This file is indexed.

/usr/lib/python2.7/dist-packages/sepolgen/yacc.py is in python-sepolgen 1.2.2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
#-----------------------------------------------------------------------------
# ply: yacc.py
#
# Author(s): David M. Beazley (dave@dabeaz.com)
#
# Copyright (C) 2001-2006, David M. Beazley
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License, or (at your option) any later version.
# 
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# Lesser General Public License for more details.
# 
# You should have received a copy of the GNU Lesser General Public
# License along with this library; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
# 
# See the file COPYING for a complete copy of the LGPL.
#
#
# This implements an LR parser that is constructed from grammar rules defined
# as Python functions. The grammer is specified by supplying the BNF inside
# Python documentation strings.  The inspiration for this technique was borrowed
# from John Aycock's Spark parsing system.  PLY might be viewed as cross between
# Spark and the GNU bison utility.
#
# The current implementation is only somewhat object-oriented. The
# LR parser itself is defined in terms of an object (which allows multiple
# parsers to co-exist).  However, most of the variables used during table
# construction are defined in terms of global variables.  Users shouldn't
# notice unless they are trying to define multiple parsers at the same
# time using threads (in which case they should have their head examined).
#
# This implementation supports both SLR and LALR(1) parsing.  LALR(1)
# support was originally implemented by Elias Ioup (ezioup@alumni.uchicago.edu),
# using the algorithm found in Aho, Sethi, and Ullman "Compilers: Principles,
# Techniques, and Tools" (The Dragon Book).  LALR(1) has since been replaced
# by the more efficient DeRemer and Pennello algorithm.
#
# :::::::: WARNING :::::::
#
# Construction of LR parsing tables is fairly complicated and expensive.
# To make this module run fast, a *LOT* of work has been put into
# optimization---often at the expensive of readability and what might
# consider to be good Python "coding style."   Modify the code at your
# own risk!
# ----------------------------------------------------------------------------

__version__ = "2.2"

#-----------------------------------------------------------------------------
#                     === User configurable parameters ===
#
# Change these to modify the default behavior of yacc (if you wish)
#-----------------------------------------------------------------------------

yaccdebug   = 1                # Debugging mode.  If set, yacc generates a
                               # a 'parser.out' file in the current directory

debug_file  = 'parser.out'     # Default name of the debugging file
tab_module  = 'parsetab'       # Default name of the table module
default_lr  = 'LALR'           # Default LR table generation method

error_count = 3                # Number of symbols that must be shifted to leave recovery mode

import re, types, sys, cStringIO, hashlib, os.path

# Exception raised for yacc-related errors
class YaccError(Exception):   pass

#-----------------------------------------------------------------------------
#                        ===  LR Parsing Engine ===
#
# The following classes are used for the LR parser itself.  These are not
# used during table construction and are independent of the actual LR
# table generation algorithm
#-----------------------------------------------------------------------------

# This class is used to hold non-terminal grammar symbols during parsing.
# It normally has the following attributes set:
#        .type       = Grammar symbol type
#        .value      = Symbol value
#        .lineno     = Starting line number
#        .endlineno  = Ending line number (optional, set automatically)
#        .lexpos     = Starting lex position
#        .endlexpos  = Ending lex position (optional, set automatically)

class YaccSymbol:
    def __str__(self):    return self.type
    def __repr__(self):   return str(self)

# This class is a wrapper around the objects actually passed to each
# grammar rule.   Index lookup and assignment actually assign the
# .value attribute of the underlying YaccSymbol object.
# The lineno() method returns the line number of a given
# item (or 0 if not defined).   The linespan() method returns
# a tuple of (startline,endline) representing the range of lines
# for a symbol.  The lexspan() method returns a tuple (lexpos,endlexpos)
# representing the range of positional information for a symbol.

class YaccProduction:
    def __init__(self,s,stack=None):
        self.slice = s
        self.pbstack = []
        self.stack = stack

    def __getitem__(self,n):
        if type(n) == types.IntType:
             if n >= 0: return self.slice[n].value
             else: return self.stack[n].value
        else:
             return [s.value for s in self.slice[n.start:n.stop:n.step]]

    def __setitem__(self,n,v):
        self.slice[n].value = v

    def __len__(self):
        return len(self.slice)
    
    def lineno(self,n):
        return getattr(self.slice[n],"lineno",0)

    def linespan(self,n):
        startline = getattr(self.slice[n],"lineno",0)
        endline = getattr(self.slice[n],"endlineno",startline)
        return startline,endline

    def lexpos(self,n):
        return getattr(self.slice[n],"lexpos",0)

    def lexspan(self,n):
        startpos = getattr(self.slice[n],"lexpos",0)
        endpos = getattr(self.slice[n],"endlexpos",startpos)
        return startpos,endpos

    def pushback(self,n):
        if n <= 0:
            raise ValueError, "Expected a positive value"
        if n > (len(self.slice)-1):
            raise ValueError, "Can't push %d tokens. Only %d are available." % (n,len(self.slice)-1)
        for i in range(0,n):
            self.pbstack.append(self.slice[-i-1])

# The LR Parsing engine.   This is defined as a class so that multiple parsers
# can exist in the same process.  A user never instantiates this directly.
# Instead, the global yacc() function should be used to create a suitable Parser
# object. 

class Parser:
    def __init__(self,magic=None):

        # This is a hack to keep users from trying to instantiate a Parser
        # object directly.

        if magic != "xyzzy":
            raise YaccError, "Can't instantiate Parser. Use yacc() instead."

        # Reset internal state
        self.productions = None          # List of productions
        self.errorfunc   = None          # Error handling function
        self.action      = { }           # LR Action table
        self.goto        = { }           # LR goto table
        self.require     = { }           # Attribute require table
        self.method      = "Unknown LR"  # Table construction method used

    def errok(self):
        self.errorcount = 0

    def restart(self):
        del self.statestack[:]
        del self.symstack[:]
        sym = YaccSymbol()
        sym.type = '$end'
        self.symstack.append(sym)
        self.statestack.append(0)
        
    def parse(self,input=None,lexer=None,debug=0):
        lookahead = None                 # Current lookahead symbol
        lookaheadstack = [ ]             # Stack of lookahead symbols
        actions = self.action            # Local reference to action table
        goto    = self.goto              # Local reference to goto table
        prod    = self.productions       # Local reference to production list
        pslice  = YaccProduction(None)   # Production object passed to grammar rules
        pslice.parser = self             # Parser object
        self.errorcount = 0              # Used during error recovery

        # If no lexer was given, we will try to use the lex module
        if not lexer:
            import lex
            lexer = lex.lexer

        pslice.lexer = lexer
        
        # If input was supplied, pass to lexer
        if input:
            lexer.input(input)

        # Tokenize function
        get_token = lexer.token

        statestack = [ ]                # Stack of parsing states
        self.statestack = statestack
        symstack   = [ ]                # Stack of grammar symbols
        self.symstack = symstack

        pslice.stack = symstack         # Put in the production
        errtoken   = None               # Err token

        # The start state is assumed to be (0,$end)
        statestack.append(0)
        sym = YaccSymbol()
        sym.type = '$end'
        symstack.append(sym)
        
        while 1:
            # Get the next symbol on the input.  If a lookahead symbol
            # is already set, we just use that. Otherwise, we'll pull
            # the next token off of the lookaheadstack or from the lexer
            if debug > 1:
                print 'state', statestack[-1]
            if not lookahead:
                if not lookaheadstack:
                    lookahead = get_token()     # Get the next token
                else:
                    lookahead = lookaheadstack.pop()
                if not lookahead:
                    lookahead = YaccSymbol()
                    lookahead.type = '$end'
            if debug:
                errorlead = ("%s . %s" % (" ".join([xx.type for xx in symstack][1:]), str(lookahead))).lstrip()

            # Check the action table
            s = statestack[-1]
            ltype = lookahead.type
            t = actions.get((s,ltype),None)

            if debug > 1:
                print 'action', t
            if t is not None:
                if t > 0:
                    # shift a symbol on the stack
                    if ltype == '$end':
                        # Error, end of input
                        sys.stderr.write("yacc: Parse error. EOF\n")
                        return
                    statestack.append(t)
                    if debug > 1:
                        sys.stderr.write("%-60s shift state %s\n" % (errorlead, t))
                    symstack.append(lookahead)
                    lookahead = None

                    # Decrease error count on successful shift
                    if self.errorcount > 0:
                        self.errorcount -= 1
                        
                    continue
                
                if t < 0:
                    # reduce a symbol on the stack, emit a production
                    p = prod[-t]
                    pname = p.name
                    plen  = p.len

