excel file with multiple spreadsheets. Databooks can be imported from JSON and YAML; they can be exported to XLSX, XLS, ODS, JSON, and YAML.

Usage
-----


Populate fresh data files: ::

    headers = ('first_name', 'last_name')

    data = [
        ('John', 'Adams'),
        ('George', 'Washington')
    ]

    data = tablib.Dataset(*data, headers=headers)


Intelligently add new rows: ::

    >>> data.append(('Henry', 'Ford'))

Intelligently add new columns: ::

    >>> data.append(col=(90, 67, 83), header='age')

Slice rows:  ::

    >>> print data[:2]
    [('John', 'Adams', 90), ('George', 'Washington', 67)]


Slice columns by header: ::

    >>> print data['first_name']
    ['John', 'George', 'Henry']

Easily delete rows: ::

    >>> del data[1]

Exports
-------

Drumroll please...........

JSON!
+++++
::

	>>> print data.json
	[
	  {
	    "last_name": "Adams",
	    "age": 90,
	    "first_name": "John"
	  },
	  {
	    "last_name": "Ford",
	    "age": 83,
	    "first_name": "Henry"
	  }
	]


YAML!
+++++
::

	>>> print data.yaml
	- {age: 90, first_name: John, last_name: Adams}
	- {age: 83, first_name: Henry, last_name: Ford}

CSV...
++++++
::

	>>> print data.csv
	first_name,last_name,age
	John,Adams,90
	Henry,Ford,83

EXCEL!
++++++
::

	>>> open('people.xls', 'wb').write(data.xls)

It's that easy.


Installation
------------

To install tablib, simply: ::

	$ pip install tablib

Or, if you absolutely must: ::

	$ easy_install tablib

Contribute
----------

If you'd like to contribute, simply fork `the repository`_, commit your
changes to the **develop** branch (or branch off of it), and send a pull
request. Make sure you add yourself to AUTHORS_.




.. _`the repository`: http://github.com/kennethreitz/tablib
.. _AUTHORS: http://github.com/kennethreitz/tablib/blob/master/AUTHORS