/usr/share/doc/python-tables-doc/bench/poly.py is in python-tables-doc 3.2.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 | #######################################################################
# This script compares the speed of the computation of a polynomial
# for different (numpy.memmap and tables.Expr) out-of-memory paradigms.
#
# Author: Francesc Alted
# Date: 2010-02-24
#######################################################################
from __future__ import print_function
import os
from time import time
import numpy as np
import tables as tb
import numexpr as ne
expr = ".25*x**3 + .75*x**2 - 1.5*x - 2" # the polynomial to compute
N = 10 * 1000 * 1000 # the number of points to compute expression (80 MB)
step = 100 * 1000 # perform calculation in slices of `step` elements
dtype = np.dtype('f8') # the datatype
#CHUNKSHAPE = (2**17,)
CHUNKSHAPE = None
# Global variable for the x values for pure numpy & numexpr
x = None
# *** The next variables do not need to be changed ***
# Filenames for numpy.memmap
fprefix = "numpy.memmap" # the I/O file prefix
mpfnames = [fprefix + "-x.bin", fprefix + "-r.bin"]
# Filename for tables.Expr
h5fname = "tablesExpr.h5" # the I/O file
MB = 1024 * 1024. # a MegaByte
def print_filesize(filename, clib=None, clevel=0):
"""Print some statistics about file sizes."""
# os.system("sync") # make sure that all data has been flushed to disk
if isinstance(filename, list):
filesize_bytes = 0
for fname in filename:
filesize_bytes += os.stat(fname)[6]
else:
filesize_bytes = os.stat(filename)[6]
filesize_MB = round(filesize_bytes / MB, 1)
print("\t\tTotal file sizes: %d -- (%s MB)" % (
filesize_bytes, filesize_MB), end=' ')
if clevel > 0:
print("(using %s lvl%s)" % (clib, clevel))
else:
print()
def populate_x_numpy():
"""Populate the values in x axis for numpy."""
global x
# Populate x in range [-1, 1]
x = np.linspace(-1, 1, N)
def populate_x_memmap():
"""Populate the values in x axis for numpy.memmap."""
# Create container for input
x = np.memmap(mpfnames[0], dtype=dtype, mode="w+", shape=(N,))
# Populate x in range [-1, 1]
for i in range(0, N, step):
chunk = np.linspace((2 * i - N) / float(N),
(2 * (i + step) - N) / float(N), step)
x[i:i + step] = chunk
del x # close x memmap
def populate_x_tables(clib, clevel):
"""Populate the values in x axis for pytables."""
f = tb.open_file(h5fname, "w")
# Create container for input
atom = tb.Atom.from_dtype(dtype)
filters = tb.Filters(complib=clib, complevel=clevel)
x = f.create_carray(f.root, "x", atom=atom, shape=(N,),
filters=filters,
chunkshape=CHUNKSHAPE,
)
# Populate x in range [-1, 1]
for i in range(0, N, step):
chunk = np.linspace((2 * i - N) / float(N),
(2 * (i + step) - N) / float(N), step)
x[i:i + step] = chunk
f.close()
def compute_numpy():
"""Compute the polynomial with pure numpy."""
y = eval(expr)
def compute_numexpr():
"""Compute the polynomial with pure numexpr."""
y = ne.evaluate(expr)
def compute_memmap():
"""Compute the polynomial with numpy.memmap."""
# Reopen inputs in read-only mode
x = np.memmap(mpfnames[0], dtype=dtype, mode='r', shape=(N,))
# Create the array output
r = np.memmap(mpfnames[1], dtype=dtype, mode="w+", shape=(N,))
# Do the computation by chunks and store in output
r[:] = eval(expr) # where is stored the result?
# r = eval(expr) # result is stored in-memory
del x, r # close x and r memmap arrays
print_filesize(mpfnames)
def compute_tables(clib, clevel):
"""Compute the polynomial with tables.Expr."""
f = tb.open_file(h5fname, "a")
x = f.root.x # get the x input
# Create container for output
atom = tb.Atom.from_dtype(dtype)
filters = tb.Filters(complib=clib, complevel=clevel)
r = f.create_carray(f.root, "r", atom=atom, shape=(N,),
filters=filters,
chunkshape=CHUNKSHAPE,
)
# Do the actual computation and store in output
ex = tb.Expr(expr) # parse the expression
ex.set_output(r) # where is stored the result?
# when commented out, the result goes in-memory
ex.eval() # evaluate!
f.close()
print_filesize(h5fname, clib, clevel)
if __name__ == '__main__':
tb.print_versions()
print("Total size for datasets:",
round(2 * N * dtype.itemsize / MB, 1), "MB")
# Get the compression libraries supported
# supported_clibs = [clib for clib in ("zlib", "lzo", "bzip2", "blosc")
# supported_clibs = [clib for clib in ("zlib", "lzo", "blosc")
supported_clibs = [clib for clib in ("blosc",)
if tb.which_lib_version(clib)]
# Initialization code
# for what in ["numpy", "numpy.memmap", "numexpr"]:
for what in ["numpy", "numexpr"]:
# break
print("Populating x using %s with %d points..." % (what, N))
t0 = time()
if what == "numpy":
populate_x_numpy()
compute = compute_numpy
elif what == "numexpr":
populate_x_numpy()
compute = compute_numexpr
elif what == "numpy.memmap":
populate_x_memmap()
compute = compute_memmap
print("*** Time elapsed populating:", round(time() - t0, 3))
print("Computing: '%s' using %s" % (expr, what))
t0 = time()
compute()
print("**************** Time elapsed computing:",
round(time() - t0, 3))
for what in ["tables.Expr"]:
t0 = time()
first = True # Sentinel
for clib in supported_clibs:
# for clevel in (0, 1, 3, 6, 9):
for clevel in range(10):
# for clevel in (1,):
if not first and clevel == 0:
continue
print("Populating x using %s with %d points..." % (what, N))
populate_x_tables(clib, clevel)
print("*** Time elapsed populating:", round(time() - t0, 3))
print("Computing: '%s' using %s" % (expr, what))
t0 = time()
compute_tables(clib, clevel)
print("**************** Time elapsed computing:",
round(time() - t0, 3))
first = False
|