                    # Get production function
                    sym = YaccSymbol()
                    sym.type = pname       # Production name
                    sym.value = None
                    if debug > 1:
                        sys.stderr.write("%-60s reduce %d\n" % (errorlead, -t))

                    if plen:
                        targ = symstack[-plen-1:]
                        targ[0] = sym
                        try:
                            sym.lineno = targ[1].lineno
                            sym.endlineno = getattr(targ[-1],"endlineno",targ[-1].lineno)
                            sym.lexpos = targ[1].lexpos
                            sym.endlexpos = getattr(targ[-1],"endlexpos",targ[-1].lexpos)
                        except AttributeError:
                            sym.lineno = 0
                        del symstack[-plen:]
                        del statestack[-plen:]
                    else:
                        sym.lineno = 0
                        targ = [ sym ]
                    pslice.slice = targ
                    pslice.pbstack = []
                    # Call the grammar rule with our special slice object
                    p.func(pslice)

                    # If there was a pushback, put that on the stack
                    if pslice.pbstack:
                        lookaheadstack.append(lookahead)
                        for _t in pslice.pbstack:
                            lookaheadstack.append(_t)
                        lookahead = None

                    symstack.append(sym)
                    statestack.append(goto[statestack[-1],pname])
                    continue

                if t == 0:
                    n = symstack[-1]
                    return getattr(n,"value",None)
                    sys.stderr.write(errorlead, "\n")

            if t == None:
                if debug:
                    sys.stderr.write(errorlead + "\n")
                # We have some kind of parsing error here.  To handle
                # this, we are going to push the current token onto
                # the tokenstack and replace it with an 'error' token.
                # If there are any synchronization rules, they may
                # catch it.
                #
                # In addition to pushing the error token, we call call
                # the user defined p_error() function if this is the
                # first syntax error.  This function is only called if
                # errorcount == 0.
                if not self.errorcount:
                    self.errorcount = error_count
                    errtoken = lookahead
                    if errtoken.type == '$end':
                        errtoken = None               # End of file!
                    if self.errorfunc:
                        global errok,token,restart
                        errok = self.errok        # Set some special functions available in error recovery
                        token = get_token
                        restart = self.restart
                        tok = self.errorfunc(errtoken)
                        del errok, token, restart   # Delete special functions
                        
                        if not self.errorcount:
                            # User must have done some kind of panic
                            # mode recovery on their own.  The
                            # returned token is the next lookahead
                            lookahead = tok
                            errtoken = None
                            continue
                    else:
                        if errtoken:
                            if hasattr(errtoken,"lineno"): lineno = lookahead.lineno
                            else: lineno = 0
                            if lineno:
                                sys.stderr.write("yacc: Syntax error at line %d, token=%s\n" % (lineno, errtoken.type))
                            else:
                                sys.stderr.write("yacc: Syntax error, token=%s" % errtoken.type)
                        else:
                            sys.stderr.write("yacc: Parse error in input. EOF\n")
                            return

                else:
                    self.errorcount = error_count
                
                # case 1:  the statestack only has 1 entry on it.  If we're in this state, the
                # entire parse has been rolled back and we're completely hosed.   The token is
                # discarded and we just keep going.

                if len(statestack) <= 1 and lookahead.type != '$end':
                    lookahead = None
                    errtoken = None
                    # Nuke the pushback stack
                    del lookaheadstack[:]
                    continue

                # case 2: the statestack has a couple of entries on it, but we're
                # at the end of the file. nuke the top entry and generate an error token

                # Start nuking entries on the stack
                if lookahead.type == '$end':
                    # Whoa. We're really hosed here. Bail out
                    return 

                if lookahead.type != 'error':
                    sym = symstack[-1]
                    if sym.type == 'error':
                        # Hmmm. Error is on top of stack, we'll just nuke input
                        # symbol and continue
                        lookahead = None
                        continue
                    t = YaccSymbol()
                    t.type = 'error'
                    if hasattr(lookahead,"lineno"):
                        t.lineno = lookahead.lineno
                    t.value = lookahead
                    lookaheadstack.append(lookahead)
                    lookahead = t
                else:
                    symstack.pop()
                    statestack.pop()

                continue

            # Call an error function here
            raise RuntimeError, "yacc: internal parser error!!!\n"

# -----------------------------------------------------------------------------
#                          === Parser Construction ===
#
# The following functions and variables are used to implement the yacc() function
# itself.   This is pretty hairy stuff involving lots of error checking,
# construction of LR items, kernels, and so forth.   Although a lot of
# this work is done using global variables, the resulting Parser object
# is completely self contained--meaning that it is safe to repeatedly
# call yacc() with different grammars in the same application.
# -----------------------------------------------------------------------------
        
# -----------------------------------------------------------------------------
# validate_file()
#
# This function checks to see if there are duplicated p_rulename() functions
# in the parser module file.  Without this function, it is really easy for
# users to make mistakes by cutting and pasting code fragments (and it's a real
# bugger to try and figure out why the resulting parser doesn't work).  Therefore,
# we just do a little regular expression pattern matching of def statements
# to try and detect duplicates.
# -----------------------------------------------------------------------------

def validate_file(filename):
    base,ext = os.path.splitext(filename)
    if ext != '.py': return 1          # No idea. Assume it's okay.

    try:
        f = open(filename)
        lines = f.readlines()
        f.close()
    except IOError:
        return 1                       # Oh well

    # Match def p_funcname(
    fre = re.compile(r'\s*def\s+(p_[a-zA-Z_0-9]*)\(')
    counthash = { }
    linen = 1
    noerror = 1
    for l in lines:
        m = fre.match(l)
        if m:
            name = m.group(1)
            prev = counthash.get(name)
            if not prev:
                counthash[name] = linen
            else:
                sys.stderr.write("%s:%d: Function %s redefined. Previously defined on line %d\n" % (filename,linen,name,prev))
                noerror = 0
        linen += 1
    return noerror

# This function looks for functions that might be grammar rules, but which don't have the proper p_suffix.
def validate_dict(d):
    for n,v in d.items(): 
        if n[0:2] == 'p_' and type(v) in (types.FunctionType, types.MethodType): continue
        if n[0:2] == 't_': continue

        if n[0:2] == 'p_':
            sys.stderr.write("yacc: Warning. '%s' not defined as a function\n" % n)
        if 1 and isinstance(v,types.FunctionType) and v.func_code.co_argcount == 1:
            try:
                doc = v.__doc__.split(" ")
                if doc[1] == ':':
                    sys.stderr.write("%s:%d: Warning. Possible grammar rule '%s' defined without p_ prefix.\n" % (v.func_code.co_filename, v.func_code.co_firstlineno,n))
            except StandardError:
                pass

# -----------------------------------------------------------------------------
#                           === GRAMMAR FUNCTIONS ===
#
# The following global variables and functions are used to store, manipulate,
# and verify the grammar rules specified by the user.
# -----------------------------------------------------------------------------

# Initialize all of the global variables used during grammar construction
def initialize_vars():
    global Productions, Prodnames, Prodmap, Terminals 
    global Nonterminals, First, Follow, Precedence, LRitems
    global Errorfunc, Signature, Requires

    Productions  = [None]  # A list of all of the productions.  The first
                           # entry is always reserved for the purpose of
                           # building an augmented grammar
                        
    Prodnames    = { }     # A dictionary mapping the names of nonterminals to a list of all
                           # productions of that nonterminal.
                        
    Prodmap      = { }     # A dictionary that is only used to detect duplicate
                           # productions.

    Terminals    = { }     # A dictionary mapping the names of terminal symbols to a
                           # list of the rules where they are used.

    Nonterminals = { }     # A dictionary mapping names of nonterminals to a list
                           # of rule numbers where they are used.

    First        = { }     # A dictionary of precomputed FIRST(x) symbols
    
    Follow       = { }     # A dictionary of precomputed FOLLOW(x) symbols

    Precedence   = { }     # Precedence rules for each terminal. Contains tuples of the
                           # form ('right',level) or ('nonassoc', level) or ('left',level)

    LRitems      = [ ]     # A list of all LR items for the grammar.  These are the
                           # productions with the "dot" like E -> E . PLUS E

    Errorfunc    = None    # User defined error handler

    Signature    = hashlib.sha256()   # Digital signature of the grammar rules, precedence
                               # and other information.  Used to determined when a
                               # parsing table needs to be regenerated.

