/usr/lib/python2.7/dist-packages/tables/conditions.py is in python-tables 3.2.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 | # -*- coding: utf-8 -*-
########################################################################
#
# License: BSD
# Created: 2006-09-19
# Author: Ivan Vilata i Balaguer -- ivan@selidor.net
# :Notes: Heavily modified by Francesc Alted for multi-index support.
# 2008-04-09
# Combined common & pro version.
# 2011-06-04
#
# $Id$
#
########################################################################
"""Utility functions and classes for supporting query conditions.
Classes:
`CompileCondition`
Container for a compiled condition.
Functions:
`compile_condition`
Compile a condition and extract usable index conditions.
`call_on_recarr`
Evaluate a function over a structured array.
"""
import re
from numexpr.necompiler import typecode_to_kind
from numexpr.necompiler import expressionToAST, typeCompileAst
from numexpr.necompiler import stringToExpression, NumExpr
from numexpr.expressions import ExpressionNode
from tables.utilsextension import get_nested_field
from tables.utils import lazyattr
_no_matching_opcode = re.compile(r"[^a-z]([a-z]+)_([a-z]+)[^a-z]")
# E.g. "gt" and "bfc" from "couldn't find matching opcode for 'gt_bfc'".
def _unsupported_operation_error(exception):
"""Make the \"no matching opcode\" Numexpr `exception` more clear.
A new exception of the same kind is returned.
"""
message = exception.args[0]
op, types = _no_matching_opcode.search(message).groups()
newmessage = "unsupported operand types for *%s*: " % op
newmessage += ', '.join([typecode_to_kind[t] for t in types[1:]])
return exception.__class__(newmessage)
def _check_indexable_cmp(getidxcmp):
"""Decorate `getidxcmp` to check the returned indexable comparison.
This does some extra checking that Numexpr would perform later on
the comparison if it was compiled within a complete condition.
"""
def newfunc(exprnode, indexedcols):
result = getidxcmp(exprnode, indexedcols)
if result[0] is not None:
try:
typeCompileAst(expressionToAST(exprnode))
except NotImplementedError as nie:
# Try to make this Numexpr error less cryptic.
raise _unsupported_operation_error(nie)
return result
newfunc.__name__ = getidxcmp.__name__
newfunc.__doc__ = getidxcmp.__doc__
return newfunc
@_check_indexable_cmp
def _get_indexable_cmp(exprnode, indexedcols):
"""Get the indexable variable-constant comparison in `exprnode`.
A tuple of (variable, operation, constant) is returned if
`exprnode` is a variable-constant (or constant-variable)
comparison, and the variable is in `indexedcols`. A normal
variable can also be used instead of a constant: a tuple with its
name will appear instead of its value.
Otherwise, the values in the tuple are ``None``.
"""
not_indexable = (None, None, None)
turncmp = {'lt': 'gt',
'le': 'ge',
'eq': 'eq',
'ge': 'le',
'gt': 'lt', }
def get_cmp(var, const, op):
var_value, const_value = var.value, const.value
if (var.astType == 'variable' and var_value in indexedcols
and const.astType in ['constant', 'variable']):
if const.astType == 'variable':
const_value = (const_value, )
return (var_value, op, const_value)
return None
def is_indexed_boolean(node):
return (node.astType == 'variable'
and node.astKind == 'bool'
and node.value in indexedcols)
# Boolean variables are indexable by themselves.
if is_indexed_boolean(exprnode):
return (exprnode.value, 'eq', True)
# And so are negations of boolean variables.
if exprnode.astType == 'op' and exprnode.value == 'invert':
child = exprnode.children[0]
if is_indexed_boolean(child):
return (child.value, 'eq', False)
# A negation of an expression will be returned as ``~child``.
# The indexability of the negated expression will be decided later on.
if child.astKind == "bool":
return (child, 'invert', None)
# Check node type. Only comparisons are indexable from now on.
if exprnode.astType != 'op':
return not_indexable
cmpop = exprnode.value
if cmpop not in turncmp:
return not_indexable
# Look for a variable-constant comparison in both directions.
left, right = exprnode.children
cmp_ = get_cmp(left, right, cmpop)
if cmp_:
return cmp_
cmp_ = get_cmp(right, left, turncmp[cmpop])
if cmp_:
return cmp_
return not_indexable
def _equiv_expr_node(x, y):
"""Returns whether two ExpressionNodes are equivalent.
This is needed because '==' is overridden on ExpressionNode to
return a new ExpressionNode.
"""
if not isinstance(x, ExpressionNode) and not isinstance(y, ExpressionNode):
return x == y
elif (type(x) is not type(y) or not isinstance(x, ExpressionNode)
or not isinstance(y, ExpressionNode)
or x.value != y.value or x.astKind != y.astKind
or len(x.children) != len(y.children)):
return False
for xchild, ychild in zip(x.children, y.children):
if not _equiv_expr_node(xchild, ychild):
return False
return True
def _get_idx_expr_recurse(exprnode, indexedcols, idxexprs, strexpr):
"""Here lives the actual implementation of the get_idx_expr() wrapper.
