/usr/lib/python2.7/dist-packages/qrcode/util.py is in python-qrcode 5.0.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 | import re
import math
import six
from six.moves import xrange
from qrcode import base, exceptions
# QR encoding modes.
MODE_NUMBER = 1 << 0
MODE_ALPHA_NUM = 1 << 1
MODE_8BIT_BYTE = 1 << 2
MODE_KANJI = 1 << 3
# Encoding mode sizes.
MODE_SIZE_SMALL = {
MODE_NUMBER: 10,
MODE_ALPHA_NUM: 9,
MODE_8BIT_BYTE: 8,
MODE_KANJI: 8,
}
MODE_SIZE_MEDIUM = {
MODE_NUMBER: 12,
MODE_ALPHA_NUM: 11,
MODE_8BIT_BYTE: 16,
MODE_KANJI: 10,
}
MODE_SIZE_LARGE = {
MODE_NUMBER: 14,
MODE_ALPHA_NUM: 13,
MODE_8BIT_BYTE: 16,
MODE_KANJI: 12,
}
ALPHA_NUM = six.b('0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:')
RE_ALPHA_NUM = re.compile(six.b('^[') + re.escape(ALPHA_NUM) + six.b(']*\Z'))
# The number of bits for numeric delimited data lengths.
NUMBER_LENGTH = {3: 10, 2: 7, 1: 4}
PATTERN_POSITION_TABLE = [
[],
[6, 18],
[6, 22],
[6, 26],
[6, 30],
[6, 34],
[6, 22, 38],
[6, 24, 42],
[6, 26, 46],
[6, 28, 50],
[6, 30, 54],
[6, 32, 58],
[6, 34, 62],
[6, 26, 46, 66],
[6, 26, 48, 70],
[6, 26, 50, 74],
[6, 30, 54, 78],
[6, 30, 56, 82],
[6, 30, 58, 86],
[6, 34, 62, 90],
[6, 28, 50, 72, 94],
[6, 26, 50, 74, 98],
[6, 30, 54, 78, 102],
[6, 28, 54, 80, 106],
[6, 32, 58, 84, 110],
[6, 30, 58, 86, 114],
[6, 34, 62, 90, 118],
[6, 26, 50, 74, 98, 122],
[6, 30, 54, 78, 102, 126],
[6, 26, 52, 78, 104, 130],
[6, 30, 56, 82, 108, 134],
[6, 34, 60, 86, 112, 138],
[6, 30, 58, 86, 114, 142],
[6, 34, 62, 90, 118, 146],
[6, 30, 54, 78, 102, 126, 150],
[6, 24, 50, 76, 102, 128, 154],
[6, 28, 54, 80, 106, 132, 158],
[6, 32, 58, 84, 110, 136, 162],
[6, 26, 54, 82, 110, 138, 166],
[6, 30, 58, 86, 114, 142, 170]
]
G15 = ((1 << 10) | (1 << 8) | (1 << 5) | (1 << 4) | (1 << 2) | (1 << 1) |
(1 << 0))
G18 = ((1 << 12) | (1 << 11) | (1 << 10) | (1 << 9) | (1 << 8) | (1 << 5) |
(1 << 2) | (1 << 0))
G15_MASK = (1 << 14) | (1 << 12) | (1 << 10) | (1 << 4) | (1 << 1)
PAD0 = 0xEC
PAD1 = 0x11
# Precompute bit count limits, indexed by error correction level and code size
_data_count = lambda block: block.data_count
BIT_LIMIT_TABLE = [
[0] + [8*sum(map(_data_count, base.rs_blocks(version, error_correction)))
for version in xrange(1, 41)]
for error_correction in xrange(4)
]
def BCH_type_info(data):
d = data << 10
while BCH_digit(d) - BCH_digit(G15) >= 0:
d ^= (G15 << (BCH_digit(d) - BCH_digit(G15)))
return ((data << 10) | d) ^ G15_MASK
def BCH_type_number(data):
d = data << 12
while BCH_digit(d) - BCH_digit(G18) >= 0:
d ^= (G18 << (BCH_digit(d) - BCH_digit(G18)))
return (data << 12) | d
def BCH_digit(data):
digit = 0
while data != 0:
digit += 1
data >>= 1
return digit
def pattern_position(version):
return PATTERN_POSITION_TABLE[version - 1]
def mask_func(pattern):
"""
Return the mask function for the given mask pattern.