    Requires     = { }     # Requires list

    # File objects used when creating the parser.out debugging file
    global _vf, _vfc
    _vf           = cStringIO.StringIO()
    _vfc          = cStringIO.StringIO()

# -----------------------------------------------------------------------------
# class Production:
#
# This class stores the raw information about a single production or grammar rule.
# It has a few required attributes:
#
#       name     - Name of the production (nonterminal)
#       prod     - A list of symbols making up its production
#       number   - Production number.
#
# In addition, a few additional attributes are used to help with debugging or
# optimization of table generation.
#
#       file     - File where production action is defined.
#       lineno   - Line number where action is defined
#       func     - Action function
#       prec     - Precedence level
#       lr_next  - Next LR item. Example, if we are ' E -> E . PLUS E'
#                  then lr_next refers to 'E -> E PLUS . E'   
#       lr_index - LR item index (location of the ".") in the prod list.
#       lookaheads - LALR lookahead symbols for this item
#       len      - Length of the production (number of symbols on right hand side)
# -----------------------------------------------------------------------------

class Production:
    def __init__(self,**kw):
        for k,v in kw.items():
            setattr(self,k,v)
        self.lr_index = -1
        self.lr0_added = 0    # Flag indicating whether or not added to LR0 closure
        self.lr1_added = 0    # Flag indicating whether or not added to LR1
        self.usyms = [ ]
        self.lookaheads = { }
        self.lk_added = { }
        self.setnumbers = [ ]
        
    def __str__(self):
        if self.prod:
            s = "%s -> %s" % (self.name," ".join(self.prod))
        else:
            s = "%s -> <empty>" % self.name
        return s

    def __repr__(self):
        return str(self)

    # Compute lr_items from the production
    def lr_item(self,n):
        if n > len(self.prod): return None
        p = Production()
        p.name = self.name
        p.prod = list(self.prod)
        p.number = self.number
        p.lr_index = n
        p.lookaheads = { }
        p.setnumbers = self.setnumbers
        p.prod.insert(n,".")
        p.prod = tuple(p.prod)
        p.len = len(p.prod)
        p.usyms = self.usyms

        # Precompute list of productions immediately following
        try:
            p.lrafter = Prodnames[p.prod[n+1]]
        except (IndexError,KeyError),e:
            p.lrafter = []
        try:
            p.lrbefore = p.prod[n-1]
        except IndexError:
            p.lrbefore = None

        return p

class MiniProduction:
    pass

# regex matching identifiers
_is_identifier = re.compile(r'^[a-zA-Z0-9_-~]+$')

# -----------------------------------------------------------------------------
# add_production()
#
# Given an action function, this function assembles a production rule.
# The production rule is assumed to be found in the function's docstring.
# This rule has the general syntax:
#
#              name1 ::= production1
#                     |  production2
#                     |  production3
#                    ...
#                     |  productionn
#              name2 ::= production1
#                     |  production2
#                    ... 
# -----------------------------------------------------------------------------

def add_production(f,file,line,prodname,syms):
    
    if Terminals.has_key(prodname):
        sys.stderr.write("%s:%d: Illegal rule name '%s'. Already defined as a token.\n" % (file,line,prodname))
        return -1
    if prodname == 'error':
        sys.stderr.write("%s:%d: Illegal rule name '%s'. error is a reserved word.\n" % (file,line,prodname))
        return -1
                
    if not _is_identifier.match(prodname):
        sys.stderr.write("%s:%d: Illegal rule name '%s'\n" % (file,line,prodname))
        return -1

    for x in range(len(syms)):
        s = syms[x]
        if s[0] in "'\"":
             try:
                 c = eval(s)
                 if (len(c) > 1):
                      sys.stderr.write("%s:%d: Literal token %s in rule '%s' may only be a single character\n" % (file,line,s, prodname)) 
                      return -1
                 if not Terminals.has_key(c):
                      Terminals[c] = []
                 syms[x] = c
                 continue
             except SyntaxError:
                 pass
        if not _is_identifier.match(s) and s != '%prec':
            sys.stderr.write("%s:%d: Illegal name '%s' in rule '%s'\n" % (file,line,s, prodname))
            return -1

    # See if the rule is already in the rulemap
    map = "%s -> %s" % (prodname,syms)
    if Prodmap.has_key(map):
        m = Prodmap[map]
        sys.stderr.write("%s:%d: Duplicate rule %s.\n" % (file,line, m))
        sys.stderr.write("%s:%d: Previous definition at %s:%d\n" % (file,line, m.file, m.line))
        return -1

    p = Production()
    p.name = prodname
    p.prod = syms
    p.file = file
    p.line = line
    p.func = f
    p.number = len(Productions)

            
    Productions.append(p)
    Prodmap[map] = p
    if not Nonterminals.has_key(prodname):
        Nonterminals[prodname] = [ ]
    
    # Add all terminals to Terminals
    i = 0
    while i < len(p.prod):
        t = p.prod[i]
        if t == '%prec':
            try:
                precname = p.prod[i+1]
            except IndexError:
                sys.stderr.write("%s:%d: Syntax error. Nothing follows %%prec.\n" % (p.file,p.line))
                return -1

            prec = Precedence.get(precname,None)
            if not prec:
                sys.stderr.write("%s:%d: Nothing known about the precedence of '%s'\n" % (p.file,p.line,precname))
                return -1
            else:
                p.prec = prec
            del p.prod[i]
            del p.prod[i]
            continue

        if Terminals.has_key(t):
            Terminals[t].append(p.number)
            # Is a terminal.  We'll assign a precedence to p based on this
            if not hasattr(p,"prec"):
                p.prec = Precedence.get(t,('right',0))
        else:
            if not Nonterminals.has_key(t):
                Nonterminals[t] = [ ]
            Nonterminals[t].append(p.number)
        i += 1

    if not hasattr(p,"prec"):
        p.prec = ('right',0)
        
    # Set final length of productions
    p.len  = len(p.prod)
    p.prod = tuple(p.prod)

    # Calculate unique syms in the production
    p.usyms = [ ]
    for s in p.prod:
        if s not in p.usyms:
            p.usyms.append(s)
    
    # Add to the global productions list
    try:
        Prodnames[p.name].append(p)
    except KeyError:
        Prodnames[p.name] = [ p ]
    return 0

# Given a raw rule function, this function rips out its doc string
# and adds rules to the grammar

def add_function(f):
    line = f.func_code.co_firstlineno
    file = f.func_code.co_filename
    error = 0

    if isinstance(f,types.MethodType):
        reqdargs = 2
    else:
        reqdargs = 1
        
    if f.func_code.co_argcount > reqdargs:
        sys.stderr.write("%s:%d: Rule '%s' has too many arguments.\n" % (file,line,f.__name__))
        return -1

    if f.func_code.co_argcount < reqdargs:
        sys.stderr.write("%s:%d: Rule '%s' requires an argument.\n" % (file,line,f.__name__))
        return -1
          
    if f.__doc__:
        # Split the doc string into lines
        pstrings = f.__doc__.splitlines()
        lastp = None
        dline = line
        for ps in pstrings:
            dline += 1
            p = ps.split()
            if not p: continue
            try:
                if p[0] == '|':
                    # This is a continuation of a previous rule
                    if not lastp:
                        sys.stderr.write("%s:%d: Misplaced '|'.\n" % (file,dline))
                        return -1
                    prodname = lastp
                    if len(p) > 1:
                        syms = p[1:]
                    else:
                        syms = [ ]
                else:
                    prodname = p[0]
                    lastp = prodname
                    assign = p[1]
                    if len(p) > 2:
                        syms = p[2:]
                    else:
                        syms = [ ]
                    if assign != ':' and assign != '::=':
                        sys.stderr.write("%s:%d: Syntax error. Expected ':'\n" % (file,dline))
                        return -1
                         
 
                e = add_production(f,file,dline,prodname,syms)
                error += e

                
            except StandardError:
                sys.stderr.write("%s:%d: Syntax error in rule '%s'\n" % (file,dline,ps))
                error -= 1
    else:
        sys.stderr.write("%s:%d: No documentation string specified in function '%s'\n" % (file,line,f.__name__))
    return error


# Cycle checking code (Michael Dyck)

def compute_reachable():
    '''
    Find each symbol that can be reached from the start symbol.
    Print a warning for any nonterminals that can't be reached.
    (Unused terminals have already had their warning.)
    '''
    Reachable = { }
    for s in Terminals.keys() + Nonterminals.keys():
        Reachable[s] = 0

    mark_reachable_from( Productions[0].prod[0], Reachable )

    for s in Nonterminals.keys():
        if not Reachable[s]:
            sys.stderr.write("yacc: Symbol '%s' is unreachable.\n" % s)

def mark_reachable_from(s, Reachable):
    '''
    Mark all symbols that are reachable from symbol s.
    '''
    if Reachable[s]:
        # We've already reached symbol s.
        return
    Reachable[s] = 1
    for p in Prodnames.get(s,[]):
        for r in p.prod:
            mark_reachable_from(r, Reachable)

