This file is indexed.

/usr/lib/python2.7/dist-packages/tables/utils.py is in python-tables 3.2.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
# -*- coding: utf-8 -*-

########################################################################
#
#       License: BSD
#       Created: March 4, 2003
#       Author:  Francesc Alted - faltet@pytables.com
#
#       $Id$
#
########################################################################

"""Utility functions."""

from __future__ import print_function
import os
import sys
import warnings
import subprocess
from time import time

import numpy

from tables.flavor import array_of_flavor
from tables._past import previous_api

# The map between byteorders in NumPy and PyTables
byteorders = {
    '>': 'big',
    '<': 'little',
    '=': sys.byteorder,
    '|': 'irrelevant',
}

# The type used for size values: indexes, coordinates, dimension
# lengths, row numbers, shapes, chunk shapes, byte counts...
SizeType = numpy.int64


def correct_byteorder(ptype, byteorder):
    """Fix the byteorder depending on the PyTables types."""

    if ptype in ['string', 'bool', 'int8', 'uint8']:
        return "irrelevant"
    else:
        return byteorder


def is_idx(index):
    """Checks if an object can work as an index or not."""

    if type(index) in (int, long):
        return True
    elif hasattr(index, "__index__"):  # Only works on Python 2.5 (PEP 357)
        # Exclude the array([idx]) as working as an index.  Fixes #303.
        if (hasattr(index, "shape") and index.shape != ()):
            return False
        try:
            index.__index__()
            if isinstance(index, bool):
                warnings.warn(
                    'using a boolean instead of an integer will result in an '
                    'error in the future', DeprecationWarning, stacklevel=2)
            return True
        except TypeError:
            return False
    elif isinstance(index, numpy.integer):
        return True
    # For Python 2.4 one should test 0-dim and 1-dim, 1-elem arrays as well
    elif (isinstance(index, numpy.ndarray) and (index.shape == ()) and
          index.dtype.str[1] == 'i'):
        return True

    return False


def idx2long(index):
    """Convert a possible index into a long int."""

    try:
        return long(index)
    except:
        raise TypeError("not an integer type.")


# This is used in VLArray and EArray to produce NumPy object compliant
# with atom from a generic python type.  If copy is stated as True, it
# is assured that it will return a copy of the object and never the same
# object or a new one sharing the same memory.
def convert_to_np_atom(arr, atom, copy=False):
    """Convert a generic object into a NumPy object compliant with atom."""

    # First, convert the object into a NumPy array
    nparr = array_of_flavor(arr, 'numpy')
    # Copy of data if necessary for getting a contiguous buffer, or if
    # dtype is not the correct one.
    if atom.shape == ():
        # Scalar atom case
        nparr = numpy.array(nparr, dtype=atom.dtype, copy=copy)
    else:
        # Multidimensional atom case.  Addresses #133.
        # We need to use this strange way to obtain a dtype compliant
        # array because NumPy doesn't honor the shape of the dtype when
        # it is multidimensional.  See:
        # http://scipy.org/scipy/numpy/ticket/926
        # for details.
        # All of this is done just to taking advantage of the NumPy
        # broadcasting rules.
        newshape = nparr.shape[:-len(atom.dtype.shape)]
        nparr2 = numpy.empty(newshape, dtype=[('', atom.dtype)])
        nparr2['f0'][:] = nparr
        # Return a view (i.e. get rid of the record type)
        nparr = nparr2.view(atom.dtype)
    return nparr

convertToNPAtom = previous_api(convert_to_np_atom)


# The next is used in Array, EArray and VLArray, and it is a bit more
# high level than convert_to_np_atom
def convert_to_np_atom2(object, atom):
    """Convert a generic object into a NumPy object compliant with atom."""

    # Check whether the object needs to be copied to make the operation
    # safe to in-place conversion.
    copy = atom.type in ['time64']
    nparr = convert_to_np_atom(object, atom, copy)
    # Finally, check the byteorder and change it if needed
    byteorder = byteorders[nparr.dtype.byteorder]
    if (byteorder in ['little', 'big'] and byteorder != sys.byteorder):
        # The byteorder needs to be fixed (a copy is made
        # so that the original array is not modified)
        nparr = nparr.byteswap()

    return nparr

convertToNPAtom2 = previous_api(convert_to_np_atom2)


def check_file_access(filename, mode='r'):
    """Check for file access in the specified `mode`.

    `mode` is one of the modes supported by `File` objects.  If the file
    indicated by `filename` can be accessed using that `mode`, the
    function ends successfully.  Else, an ``IOError`` is raised
    explaining the reason of the failure.

    All this paraphernalia is used to avoid the lengthy and scaring HDF5
    messages produced when there are problems opening a file.  No
    changes are ever made to the file system.