"""
if pattern == 0: # 000
return lambda i, j: (i + j) % 2 == 0
if pattern == 1: # 001
return lambda i, j: i % 2 == 0
if pattern == 2: # 010
return lambda i, j: j % 3 == 0
if pattern == 3: # 011
return lambda i, j: (i + j) % 3 == 0
if pattern == 4: # 100
return lambda i, j: (math.floor(i / 2) + math.floor(j / 3)) % 2 == 0
if pattern == 5: # 101
return lambda i, j: (i * j) % 2 + (i * j) % 3 == 0
if pattern == 6: # 110
return lambda i, j: ((i * j) % 2 + (i * j) % 3) % 2 == 0
if pattern == 7: # 111
return lambda i, j: ((i * j) % 3 + (i + j) % 2) % 2 == 0
raise TypeError("Bad mask pattern: " + pattern)
def mode_sizes_for_version(version):
if version < 10:
return MODE_SIZE_SMALL
elif version < 27:
return MODE_SIZE_MEDIUM
else:
return MODE_SIZE_LARGE
def length_in_bits(mode, version):
if mode not in (MODE_NUMBER, MODE_ALPHA_NUM, MODE_8BIT_BYTE,
MODE_KANJI):
raise TypeError("Invalid mode (%s)" % mode)
if version < 1 or version > 40:
raise ValueError("Invalid version (was %s, expected 1 to 40)" %
version)
return mode_sizes_for_version(version)[mode]
def lost_point(modules):
modules_count = len(modules)
lost_point = 0
lost_point = _lost_point_level1(modules, modules_count)
lost_point += _lost_point_level2(modules, modules_count)
lost_point += _lost_point_level3(modules, modules_count)
lost_point += _lost_point_level4(modules, modules_count)
return lost_point
def _lost_point_level1(modules, modules_count):
lost_point = 0
modules_range = xrange(modules_count)
row_range_first = (0, 1)
row_range_last = (-1, 0)
row_range_standard = (-1, 0, 1)
col_range_first = ((0, 1), (1,))
col_range_last = ((-1, 0), (-1,))
col_range_standard = ((-1, 0, 1), (-1, 1))
for row in modules_range:
if row == 0:
row_range = row_range_first
elif row == modules_count-1:
row_range = row_range_last
else:
row_range = row_range_standard
for col in modules_range:
sameCount = 0
dark = modules[row][col]
if col == 0:
col_range = col_range_first
elif col == modules_count-1:
col_range = col_range_last
else:
col_range = col_range_standard
for r in row_range:
row_offset = row + r
if r != 0:
col_idx = 0
else:
col_idx = 1
for c in col_range[col_idx]:
if dark == modules[row_offset][col + c]:
sameCount += 1
if sameCount > 5:
lost_point += (3 + sameCount - 5)
return lost_point
def _lost_point_level2(modules, modules_count):
lost_point = 0
modules_range = xrange(modules_count - 1)
for row in modules_range:
this_row = modules[row]
next_row = modules[row+1]
for col in modules_range:
count = 0
if this_row[col]:
count += 1
if next_row[col]:
count += 1
if this_row[col + 1]:
count += 1
if next_row[col + 1]:
count += 1
if count == 0 or count == 4:
lost_point += 3
return lost_point
def _lost_point_level3(modules, modules_count):
modules_range_short = xrange(modules_count-6)
lost_point = 0
for row in xrange(modules_count):
this_row = modules[row]
for col in modules_range_short:
if (this_row[col]
and not this_row[col + 1]
and this_row[col + 2]
and this_row[col + 3]
and this_row[col + 4]
and not this_row[col + 5]
and this_row[col + 6]):
lost_point += 40
for col in xrange(modules_count):
for row in modules_range_short:
if (modules[row][col]
and not modules[row + 1][col]
and modules[row + 2][col]
and modules[row + 3][col]
and modules[row + 4][col]
and not modules[row + 5][col]
and modules[row + 6][col]):
lost_point += 40
return lost_point
def _lost_point_level4(modules, modules_count):
modules_range = xrange(modules_count)
dark_count = 0
for row in modules_range:
this_row = modules[row]
for col in modules_range:
if this_row[col]:
dark_count += 1
ratio = abs(100 * dark_count / modules_count / modules_count - 50) / 5
return ratio * 10
def optimal_data_chunks(data, minimum=4):
"""
An iterator returning QRData chunks optimized to the data content.