# -----------------------------------------------------------------------------
# compute_terminates()
#
# This function looks at the various parsing rules and tries to detect
# infinite recursion cycles (grammar rules where there is no possible way
# to derive a string of only terminals).
# -----------------------------------------------------------------------------
def compute_terminates():
    '''
    Raise an error for any symbols that don't terminate.
    '''
    Terminates = {}

    # Terminals:
    for t in Terminals.keys():
        Terminates[t] = 1

    Terminates['$end'] = 1

    # Nonterminals:

    # Initialize to false:
    for n in Nonterminals.keys():
        Terminates[n] = 0

    # Then propagate termination until no change:
    while 1:
        some_change = 0
        for (n,pl) in Prodnames.items():
            # Nonterminal n terminates iff any of its productions terminates.
            for p in pl:
                # Production p terminates iff all of its rhs symbols terminate.
                for s in p.prod:
                    if not Terminates[s]:
                        # The symbol s does not terminate,
                        # so production p does not terminate.
                        p_terminates = 0
                        break
                else:
                    # didn't break from the loop,
                    # so every symbol s terminates
                    # so production p terminates.
                    p_terminates = 1

                if p_terminates:
                    # symbol n terminates!
                    if not Terminates[n]:
                        Terminates[n] = 1
                        some_change = 1
                    # Don't need to consider any more productions for this n.
                    break

        if not some_change:
            break

    some_error = 0
    for (s,terminates) in Terminates.items():
        if not terminates:
            if not Prodnames.has_key(s) and not Terminals.has_key(s) and s != 'error':
                # s is used-but-not-defined, and we've already warned of that,
                # so it would be overkill to say that it's also non-terminating.
                pass
            else:
                sys.stderr.write("yacc: Infinite recursion detected for symbol '%s'.\n" % s)
                some_error = 1

    return some_error

# -----------------------------------------------------------------------------
# verify_productions()
#
# This function examines all of the supplied rules to see if they seem valid.
# -----------------------------------------------------------------------------
def verify_productions(cycle_check=1):
    error = 0
    for p in Productions:
        if not p: continue

        for s in p.prod:
            if not Prodnames.has_key(s) and not Terminals.has_key(s) and s != 'error':
                sys.stderr.write("%s:%d: Symbol '%s' used, but not defined as a token or a rule.\n" % (p.file,p.line,s))
                error = 1
                continue

    unused_tok = 0 
    # Now verify all of the tokens
    if yaccdebug:
        _vf.write("Unused terminals:\n\n")
    for s,v in Terminals.items():
        if s != 'error' and not v:
            sys.stderr.write("yacc: Warning. Token '%s' defined, but not used.\n" % s)
            if yaccdebug: _vf.write("   %s\n"% s)
            unused_tok += 1

    # Print out all of the productions
    if yaccdebug:
        _vf.write("\nGrammar\n\n")
        for i in range(1,len(Productions)):
            _vf.write("Rule %-5d %s\n" % (i, Productions[i]))
        
    unused_prod = 0
    # Verify the use of all productions
    for s,v in Nonterminals.items():
        if not v:
            p = Prodnames[s][0]
            sys.stderr.write("%s:%d: Warning. Rule '%s' defined, but not used.\n" % (p.file,p.line, s))
            unused_prod += 1

    
    if unused_tok == 1:
        sys.stderr.write("yacc: Warning. There is 1 unused token.\n")
    if unused_tok > 1:
        sys.stderr.write("yacc: Warning. There are %d unused tokens.\n" % unused_tok)

    if unused_prod == 1:
        sys.stderr.write("yacc: Warning. There is 1 unused rule.\n")
    if unused_prod > 1:
        sys.stderr.write("yacc: Warning. There are %d unused rules.\n" % unused_prod)

    if yaccdebug:
        _vf.write("\nTerminals, with rules where they appear\n\n")
        ks = Terminals.keys()
        ks.sort()
        for k in ks:
            _vf.write("%-20s : %s\n" % (k, " ".join([str(s) for s in Terminals[k]])))
        _vf.write("\nNonterminals, with rules where they appear\n\n")
        ks = Nonterminals.keys()
        ks.sort()
        for k in ks:
            _vf.write("%-20s : %s\n" % (k, " ".join([str(s) for s in Nonterminals[k]])))

    if (cycle_check):
        compute_reachable()
        error += compute_terminates()
#        error += check_cycles()
    return error

# -----------------------------------------------------------------------------
# build_lritems()
#
# This function walks the list of productions and builds a complete set of the
# LR items.  The LR items are stored in two ways:  First, they are uniquely
# numbered and placed in the list _lritems.  Second, a linked list of LR items
# is built for each production.  For example:
#
#   E -> E PLUS E
#
# Creates the list
#
#  [E -> . E PLUS E, E -> E . PLUS E, E -> E PLUS . E, E -> E PLUS E . ] 
# -----------------------------------------------------------------------------

def build_lritems():
    for p in Productions:
        lastlri = p
        lri = p.lr_item(0)
        i = 0
        while 1:
            lri = p.lr_item(i)
            lastlri.lr_next = lri
            if not lri: break
            lri.lr_num = len(LRitems)
            LRitems.append(lri)
            lastlri = lri
            i += 1

    # In order for the rest of the parser generator to work, we need to
    # guarantee that no more lritems are generated.  Therefore, we nuke
    # the p.lr_item method.  (Only used in debugging)
    # Production.lr_item = None

# -----------------------------------------------------------------------------
# add_precedence()
#
# Given a list of precedence rules, add to the precedence table.
# -----------------------------------------------------------------------------

def add_precedence(plist):
    plevel = 0
    error = 0
    for p in plist:
        plevel += 1
        try:
            prec = p[0]
            terms = p[1:]
            if prec != 'left' and prec != 'right' and prec != 'nonassoc':
                sys.stderr.write("yacc: Invalid precedence '%s'\n" % prec)
                return -1
            for t in terms:
                if Precedence.has_key(t):
                    sys.stderr.write("yacc: Precedence already specified for terminal '%s'\n" % t)
                    error += 1
                    continue
                Precedence[t] = (prec,plevel)
        except:
            sys.stderr.write("yacc: Invalid precedence table.\n")
            error += 1

    return error

# -----------------------------------------------------------------------------
# augment_grammar()
#
# Compute the augmented grammar.  This is just a rule S' -> start where start
# is the starting symbol.
# -----------------------------------------------------------------------------

def augment_grammar(start=None):
    if not start:
        start = Productions[1].name
    Productions[0] = Production(name="S'",prod=[start],number=0,len=1,prec=('right',0),func=None)
    Productions[0].usyms = [ start ]
    Nonterminals[start].append(0)


# -------------------------------------------------------------------------
# first()
#
# Compute the value of FIRST1(beta) where beta is a tuple of symbols.
#
# During execution of compute_first1, the result may be incomplete.
# Afterward (e.g., when called from compute_follow()), it will be complete.
# -------------------------------------------------------------------------
def first(beta):

    # We are computing First(x1,x2,x3,...,xn)
    result = [ ]
    for x in beta:
        x_produces_empty = 0

        # Add all the non-<empty> symbols of First[x] to the result.
        for f in First[x]:
            if f == '<empty>':
                x_produces_empty = 1
            else:
                if f not in result: result.append(f)

        if x_produces_empty:
            # We have to consider the next x in beta,
            # i.e. stay in the loop.
            pass
        else:
            # We don't have to consider any further symbols in beta.
            break
    else:
        # There was no 'break' from the loop,
        # so x_produces_empty was true for all x in beta,
        # so beta produces empty as well.
        result.append('<empty>')

    return result


# FOLLOW(x)
# Given a non-terminal.  This function computes the set of all symbols
# that might follow it.  Dragon book, p. 189.

def compute_follow(start=None):
    # Add '$end' to the follow list of the start symbol
    for k in Nonterminals.keys():
        Follow[k] = [ ]

    if not start:
        start = Productions[1].name
        
    Follow[start] = [ '$end' ]
        
    while 1:
        didadd = 0
        for p in Productions[1:]:
            # Here is the production set
            for i in range(len(p.prod)):
                B = p.prod[i]
                if Nonterminals.has_key(B):
                    # Okay. We got a non-terminal in a production
                    fst = first(p.prod[i+1:])
                    hasempty = 0
                    for f in fst:
                        if f != '<empty>' and f not in Follow[B]:
                            Follow[B].append(f)
                            didadd = 1
                        if f == '<empty>':
                            hasempty = 1
                    if hasempty or i == (len(p.prod)-1):
                        # Add elements of follow(a) to follow(b)
                        for f in Follow[p.name]:
                            if f not in Follow[B]:
                                Follow[B].append(f)
                                didadd = 1
        if not didadd: break

    if 0 and yaccdebug:
        _vf.write('\nFollow:\n')
        for k in Nonterminals.keys():
            _vf.write("%-20s : %s\n" % (k, " ".join([str(s) for s in Follow[k]])))

# -------------------------------------------------------------------------
# compute_first1()
#
# Compute the value of FIRST1(X) for all symbols
# -------------------------------------------------------------------------
def compute_first1():

    # Terminals:
    for t in Terminals.keys():
        First[t] = [t]

    First['$end'] = ['$end']
    First['#'] = ['#'] # what's this for?

    # Nonterminals:

    # Initialize to the empty set:
    for n in Nonterminals.keys():
        First[n] = []

    # Then propagate symbols until no change:
    while 1:
        some_change = 0
        for n in Nonterminals.keys():
            for p in Prodnames[n]:
                for f in first(p.prod):
                    if f not in First[n]:
                        First[n].append( f )
                        some_change = 1
        if not some_change:
            break

    if 0 and yaccdebug:
        _vf.write('\nFirst:\n')
        for k in Nonterminals.keys():
            _vf.write("%-20s : %s\n" %
                (k, " ".join([str(s) for s in First[k]])))

# -----------------------------------------------------------------------------
#                           === SLR Generation ===
#
# The following functions are used to construct SLR (Simple LR) parsing tables
# as described on p.221-229 of the dragon book.
# -----------------------------------------------------------------------------

# Global variables for the LR parsing engine
def lr_init_vars():
    global _lr_action, _lr_goto, _lr_method
    global _lr_goto_cache, _lr0_cidhash
    
    _lr_action       = { }        # Action table
    _lr_goto         = { }        # Goto table
    _lr_method       = "Unknown"  # LR method used
    _lr_goto_cache   = { }
    _lr0_cidhash     = { }


# Compute the LR(0) closure operation on I, where I is a set of LR(0) items.
# prodlist is a list of productions.

_add_count = 0       # Counter used to detect cycles

def lr0_closure(I):
    global _add_count
    
    _add_count += 1
    prodlist = Productions
    
    # Add everything in I to J        
    J = I[:]
    didadd = 1
    while didadd:
        didadd = 0
        for j in J:
            for x in j.lrafter:
                if x.lr0_added == _add_count: continue
                # Add B --> .G to J
                J.append(x.lr_next)
                x.lr0_added = _add_count
                didadd = 1
               
    return J

# Compute the LR(0) goto function goto(I,X) where I is a set
# of LR(0) items and X is a grammar symbol.   This function is written
# in a way that guarantees uniqueness of the generated goto sets
# (i.e. the same goto set will never be returned as two different Python
# objects).  With uniqueness, we can later do fast set comparisons using
# id(obj) instead of element-wise comparison.

def lr0_goto(I,x):
    # First we look for a previously cached entry
    g = _lr_goto_cache.get((id(I),x),None)
    if g: return g

    # Now we generate the goto set in a way that guarantees uniqueness
    # of the result
    
    s = _lr_goto_cache.get(x,None)
    if not s:
        s = { }
        _lr_goto_cache[x] = s

    gs = [ ]
    for p in I:
        n = p.lr_next
        if n and n.lrbefore == x:
            s1 = s.get(id(n),None)
            if not s1:
                s1 = { }
                s[id(n)] = s1
            gs.append(n)
            s = s1
    g = s.get('$end',None)
    if not g:
        if gs:
            g = lr0_closure(gs)
            s['$end'] = g
        else:
            s['$end'] = gs
    _lr_goto_cache[(id(I),x)] = g
    return g

_lr0_cidhash = { }

# Compute the LR(0) sets of item function
def lr0_items():
    
    C = [ lr0_closure([Productions[0].lr_next]) ]
    i = 0
    for I in C:
        _lr0_cidhash[id(I)] = i
        i += 1

    # Loop over the items in C and each grammar symbols
    i = 0
    while i < len(C):
        I = C[i]
        i += 1

        # Collect all of the symbols that could possibly be in the goto(I,X) sets
        asyms = { }
        for ii in I:
            for s in ii.usyms:
                asyms[s] = None

        for x in asyms.keys():
            g = lr0_goto(I,x)
            if not g:  continue
            if _lr0_cidhash.has_key(id(g)): continue
            _lr0_cidhash[id(g)] = len(C)            
            C.append(g)
            
    return C

# -----------------------------------------------------------------------------
#                       ==== LALR(1) Parsing ====
#
# LALR(1) parsing is almost exactly the same as SLR except that instead of
# relying upon Follow() sets when performing reductions, a more selective
# lookahead set that incorporates the state of the LR(0) machine is utilized.
# Thus, we mainly just have to focus on calculating the lookahead sets.
#
# The method used here is due to DeRemer and Pennelo (1982).
#
# DeRemer, F. L., and T. J. Pennelo: "Efficient Computation of LALR(1)
#     Lookahead Sets", ACM Transactions on Programming Languages and Systems,
#     Vol. 4, No. 4, Oct. 1982, pp. 615-649
#
# Further details can also be found in:
#
#  J. Tremblay and P. Sorenson, "The Theory and Practice of Compiler Writing",
#      McGraw-Hill Book Company, (1985).
#
# Note:  This implementation is a complete replacement of the LALR(1) 
#        implementation in PLY-1.x releases.   That version was based on
#        a less efficient algorithm and it had bugs in its implementation.
# -----------------------------------------------------------------------------

# -----------------------------------------------------------------------------
# compute_nullable_nonterminals()
#
# Creates a dictionary containing all of the non-terminals that might produce
# an empty production.   
# -----------------------------------------------------------------------------

def compute_nullable_nonterminals():
    nullable = {}
    num_nullable = 0
    while 1:
       for p in Productions[1:]:
           if p.len == 0:
                nullable[p.name] = 1
                continue
           for t in p.prod:
                if not nullable.has_key(t): break
           else:
                nullable[p.name] = 1
       if len(nullable) == num_nullable: break
       num_nullable = len(nullable)
    return nullable

# -----------------------------------------------------------------------------
# find_nonterminal_trans(C)
#
# Given a set of LR(0) items, this functions finds all of the non-terminal
# transitions.    These are transitions in which a dot appears immediately before
# a non-terminal.   Returns a list of tuples of the form (state,N) where state
# is the state number and N is the nonterminal symbol.
#
# The input C is the set of LR(0) items.
# -----------------------------------------------------------------------------

def find_nonterminal_transitions(C):
     trans = []
     for state in range(len(C)):
         for p in C[state]:
             if p.lr_index < p.len - 1:
                  t = (state,p.prod[p.lr_index+1])
                  if Nonterminals.has_key(t[1]):
                        if t not in trans: trans.append(t)
         state = state + 1
     return trans

# -----------------------------------------------------------------------------
# dr_relation()
#
# Computes the DR(p,A) relationships for non-terminal transitions.  The input
# is a tuple (state,N) where state is a number and N is a nonterminal symbol.
#
# Returns a list of terminals.
# -----------------------------------------------------------------------------

def dr_relation(C,trans,nullable):
    dr_set = { }
    state,N = trans
    terms = []

    g = lr0_goto(C[state],N)
    for p in g:
       if p.lr_index < p.len - 1:
           a = p.prod[p.lr_index+1]
           if Terminals.has_key(a):
               if a not in terms: terms.append(a)

    # This extra bit is to handle the start state
    if state == 0 and N == Productions[0].prod[0]:
       terms.append('$end')
 
    return terms

# -----------------------------------------------------------------------------
# reads_relation()
#
# Computes the READS() relation (p,A) READS (t,C).
# -----------------------------------------------------------------------------

def reads_relation(C, trans, empty):
    # Look for empty transitions
    rel = []
    state, N = trans

    g = lr0_goto(C[state],N)
    j = _lr0_cidhash.get(id(g),-1)
    for p in g:
        if p.lr_index < p.len - 1:
             a = p.prod[p.lr_index + 1]
             if empty.has_key(a):
                  rel.append((j,a))

    return rel

# -----------------------------------------------------------------------------
# compute_lookback_includes()
#
# Determines the lookback and includes relations
#
# LOOKBACK:
# 
# This relation is determined by running the LR(0) state machine forward.
# For example, starting with a production "N : . A B C", we run it forward
# to obtain "N : A B C ."   We then build a relationship between this final
# state and the starting state.   These relationships are stored in a dictionary
# lookdict.   
#
# INCLUDES:
#
# Computes the INCLUDE() relation (p,A) INCLUDES (p',B).   
#
# This relation is used to determine non-terminal transitions that occur
# inside of other non-terminal transition states.   (p,A) INCLUDES (p', B)
# if the following holds:
#
#       B -> LAT, where T -> epsilon and p' -L-> p 
#
# L is essentially a prefix (which may be empty), T is a suffix that must be
# able to derive an empty string.  State p' must lead to state p with the string L.
# 
# -----------------------------------------------------------------------------

def compute_lookback_includes(C,trans,nullable):
    
    lookdict = {}          # Dictionary of lookback relations
    includedict = {}       # Dictionary of include relations