    """

    if mode == 'r':
        # The file should be readable.
        if not os.access(filename, os.F_OK):
            raise IOError("``%s`` does not exist" % (filename,))
        if not os.path.isfile(filename):
            raise IOError("``%s`` is not a regular file" % (filename,))
        if not os.access(filename, os.R_OK):
            raise IOError("file ``%s`` exists but it can not be read"
                          % (filename,))
    elif mode == 'w':
        if os.access(filename, os.F_OK):
            # Since the file is not removed but replaced,
            # it must already be accessible to read and write operations.
            check_file_access(filename, 'r+')
        else:
            # A new file is going to be created,
            # so the directory should be writable.
            parentname = os.path.dirname(filename)
            if not parentname:
                parentname = '.'
            if not os.access(parentname, os.F_OK):
                raise IOError("``%s`` does not exist" % (parentname,))
            if not os.path.isdir(parentname):
                raise IOError("``%s`` is not a directory" % (parentname,))
            if not os.access(parentname, os.W_OK):
                raise IOError("directory ``%s`` exists but it can not be "
                              "written" % (parentname,))
    elif mode == 'a':
        if os.access(filename, os.F_OK):
            check_file_access(filename, 'r+')
        else:
            check_file_access(filename, 'w')
    elif mode == 'r+':
        check_file_access(filename, 'r')
        if not os.access(filename, os.W_OK):
            raise IOError("file ``%s`` exists but it can not be written"
                          % (filename,))
    else:
        raise ValueError("invalid mode: %r" % (mode,))

checkFileAccess = previous_api(check_file_access)


def lazyattr(fget):
    """Create a *lazy attribute* from the result of `fget`.

    This function is intended to be used as a *method decorator*.  It
    returns a *property* which caches the result of calling the `fget`
    instance method.  The docstring of `fget` is used for the property
    itself.  For instance:

    >>> class MyClass(object):
    ...     @lazyattr
    ...     def attribute(self):
    ...         'Attribute description.'
    ...         print('creating value')
    ...         return 10
    ...
    >>> type(MyClass.attribute)
    <type 'property'>
    >>> MyClass.attribute.__doc__
    'Attribute description.'
    >>> obj = MyClass()
    >>> obj.__dict__
    {}
    >>> obj.attribute
    creating value
    10
    >>> obj.__dict__
    {'attribute': 10}
    >>> obj.attribute
    10
    >>> del obj.attribute
    Traceback (most recent call last):
      ...
    AttributeError: can't delete attribute

    .. warning::

        Please note that this decorator *changes the type of the
        decorated object* from an instance method into a property.

    """

    name = fget.__name__

    def newfget(self):
        mydict = self.__dict__
        if name in mydict:
            return mydict[name]
        mydict[name] = value = fget(self)
        return value

    return property(newfget, None, None, fget.__doc__)


def show_stats(explain, tref, encoding=None):
    """Show the used memory (only works for Linux 2.6.x)."""

    if encoding is None:
        encoding = sys.getdefaultencoding()

    # Build the command to obtain memory info
    cmd = "cat /proc/%s/status" % os.getpid()
    sout = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE).stdout
    for line in sout:
        line = line.decode(encoding)
        if line.startswith("VmSize:"):
            vmsize = int(line.split()[1])
        elif line.startswith("VmRSS:"):
            vmrss = int(line.split()[1])
        elif line.startswith("VmData:"):
            vmdata = int(line.split()[1])
        elif line.startswith("VmStk:"):
            vmstk = int(line.split()[1])
        elif line.startswith("VmExe:"):
            vmexe = int(line.split()[1])
        elif line.startswith("VmLib:"):
            vmlib = int(line.split()[1])
    sout.close()
    print("Memory usage: ******* %s *******" % explain)
    print("VmSize: %7s kB\tVmRSS: %7s kB" % (vmsize, vmrss))
    print("VmData: %7s kB\tVmStk: %7s kB" % (vmdata, vmstk))
    print("VmExe:  %7s kB\tVmLib: %7s kB" % (vmexe, vmlib))
    tnow = time()
    print("WallClock time:", round(tnow - tref, 3))
    return tnow


# truncate data before calling __setitem__, to improve compression ratio
# this function is taken verbatim from netcdf4-python
def quantize(data, least_significant_digit):
    """quantize data to improve compression.

    Data is quantized using around(scale*data)/scale, where scale is
    2**bits, and bits is determined from the least_significant_digit.

    For example, if least_significant_digit=1, bits will be 4.