'idxexprs' is a list of expressions in the form ``(var, (ops),
(limits))``. 'strexpr' is the indexable expression in string format.
These parameters will be received empty (i.e. [], ['']) for the
first time and populated during the different recursive calls.
Finally, they are returned in the last level to the original
wrapper. If 'exprnode' is not indexable, it will return the tuple
([], ['']) so as to signal this.
"""
not_indexable = ([], [''])
op_conv = {
'and': '&',
'or': '|',
'not': '~',
}
negcmp = {
'lt': 'ge',
'le': 'gt',
'ge': 'lt',
'gt': 'le',
}
def fix_invert(idxcmp, exprnode, indexedcols):
invert = False
# Loop until all leading negations have been dealt with
while idxcmp[1] == "invert":
invert ^= True
# The information about the negated node is in first position
exprnode = idxcmp[0]
idxcmp = _get_indexable_cmp(exprnode, indexedcols)
return idxcmp, exprnode, invert
# Indexable variable-constant comparison.
idxcmp = _get_indexable_cmp(exprnode, indexedcols)
idxcmp, exprnode, invert = fix_invert(idxcmp, exprnode, indexedcols)
if idxcmp[0]:
if invert:
var, op, value = idxcmp
if op == 'eq' and value in [True, False]:
# ``var`` must be a boolean index. Flip its value.
value ^= True
else:
op = negcmp[op]
expr = (var, (op,), (value,))
invert = False
else:
expr = (idxcmp[0], (idxcmp[1],), (idxcmp[2],))
return [expr]
# For now negations of complex expressions will be not supported as
# forming part of an indexable condition. This might be supported in
# the future.
if invert:
return not_indexable
# Only conjunctions and disjunctions of comparisons are considered
# for the moment.
if exprnode.astType != 'op' or exprnode.value not in ['and', 'or']:
return not_indexable
left, right = exprnode.children
# Get the expression at left
lcolvar, lop, llim = _get_indexable_cmp(left, indexedcols)
# Get the expression at right
rcolvar, rop, rlim = _get_indexable_cmp(right, indexedcols)
# Use conjunction of indexable VC comparisons like
# ``(a <[=] x) & (x <[=] b)`` or ``(a >[=] x) & (x >[=] b)``
# as ``a <[=] x <[=] b``, for the moment.
op = exprnode.value
if (lcolvar is not None and rcolvar is not None
and _equiv_expr_node(lcolvar, rcolvar) and op == 'and'):
if lop in ['gt', 'ge'] and rop in ['lt', 'le']: # l <= x <= r
expr = (lcolvar, (lop, rop), (llim, rlim))
return [expr]
if lop in ['lt', 'le'] and rop in ['gt', 'ge']: # l >= x >= r
expr = (rcolvar, (rop, lop), (rlim, llim))
return [expr]
# Recursively get the expressions at the left and the right
lexpr = _get_idx_expr_recurse(left, indexedcols, idxexprs, strexpr)
rexpr = _get_idx_expr_recurse(right, indexedcols, idxexprs, strexpr)
def add_expr(expr, idxexprs, strexpr):
"""Add a single expression to the list."""
if isinstance(expr, list):
# expr is a single expression
idxexprs.append(expr[0])
lenexprs = len(idxexprs)
# Mutate the strexpr string
if lenexprs == 1:
strexpr[:] = ["e0"]
else:
strexpr[:] = [
"(%s %s e%d)" % (strexpr[0], op_conv[op], lenexprs - 1)]
# Add expressions to the indexable list when they are and'ed, or
# they are both indexable.
if lexpr != not_indexable and (op == "and" or rexpr != not_indexable):
add_expr(lexpr, idxexprs, strexpr)
if rexpr != not_indexable:
add_expr(rexpr, idxexprs, strexpr)
return (idxexprs, strexpr)
if rexpr != not_indexable and op == "and":
add_expr(rexpr, idxexprs, strexpr)
return (idxexprs, strexpr)
# Can not use indexed column.
return not_indexable
def _get_idx_expr(expr, indexedcols):
"""Extract an indexable expression out of `exprnode`.
Looks for variable-constant comparisons in the expression node
`exprnode` involving variables in `indexedcols`.
It returns a tuple of (idxexprs, strexpr) where 'idxexprs' is a
list of expressions in the form ``(var, (ops), (limits))`` and
'strexpr' is the indexable expression in string format.
Expressions such as ``0 < c1 <= 1`` do not work as expected.
Right now only some of the *indexable comparisons* are considered:
* ``a <[=] x``, ``a == x`` and ``a >[=] x``
* ``(a <[=] x) & (y <[=] b)`` and ``(a == x) | (b == y)``
* ``~(~c_bool)``, ``~~c_bool`` and ``~(~c_bool) & (c_extra != 2)``
(where ``a``, ``b`` and ``c_bool`` are indexed columns, but
``c_extra`` is not)
Particularly, the ``!=`` operator and negations of complex boolean
expressions are *not considered* as valid candidates:
* ``a != 1`` and ``c_bool != False``
* ``~((a > 0) & (c_bool))``
"""
return _get_idx_expr_recurse(expr, indexedcols, [], [''])
class CompiledCondition(object):
"""Container for a compiled condition."""
# Lazy attributes
# ```````````````
@lazyattr
def index_variables(self):
"""The columns participating in the index expression."""
idxexprs = self.index_expressions
idxvars = []
for expr in idxexprs:
idxvar = expr[0]
if idxvar not in idxvars:
idxvars.append(idxvar)
return frozenset(idxvars)
def __init__(self, func, params, idxexprs, strexpr):
self.function = func
"""The compiled function object corresponding to this condition."""
self.parameters = params
"""A list of parameter names for this condition."""
self.index_expressions = idxexprs
"""A list of expressions in the form ``(var, (ops), (limits))``."""
self.string_expression = strexpr
"""The indexable expression in string format."""
def __repr__(self):
return ("idxexprs: %s\nstrexpr: %s\nidxvars: %s"
% (self.index_expressions, self.string_expression,
self.index_variables))
def with_replaced_vars(self, condvars):
"""Replace index limit variables with their values in-place.
A new compiled condition is returned. Values are taken from
the `condvars` mapping and converted to Python scalars.
"""
exprs = self.index_expressions
exprs2 = []
for expr in exprs:
idxlims = expr[2] # the limits are in third place
limit_values = []
for idxlim in idxlims:
if isinstance(idxlim, tuple): # variable
idxlim = condvars[idxlim[0]] # look up value
idxlim = idxlim.tolist() # convert back to Python
limit_values.append(idxlim)
# Add this replaced entry to the new exprs2
var, ops, _ = expr
exprs2.append((var, ops, tuple(limit_values)))
# Create a new container for the converted values
newcc = CompiledCondition(
self.function, self.parameters, exprs2, self.string_expression)
return newcc
def _get_variable_names(expression):
"""Return the list of variable names in the Numexpr `expression`."""
names = []
stack = [expression]
while stack:
node = stack.pop()
if node.astType == 'variable':
names.append(node.value)
elif hasattr(node, 'children'):
stack.extend(node.children)
return list(set(names)) # remove repeated names
def compile_condition(condition, typemap, indexedcols):
"""Compile a condition and extract usable index conditions.
Looks for variable-constant comparisons in the `condition` string
involving the indexed columns whose variable names appear in
`indexedcols`. The part of `condition` having usable indexes is
returned as a compiled condition in a `CompiledCondition` container.
Expressions such as '0 < c1 <= 1' do not work as expected. The
Numexpr types of *all* variables must be given in the `typemap`
mapping. The ``function`` of the resulting `CompiledCondition`
instance is a Numexpr function object, and the ``parameters`` list
indicates the order of its parameters.
"""
# Get the expression tree and extract index conditions.
expr = stringToExpression(condition, typemap, {})
if expr.astKind != 'bool':
raise TypeError("condition ``%s`` does not have a boolean type"
% condition)
idxexprs = _get_idx_expr(expr, indexedcols)
# Post-process the answer
if isinstance(idxexprs, list):
# Simple expression
strexpr = ['e0']
else:
# Complex expression
idxexprs, strexpr = idxexprs
# Get rid of the unneccessary list wrapper for strexpr
strexpr = strexpr[0]
# Get the variable names used in the condition.
# At the same time, build its signature.
varnames = _get_variable_names(expr)
signature = [(var, typemap[var]) for var in varnames]
try:
# See the comments in `numexpr.evaluate()` for the
# reasons of inserting copy operators for unaligned,
# *unidimensional* arrays.
func = NumExpr(expr, signature)
except NotImplementedError as nie:
# Try to make this Numexpr error less cryptic.
raise _unsupported_operation_error(nie)
params = varnames
# This is more comfortable to handle about than a tuple.
return CompiledCondition(func, params, idxexprs, strexpr)
def call_on_recarr(func, params, recarr, param2arg=None):
"""Call `func` with `params` over `recarr`.
The `param2arg` function, when specified, is used to get an argument
given a parameter name; otherwise, the parameter itself is used as
an argument. When the argument is a `Column` object, the proper
column from `recarr` is used as its value.
"""
args = []
for param in params:
if param2arg:
arg = param2arg(param)
else:
arg = param
if hasattr(arg, 'pathname'): # looks like a column
arg = get_nested_field(recarr, arg.pathname)
args.append(arg)
return func(*args)
|