    # Make a dictionary of non-terminal transitions
    dtrans = {}
    for t in trans:
        dtrans[t] = 1
    
    # Loop over all transitions and compute lookbacks and includes
    for state,N in trans:
        lookb = []
        includes = []
        for p in C[state]:
            if p.name != N: continue
        
            # Okay, we have a name match.  We now follow the production all the way
            # through the state machine until we get the . on the right hand side

            lr_index = p.lr_index
            j = state
            while lr_index < p.len - 1:
                 lr_index = lr_index + 1
                 t = p.prod[lr_index]

                 # Check to see if this symbol and state are a non-terminal transition
                 if dtrans.has_key((j,t)):
                       # Yes.  Okay, there is some chance that this is an includes relation
                       # the only way to know for certain is whether the rest of the 
                       # production derives empty

                       li = lr_index + 1
                       while li < p.len:
                            if Terminals.has_key(p.prod[li]): break      # No forget it
                            if not nullable.has_key(p.prod[li]): break
                            li = li + 1
                       else:
                            # Appears to be a relation between (j,t) and (state,N)
                            includes.append((j,t))

                 g = lr0_goto(C[j],t)               # Go to next set             
                 j = _lr0_cidhash.get(id(g),-1)     # Go to next state
             
            # When we get here, j is the final state, now we have to locate the production
            for r in C[j]:
                 if r.name != p.name: continue
                 if r.len != p.len:   continue
                 i = 0
                 # This look is comparing a production ". A B C" with "A B C ."
                 while i < r.lr_index:
                      if r.prod[i] != p.prod[i+1]: break
                      i = i + 1
                 else:
                      lookb.append((j,r))
        for i in includes:
             if not includedict.has_key(i): includedict[i] = []
             includedict[i].append((state,N))
        lookdict[(state,N)] = lookb

    return lookdict,includedict

# -----------------------------------------------------------------------------
# digraph()
# traverse()
#
# The following two functions are used to compute set valued functions
# of the form:
#
#     F(x) = F'(x) U U{F(y) | x R y}
#
# This is used to compute the values of Read() sets as well as FOLLOW sets
# in LALR(1) generation.
#
# Inputs:  X    - An input set
#          R    - A relation
#          FP   - Set-valued function
# ------------------------------------------------------------------------------

def digraph(X,R,FP):
    N = { }
    for x in X:
       N[x] = 0
    stack = []
    F = { }
    for x in X:
        if N[x] == 0: traverse(x,N,stack,F,X,R,FP)
    return F

def traverse(x,N,stack,F,X,R,FP):
    stack.append(x)
    d = len(stack)
    N[x] = d
    F[x] = FP(x)             # F(X) <- F'(x)
    
    rel = R(x)               # Get y's related to x
    for y in rel:
        if N[y] == 0:
             traverse(y,N,stack,F,X,R,FP)
        N[x] = min(N[x],N[y])
        for a in F.get(y,[]):
            if a not in F[x]: F[x].append(a)
    if N[x] == d:
       N[stack[-1]] = sys.maxint
       F[stack[-1]] = F[x]
       element = stack.pop()
       while element != x:
           N[stack[-1]] = sys.maxint
           F[stack[-1]] = F[x]
           element = stack.pop()

# -----------------------------------------------------------------------------
# compute_read_sets()
#
# Given a set of LR(0) items, this function computes the read sets.
#
# Inputs:  C        =  Set of LR(0) items
#          ntrans   = Set of nonterminal transitions
#          nullable = Set of empty transitions
#
# Returns a set containing the read sets
# -----------------------------------------------------------------------------

def compute_read_sets(C, ntrans, nullable):
    FP = lambda x: dr_relation(C,x,nullable)
    R =  lambda x: reads_relation(C,x,nullable)
    F = digraph(ntrans,R,FP)
    return F

# -----------------------------------------------------------------------------
# compute_follow_sets()
#
# Given a set of LR(0) items, a set of non-terminal transitions, a readset, 
# and an include set, this function computes the follow sets
#
# Follow(p,A) = Read(p,A) U U {Follow(p',B) | (p,A) INCLUDES (p',B)}
#
# Inputs:    
#            ntrans     = Set of nonterminal transitions
#            readsets   = Readset (previously computed)
#            inclsets   = Include sets (previously computed)
#
# Returns a set containing the follow sets      
# -----------------------------------------------------------------------------

def compute_follow_sets(ntrans,readsets,inclsets):
     FP = lambda x: readsets[x]
     R  = lambda x: inclsets.get(x,[])
     F = digraph(ntrans,R,FP)
     return F

# -----------------------------------------------------------------------------
# add_lookaheads()
#
# Attaches the lookahead symbols to grammar rules. 
#
# Inputs:    lookbacks         -  Set of lookback relations
#            followset         -  Computed follow set
#
# This function directly attaches the lookaheads to productions contained
# in the lookbacks set
# -----------------------------------------------------------------------------

def add_lookaheads(lookbacks,followset):
    for trans,lb in lookbacks.items():
        # Loop over productions in lookback
        for state,p in lb:
             if not p.lookaheads.has_key(state):
                  p.lookaheads[state] = []
             f = followset.get(trans,[])
             for a in f:
                  if a not in p.lookaheads[state]: p.lookaheads[state].append(a)

# -----------------------------------------------------------------------------
# add_lalr_lookaheads()
#
# This function does all of the work of adding lookahead information for use
# with LALR parsing
# -----------------------------------------------------------------------------

def add_lalr_lookaheads(C):
    # Determine all of the nullable nonterminals
    nullable = compute_nullable_nonterminals()

    # Find all non-terminal transitions
    trans = find_nonterminal_transitions(C)

    # Compute read sets
    readsets = compute_read_sets(C,trans,nullable)

    # Compute lookback/includes relations
    lookd, included = compute_lookback_includes(C,trans,nullable)

    # Compute LALR FOLLOW sets
    followsets = compute_follow_sets(trans,readsets,included)
    
    # Add all of the lookaheads
    add_lookaheads(lookd,followsets)

# -----------------------------------------------------------------------------
# lr_parse_table()
#
# This function constructs the parse tables for SLR or LALR
# -----------------------------------------------------------------------------
def lr_parse_table(method):
    global _lr_method
    goto = _lr_goto           # Goto array
    action = _lr_action       # Action array
    actionp = { }             # Action production array (temporary)

    _lr_method = method
    
    n_srconflict = 0
    n_rrconflict = 0

    if yaccdebug:
        sys.stderr.write("yacc: Generating %s parsing table...\n" % method)        
        _vf.write("\n\nParsing method: %s\n\n" % method)
        
    # Step 1: Construct C = { I0, I1, ... IN}, collection of LR(0) items
    # This determines the number of states
    
    C = lr0_items()

    if method == 'LALR':
        add_lalr_lookaheads(C)

    # Build the parser table, state by state
    st = 0
    for I in C:
        # Loop over each production in I
        actlist = [ ]              # List of actions
        
        if yaccdebug:
            _vf.write("\nstate %d\n\n" % st)
            for p in I:
                _vf.write("    (%d) %s\n" % (p.number, str(p)))
            _vf.write("\n")