    """

    precision = pow(10., -least_significant_digit)
    exp = numpy.log10(precision)
    if exp < 0:
        exp = int(numpy.floor(exp))
    else:
        exp = int(numpy.ceil(exp))
    bits = numpy.ceil(numpy.log2(pow(10., -exp)))
    scale = pow(2., bits)
    datout = numpy.around(scale * data) / scale

    return datout


# Utilities to detect leaked instances.  See recipe 14.10 of the Python
# Cookbook by Martelli & Ascher.
tracked_classes = {}
import weakref


def log_instance_creation(instance, name=None):
    if name is None:
        name = instance.__class__.__name__
        if name not in tracked_classes:
            tracked_classes[name] = []
        tracked_classes[name].append(weakref.ref(instance))

logInstanceCreation = previous_api(log_instance_creation)


def string_to_classes(s):
    if s == '*':
        c = sorted(tracked_classes.iterkeys())
        return c
    else:
        return s.split()


def fetch_logged_instances(classes="*"):
    classnames = string_to_classes(classes)
    return [(cn, len(tracked_classes[cn])) for cn in classnames]

fetchLoggedInstances = previous_api(fetch_logged_instances)


def count_logged_instances(classes, file=sys.stdout):
    for classname in string_to_classes(classes):
        file.write("%s: %d\n" % (classname, len(tracked_classes[classname])))

countLoggedInstances = previous_api(count_logged_instances)


def list_logged_instances(classes, file=sys.stdout):
    for classname in string_to_classes(classes):
        file.write('\n%s:\n' % classname)
        for ref in tracked_classes[classname]:
            obj = ref()
            if obj is not None:
                file.write('    %s\n' % repr(obj))

listLoggedInstances = previous_api(list_logged_instances)


def dump_logged_instances(classes, file=sys.stdout):
    for classname in string_to_classes(classes):
        file.write('\n%s:\n' % classname)
        for ref in tracked_classes[classname]:
            obj = ref()
            if obj is not None:
                file.write('    %s:\n' % obj)
                for key, value in obj.__dict__.iteritems():
                    file.write('        %20s : %s\n' % (key, value))

dumpLoggedInstances = previous_api(dump_logged_instances)


#
# A class useful for cache usage
#
class CacheDict(dict):
    """A dictionary that prevents itself from growing too much."""

    def __init__(self, maxentries):
        self.maxentries = maxentries
        super(CacheDict, self).__init__(self)

    def __setitem__(self, key, value):
        # Protection against growing the cache too much
        if len(self) > self.maxentries:
            # Remove a 10% of (arbitrary) elements from the cache
            entries_to_remove = self.maxentries / 10
            for k in self.keys()[:entries_to_remove]:
                super(CacheDict, self).__delitem__(k)
        super(CacheDict, self).__setitem__(key, value)


class NailedDict(object):
    """A dictionary which ignores its items when it has nails on it."""

    def __init__(self, maxentries):
        self.maxentries = maxentries
        self._cache = {}
        self._nailcount = 0

    # Only a restricted set of dictionary methods are supported.  That
    # is why we buy instead of inherit.

    # The following are intended to be used by ``Table`` code changing
    # the set of usable indexes.

    def clear(self):
        self._cache.clear()

    def nail(self):
        self._nailcount += 1

    def unnail(self):
        self._nailcount -= 1

    # The following are intended to be used by ``Table`` code handling
    # conditions.

    def __contains__(self, key):
        if self._nailcount > 0:
            return False
        return key in self._cache

    def __getitem__(self, key):
        if self._nailcount > 0:
            raise KeyError(key)
        return self._cache[key]

    def get(self, key, default=None):
        if self._nailcount > 0:
            return default
        return self._cache.get(key, default)

    def __setitem__(self, key, value):
        if self._nailcount > 0:
            return
        cache = self._cache
        # Protection against growing the cache too much
        if len(cache) > self.maxentries:
            # Remove a 10% of (arbitrary) elements from the cache
            entries_to_remove = self.maxentries // 10
            for k in cache.keys()[:entries_to_remove]:
                del cache[k]
        cache[key] = value


def detect_number_of_cores():
    """Detects the number of cores on a system.

    Cribbed from pp.

    """

    # Linux, Unix and MacOS:
    if hasattr(os, "sysconf"):
        if "SC_NPROCESSORS_ONLN" in os.sysconf_names:
            # Linux & Unix:
            ncpus = os.sysconf("SC_NPROCESSORS_ONLN")
            if isinstance(ncpus, int) and ncpus > 0:
                return ncpus
        else:  # OSX:
            return int(os.popen2("sysctl -n hw.ncpu")[1].read())
    # Windows:
    if "NUMBER_OF_PROCESSORS" in os.environ:
        ncpus = int(os.environ["NUMBER_OF_PROCESSORS"])
        if ncpus > 0:
            return ncpus
    return 1  # Default

detectNumberOfCores = previous_api(detect_number_of_cores)


# Main part
# =========
def _test():
    """Run ``doctest`` on this module."""

    import doctest
    doctest.testmod()

if __name__ == '__main__':
    _test()


## Local Variables:
## mode: python
## py-indent-offset: 4
## tab-width: 4
## fill-column: 72
## End: