/usr/lib/python2.7/dist-packages/tables/unimplemented.py is in python-tables 3.2.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 | # -*- coding: utf-8 -*-
########################################################################
#
# License: BSD
# Created: January 14, 2004
# Author: Francesc Alted - faltet@pytables.com
#
# $Id$
#
########################################################################
"""Here is defined the UnImplemented class."""
import warnings
from tables import hdf5extension
from tables.utils import SizeType
from tables.node import Node
from tables.leaf import Leaf
from tables._past import previous_api_property
class UnImplemented(hdf5extension.UnImplemented, Leaf):
"""This class represents datasets not supported by PyTables in an HDF5
file.
When reading a generic HDF5 file (i.e. one that has not been created with
PyTables, but with some other HDF5 library based tool), chances are that
the specific combination of datatypes or dataspaces in some dataset might
not be supported by PyTables yet. In such a case, this dataset will be
mapped into an UnImplemented instance and the user will still be able to
access the complete object tree of the generic HDF5 file. The user will
also be able to *read and write the attributes* of the dataset, *access
some of its metadata*, and perform *certain hierarchy manipulation
operations* like deleting or moving (but not copying) the node. Of course,
the user will not be able to read the actual data on it.
This is an elegant way to allow users to work with generic HDF5 files
despite the fact that some of its datasets are not supported by
PyTables. However, if you are really interested in having full access to an
unimplemented dataset, please get in contact with the developer team.
This class does not have any public instance variables or methods, except
those inherited from the Leaf class (see :ref:`LeafClassDescr`).
"""
# Class identifier.
_c_classid = 'UNIMPLEMENTED'
_c_classId = previous_api_property('_c_classid')
def __init__(self, parentnode, name):
"""Create the `UnImplemented` instance."""
# UnImplemented objects always come from opening an existing node
# (they can not be created).
self._v_new = False
"""Is this the first time the node has been created?"""
self.nrows = SizeType(0)
"""The length of the first dimension of the data."""
self.shape = (SizeType(0),)
"""The shape of the stored data."""
self.byteorder = None
"""The endianness of data in memory ('big', 'little' or
'irrelevant')."""
super(UnImplemented, self).__init__(parentnode, name)
def _g_open(self):
(self.shape, self.byteorder, object_id) = self._open_unimplemented()
try:
self.nrows = SizeType(self.shape[0])
except IndexError:
self.nrows = SizeType(0)
return object_id
def _g_copy(self, newparent, newname, recursive, _log=True, **kwargs):
"""Do nothing.
This method does nothing, but a ``UserWarning`` is issued.
Please note that this method *does not return a new node*, but
``None``.
"""
warnings.warn(
"UnImplemented node %r does not know how to copy itself; skipping"
% (self._v_pathname,))
return None # Can you see it?
def _f_copy(self, newparent=None, newname=None,
overwrite=False, recursive=False, createparents=False,
**kwargs):
"""Do nothing.
This method does nothing, since `UnImplemented` nodes can not
be copied. However, a ``UserWarning`` is issued. Please note
that this method *does not return a new node*, but ``None``.
"""
# This also does nothing but warn.
self._g_copy(newparent, newname, recursive, **kwargs)
return None # Can you see it?
def __repr__(self):
return """%s
NOTE: <The UnImplemented object represents a PyTables unimplemented
dataset present in the '%s' HDF5 file. If you want to see this
kind of HDF5 dataset implemented in PyTables, please contact the
developers.>
""" % (str(self), self._v_file.filename)
# Classes reported as H5G_UNKNOWN by HDF5
class Unknown(Node):
"""This class represents nodes reported as *unknown* by the underlying
HDF5 library.
This class does not have any public instance variables or methods, except
those inherited from the Node class.
"""
# Class identifier
_c_classid = 'UNKNOWN'
_c_classId = previous_api_property('_c_classid')
def __init__(self, parentnode, name):
"""Create the `Unknown` instance."""
self._v_new = False
super(Unknown, self).__init__(parentnode, name)
def _g_new(self, parentnode, name, init=False):
pass
def _g_open(self):
return 0
def _g_copy(self, newparent, newname, recursive, _log=True, **kwargs):
# Silently avoid doing copies of unknown nodes
return None
def _g_delete(self, parent):
pass
def __str__(self):
pathname = self._v_pathname
classname = self.__class__.__name__
return "%s (%s)" % (pathname, classname)
def __repr__(self):
return """%s
NOTE: <The Unknown object represents a node which is reported as
unknown by the underlying HDF5 library, but that might be
supported in more recent HDF5 versions.>
""" % (str(self))
# These are listed here for backward compatibility with PyTables 0.9.x indexes
class OldIndexArray(UnImplemented):
_c_classid = 'IndexArray'
_c_classId = previous_api_property('_c_classid')
|