        for p in I:
            try:
                if p.prod[-1] == ".":
                    if p.name == "S'":
                        # Start symbol. Accept!
                        action[st,"$end"] = 0
                        actionp[st,"$end"] = p
                    else:
                        # We are at the end of a production.  Reduce!
                        if method == 'LALR':
                            laheads = p.lookaheads[st]
                        else:
                            laheads = Follow[p.name]
                        for a in laheads:
                            actlist.append((a,p,"reduce using rule %d (%s)" % (p.number,p)))
                            r = action.get((st,a),None)
                            if r is not None:
                                # Whoa. Have a shift/reduce or reduce/reduce conflict
                                if r > 0:
                                    # Need to decide on shift or reduce here
                                    # By default we favor shifting. Need to add
                                    # some precedence rules here.
                                    sprec,slevel = Productions[actionp[st,a].number].prec                                    
                                    rprec,rlevel = Precedence.get(a,('right',0))
                                    if (slevel < rlevel) or ((slevel == rlevel) and (rprec == 'left')):
                                        # We really need to reduce here.  
                                        action[st,a] = -p.number
                                        actionp[st,a] = p
                                        if not slevel and not rlevel:
                                            _vfc.write("shift/reduce conflict in state %d resolved as reduce.\n" % st)
                                            _vf.write("  ! shift/reduce conflict for %s resolved as reduce.\n" % a)
                                            n_srconflict += 1
                                    elif (slevel == rlevel) and (rprec == 'nonassoc'):
                                        action[st,a] = None
                                    else:
                                        # Hmmm. Guess we'll keep the shift
                                        if not rlevel:
                                            _vfc.write("shift/reduce conflict in state %d resolved as shift.\n" % st)
                                            _vf.write("  ! shift/reduce conflict for %s resolved as shift.\n" % a)
                                            n_srconflict +=1                                    
                                elif r < 0:
                                    # Reduce/reduce conflict.   In this case, we favor the rule
                                    # that was defined first in the grammar file
                                    oldp = Productions[-r]
                                    pp = Productions[p.number]
                                    if oldp.line > pp.line:
                                        action[st,a] = -p.number
                                        actionp[st,a] = p
                                    # sys.stderr.write("Reduce/reduce conflict in state %d\n" % st)
                                    n_rrconflict += 1
                                    _vfc.write("reduce/reduce conflict in state %d resolved using rule %d (%s).\n" % (st, actionp[st,a].number, actionp[st,a]))
                                    _vf.write("  ! reduce/reduce conflict for %s resolved using rule %d (%s).\n" % (a,actionp[st,a].number, actionp[st,a]))
                                else:
                                    sys.stderr.write("Unknown conflict in state %d\n" % st)
                            else:
                                action[st,a] = -p.number
                                actionp[st,a] = p
                else:
                    i = p.lr_index
                    a = p.prod[i+1]       # Get symbol right after the "."
                    if Terminals.has_key(a):
                        g = lr0_goto(I,a)
                        j = _lr0_cidhash.get(id(g),-1)
                        if j >= 0:
                            # We are in a shift state
                            actlist.append((a,p,"shift and go to state %d" % j))
                            r = action.get((st,a),None)
                            if r is not None:
                                # Whoa have a shift/reduce or shift/shift conflict
                                if r > 0:
                                    if r != j:
                                        sys.stderr.write("Shift/shift conflict in state %d\n" % st)
                                elif r < 0:
                                    # Do a precedence check.
                                    #   -  if precedence of reduce rule is higher, we reduce.
                                    #   -  if precedence of reduce is same and left assoc, we reduce.
                                    #   -  otherwise we shift
                                    rprec,rlevel = Productions[actionp[st,a].number].prec
                                    sprec,slevel = Precedence.get(a,('right',0))
                                    if (slevel > rlevel) or ((slevel == rlevel) and (rprec != 'left')):
                                        # We decide to shift here... highest precedence to shift
                                        action[st,a] = j
                                        actionp[st,a] = p
                                        if not rlevel:
                                            n_srconflict += 1
                                            _vfc.write("shift/reduce conflict in state %d resolved as shift.\n" % st)
                                            _vf.write("  ! shift/reduce conflict for %s resolved as shift.\n" % a)
                                    elif (slevel == rlevel) and (rprec == 'nonassoc'):
                                        action[st,a] = None
                                    else:                                            
                                        # Hmmm. Guess we'll keep the reduce
                                        if not slevel and not rlevel:
                                            n_srconflict +=1
                                            _vfc.write("shift/reduce conflict in state %d resolved as reduce.\n" % st)
                                            _vf.write("  ! shift/reduce conflict for %s resolved as reduce.\n" % a)
                                            
                                else:
                                    sys.stderr.write("Unknown conflict in state %d\n" % st)
                            else:
                                action[st,a] = j
                                actionp[st,a] = p
                                
            except StandardError,e:
                raise YaccError, "Hosed in lr_parse_table", e

        # Print the actions associated with each terminal
        if yaccdebug:
          _actprint = { }
          for a,p,m in actlist:
            if action.has_key((st,a)):
                if p is actionp[st,a]:
                    _vf.write("    %-15s %s\n" % (a,m))
                    _actprint[(a,m)] = 1
          _vf.write("\n")
          for a,p,m in actlist:
            if action.has_key((st,a)):
                if p is not actionp[st,a]:
                    if not _actprint.has_key((a,m)):
                        _vf.write("  ! %-15s [ %s ]\n" % (a,m))
                        _actprint[(a,m)] = 1
            
        # Construct the goto table for this state
        if yaccdebug:
            _vf.write("\n")
        nkeys = { }
        for ii in I:
            for s in ii.usyms:
                if Nonterminals.has_key(s):
                    nkeys[s] = None
        for n in nkeys.keys():
            g = lr0_goto(I,n)
            j = _lr0_cidhash.get(id(g),-1)            
            if j >= 0:
                goto[st,n] = j
                if yaccdebug:
                    _vf.write("    %-30s shift and go to state %d\n" % (n,j))

        st += 1

    if yaccdebug:
        if n_srconflict == 1:
            sys.stderr.write("yacc: %d shift/reduce conflict\n" % n_srconflict)
        if n_srconflict > 1:
            sys.stderr.write("yacc: %d shift/reduce conflicts\n" % n_srconflict)
        if n_rrconflict == 1:
            sys.stderr.write("yacc: %d reduce/reduce conflict\n" % n_rrconflict)
        if n_rrconflict > 1:
            sys.stderr.write("yacc: %d reduce/reduce conflicts\n" % n_rrconflict)

# -----------------------------------------------------------------------------
#                          ==== LR Utility functions ====
# -----------------------------------------------------------------------------

# -----------------------------------------------------------------------------
# _lr_write_tables()
#
# This function writes the LR parsing tables to a file
# -----------------------------------------------------------------------------

def lr_write_tables(modulename=tab_module,outputdir=''):
    filename = os.path.join(outputdir,modulename) + ".py"
    try:
        f = open(filename,"w")

        f.write("""
# %s
# This file is automatically generated. Do not edit.

_lr_method = %s

_lr_signature = %s
""" % (filename, repr(_lr_method), repr(Signature.digest())))

        # Change smaller to 0 to go back to original tables
        smaller = 1
                
        # Factor out names to try and make smaller
        if smaller:
            items = { }
        
            for k,v in _lr_action.items():
                i = items.get(k[1])
                if not i:
                    i = ([],[])
                    items[k[1]] = i
                i[0].append(k[0])
                i[1].append(v)

            f.write("\n_lr_action_items = {")
            for k,v in items.items():
                f.write("%r:([" % k)
                for i in v[0]:
                    f.write("%r," % i)
                f.write("],[")
                for i in v[1]:
                    f.write("%r," % i)
                           
                f.write("]),")
            f.write("}\n")

            f.write("""
_lr_action = { }
for _k, _v in _lr_action_items.items():
   for _x,_y in zip(_v[0],_v[1]):
       _lr_action[(_x,_k)] = _y
del _lr_action_items
""")
            
        else:
            f.write("\n_lr_action = { ");
            for k,v in _lr_action.items():
                f.write("(%r,%r):%r," % (k[0],k[1],v))
            f.write("}\n");

        if smaller:
            # Factor out names to try and make smaller
            items = { }
        
            for k,v in _lr_goto.items():
                i = items.get(k[1])
                if not i:
                    i = ([],[])
                    items[k[1]] = i
                i[0].append(k[0])
                i[1].append(v)

            f.write("\n_lr_goto_items = {")
            for k,v in items.items():
                f.write("%r:([" % k)
                for i in v[0]:
                    f.write("%r," % i)
                f.write("],[")
                for i in v[1]:
                    f.write("%r," % i)
                           
                f.write("]),")
            f.write("}\n")

            f.write("""
_lr_goto = { }
for _k, _v in _lr_goto_items.items():
   for _x,_y in zip(_v[0],_v[1]):
       _lr_goto[(_x,_k)] = _y
del _lr_goto_items
""")
        else:
            f.write("\n_lr_goto = { ");
            for k,v in _lr_goto.items():
                f.write("(%r,%r):%r," % (k[0],k[1],v))                    
            f.write("}\n");

        # Write production table
        f.write("_lr_productions = [\n")
        for p in Productions:
            if p:
                if (p.func):
                    f.write("  (%r,%d,%r,%r,%d),\n" % (p.name, p.len, p.func.__name__,p.file,p.line))
                else:
                    f.write("  (%r,%d,None,None,None),\n" % (p.name, p.len))
            else:
                f.write("  None,\n")
        f.write("]\n")
        
        f.close()

    except IOError,e:
        print "Unable to create '%s'" % filename
        print e
        return

def lr_read_tables(module=tab_module,optimize=0):
    global _lr_action, _lr_goto, _lr_productions, _lr_method
    try:
        exec "import %s as parsetab" % module
        
        if (optimize) or (Signature.digest() == parsetab._lr_signature):
            _lr_action = parsetab._lr_action
            _lr_goto   = parsetab._lr_goto
            _lr_productions = parsetab._lr_productions
            _lr_method = parsetab._lr_method
            return 1
        else:
            return 0
        
    except (ImportError,AttributeError):
        return 0


# Available instance types.  This is used when parsers are defined by a class.
# it's a little funky because I want to preserve backwards compatibility
# with Python 2.0 where types.ObjectType is undefined.

try:
   _INSTANCETYPE = (types.InstanceType, types.ObjectType)
except AttributeError:
   _INSTANCETYPE = types.InstanceType

# -----------------------------------------------------------------------------
# yacc(module)
#
# Build the parser module
# -----------------------------------------------------------------------------

def yacc(method=default_lr, debug=yaccdebug, module=None, tabmodule=tab_module, start=None, check_recursion=1, optimize=0,write_tables=1,debugfile=debug_file,outputdir=''):
    global yaccdebug
    yaccdebug = debug
    
    initialize_vars()
    files = { }
    error = 0


    # Add parsing method to signature
    Signature.update(method)
    
    # If a "module" parameter was supplied, extract its dictionary.
    # Note: a module may in fact be an instance as well.
    
    if module:
        # User supplied a module object.
        if isinstance(module, types.ModuleType):
            ldict = module.__dict__
        elif isinstance(module, _INSTANCETYPE):
            _items = [(k,getattr(module,k)) for k in dir(module)]
            ldict = { }
            for i in _items:
                ldict[i[0]] = i[1]
        else:
            raise ValueError,"Expected a module"
        
    else:
        # No module given.  We might be able to get information from the caller.
        # Throw an exception and unwind the traceback to get the globals
        
        try:
            raise RuntimeError
        except RuntimeError:
            e,b,t = sys.exc_info()
            f = t.tb_frame
            f = f.f_back           # Walk out to our calling function
            ldict = f.f_globals    # Grab its globals dictionary

    # Add starting symbol to signature
    if not start:
        start = ldict.get("start",None)
    if start:
        Signature.update(start)

    # If running in optimized mode.  We're going to

    if (optimize and lr_read_tables(tabmodule,1)):
        # Read parse table
        del Productions[:]
        for p in _lr_productions:
            if not p:
                Productions.append(None)
            else:
                m = MiniProduction()
                m.name = p[0]
                m.len  = p[1]
                m.file = p[3]
                m.line = p[4]
                if p[2]:
                    m.func = ldict[p[2]]
                Productions.append(m)
        
    else:
        # Get the tokens map
        if (module and isinstance(module,_INSTANCETYPE)):
            tokens = getattr(module,"tokens",None)
        else:
            tokens = ldict.get("tokens",None)
    
        if not tokens:
            raise YaccError,"module does not define a list 'tokens'"
        if not (isinstance(tokens,types.ListType) or isinstance(tokens,types.TupleType)):
            raise YaccError,"tokens must be a list or tuple."

        # Check to see if a requires dictionary is defined.
        requires = ldict.get("require",None)
        if requires:
            if not (isinstance(requires,types.DictType)):
                raise YaccError,"require must be a dictionary."

            for r,v in requires.items():
                try:
                    if not (isinstance(v,types.ListType)):
                        raise TypeError
                    v1 = [x.split(".") for x in v]
                    Requires[r] = v1
                except StandardError:
                    print "Invalid specification for rule '%s' in require. Expected a list of strings" % r            

        
        # Build the dictionary of terminals.  We a record a 0 in the
        # dictionary to track whether or not a terminal is actually
        # used in the grammar

        if 'error' in tokens:
            print "yacc: Illegal token 'error'.  Is a reserved word."
            raise YaccError,"Illegal token name"

        for n in tokens:
            if Terminals.has_key(n):
                print "yacc: Warning. Token '%s' multiply defined." % n
            Terminals[n] = [ ]

        Terminals['error'] = [ ]

        # Get the precedence map (if any)
        prec = ldict.get("precedence",None)
        if prec:
            if not (isinstance(prec,types.ListType) or isinstance(prec,types.TupleType)):
                raise YaccError,"precedence must be a list or tuple."
            add_precedence(prec)
            Signature.update(repr(prec))

        for n in tokens:
            if not Precedence.has_key(n):
                Precedence[n] = ('right',0)         # Default, right associative, 0 precedence

        # Look for error handler
        ef = ldict.get('p_error',None)
        if ef:
            if isinstance(ef,types.FunctionType):
                ismethod = 0
            elif isinstance(ef, types.MethodType):
                ismethod = 1
            else:
                raise YaccError,"'p_error' defined, but is not a function or method."                
            eline = ef.func_code.co_firstlineno
            efile = ef.func_code.co_filename
            files[efile] = None

            if (ef.func_code.co_argcount != 1+ismethod):
                raise YaccError,"%s:%d: p_error() requires 1 argument." % (efile,eline)
            global Errorfunc
            Errorfunc = ef
        else:
            print "yacc: Warning. no p_error() function is defined."
            
        # Get the list of built-in functions with p_ prefix
        symbols = [ldict[f] for f in ldict.keys()
               if (type(ldict[f]) in (types.FunctionType, types.MethodType) and ldict[f].__name__[:2] == 'p_'
                   and ldict[f].__name__ != 'p_error')]

        # Check for non-empty symbols
        if len(symbols) == 0:
            raise YaccError,"no rules of the form p_rulename are defined."
    
        # Sort the symbols by line number
        symbols.sort(lambda x,y: cmp(x.func_code.co_firstlineno,y.func_code.co_firstlineno))

        # Add all of the symbols to the grammar
        for f in symbols:
            if (add_function(f)) < 0:
                error += 1
            else:
                files[f.func_code.co_filename] = None

        # Make a signature of the docstrings
        for f in symbols:
            if f.__doc__:
                Signature.update(f.__doc__)
    
        lr_init_vars()

        if error:
            raise YaccError,"Unable to construct parser."

        if not lr_read_tables(tabmodule):

            # Validate files
            for filename in files.keys():
                if not validate_file(filename):
                    error = 1

            # Validate dictionary
            validate_dict(ldict)

            if start and not Prodnames.has_key(start):
                raise YaccError,"Bad starting symbol '%s'" % start
        
            augment_grammar(start)    
            error = verify_productions(cycle_check=check_recursion)
            otherfunc = [ldict[f] for f in ldict.keys()
               if (type(f) in (types.FunctionType,types.MethodType) and ldict[f].__name__[:2] != 'p_')]

            if error:
                raise YaccError,"Unable to construct parser."
            
            build_lritems()
            compute_first1()
            compute_follow(start)
        
            if method in ['SLR','LALR']:
                lr_parse_table(method)
            else:
                raise YaccError, "Unknown parsing method '%s'" % method

            if write_tables:
                lr_write_tables(tabmodule,outputdir)        
    
            if yaccdebug:
                try:
                    f = open(os.path.join(outputdir,debugfile),"w")
                    f.write(_vfc.getvalue())
                    f.write("\n\n")
                    f.write(_vf.getvalue())
                    f.close()
                except IOError,e:
                    print "yacc: can't create '%s'" % debugfile,e
        
    # Made it here.   Create a parser object and set up its internal state.
    # Set global parse() method to bound method of parser object.

    p = Parser("xyzzy")
    p.productions = Productions
    p.errorfunc = Errorfunc
    p.action = _lr_action
    p.goto   = _lr_goto
    p.method = _lr_method
    p.require = Requires

    global parse
    parse = p.parse

    global parser
    parser = p

    # Clean up all of the globals we created
    if (not optimize):
        yacc_cleanup()
    return p

# yacc_cleanup function.  Delete all of the global variables
# used during table construction

def yacc_cleanup():
    global _lr_action, _lr_goto, _lr_method, _lr_goto_cache
    del _lr_action, _lr_goto, _lr_method, _lr_goto_cache

    global Productions, Prodnames, Prodmap, Terminals 
    global Nonterminals, First, Follow, Precedence, LRitems
    global Errorfunc, Signature, Requires
    
    del Productions, Prodnames, Prodmap, Terminals
    del Nonterminals, First, Follow, Precedence, LRitems
    del Errorfunc, Signature, Requires
    
    global _vf, _vfc
    del _vf, _vfc
    
    
# Stub that raises an error if parsing is attempted without first calling yacc()
def parse(*args,**kwargs):
    raise YaccError, "yacc: No parser built with yacc()"