:param minimum: The minimum number of bytes in a row to split as a chunk.
"""
data = to_bytestring(data)
re_repeat = six.b('{') + six.text_type(minimum).encode('ascii') + six.b(',}')
num_pattern = re.compile(six.b('\d') + re_repeat)
num_bits = _optimal_split(data, num_pattern)
alpha_pattern = re.compile(
six.b('[') + re.escape(ALPHA_NUM) + six.b(']') + re_repeat)
for is_num, chunk in num_bits:
if is_num:
yield QRData(chunk, mode=MODE_NUMBER, check_data=False)
else:
for is_alpha, sub_chunk in _optimal_split(chunk, alpha_pattern):
if is_alpha:
mode = MODE_ALPHA_NUM
else:
mode = MODE_8BIT_BYTE
yield QRData(sub_chunk, mode=mode, check_data=False)
def _optimal_split(data, pattern):
while data:
match = re.search(pattern, data)
if not match:
break
start, end = match.start(), match.end()
if start:
yield False, data[:start]
yield True, data[start:end]
data = data[end:]
if data:
yield False, data
def to_bytestring(data):
"""
Convert data to a (utf-8 encoded) byte-string if it isn't a byte-string
already.
"""
if not isinstance(data, six.binary_type):
data = six.text_type(data).encode('utf-8')
return data
def optimal_mode(data):
"""
Calculate the optimal mode for this chunk of data.
"""
if data.isdigit():
return MODE_NUMBER
if RE_ALPHA_NUM.match(data):
return MODE_ALPHA_NUM
return MODE_8BIT_BYTE
class QRData:
"""
Data held in a QR compatible format.
Doesn't currently handle KANJI.
"""
def __init__(self, data, mode=None, check_data=True):
"""
If ``mode`` isn't provided, the most compact QR data type possible is
chosen.
"""
if check_data:
data = to_bytestring(data)
if mode is None:
self.mode = optimal_mode(data)
else:
self.mode = mode
if mode not in (MODE_NUMBER, MODE_ALPHA_NUM, MODE_8BIT_BYTE):
raise TypeError("Invalid mode (%s)" % mode)
if check_data and mode < optimal_mode(data):
raise ValueError(
"Provided data can not be represented in mode "
"{0}".format(mode))
self.data = data
def __len__(self):
return len(self.data)
def write(self, buffer):
if self.mode == MODE_NUMBER:
for i in xrange(0, len(self.data), 3):
chars = self.data[i:i + 3]
bit_length = NUMBER_LENGTH[len(chars)]
buffer.put(int(chars), bit_length)
elif self.mode == MODE_ALPHA_NUM:
for i in xrange(0, len(self.data), 2):
chars = self.data[i:i + 2]
if len(chars) > 1:
buffer.put(ALPHA_NUM.find(chars[0]) * 45 +
ALPHA_NUM.find(chars[1]), 11)
else:
buffer.put(ALPHA_NUM.find(chars), 6)
else:
if six.PY3:
# Iterating a bytestring in Python 3 returns an integer,
# no need to ord().
data = self.data
else:
data = [ord(c) for c in self.data]
for c in data:
buffer.put(c, 8)
def __repr__(self):
return repr(self.data)
class BitBuffer:
def __init__(self):
self.buffer = []
self.length = 0
def __repr__(self):
return ".".join([str(n) for n in self.buffer])
def get(self, index):
buf_index = math.floor(index / 8)
return ((self.buffer[buf_index] >> (7 - index % 8)) & 1) == 1
def put(self, num, length):
for i in range(length):
self.put_bit(((num >> (length - i - 1)) & 1) == 1)
def __len__(self):
return self.length
def put_bit(self, bit):
buf_index = self.length // 8
if len(self.buffer) <= buf_index:
self.buffer.append(0)
if bit:
self.buffer[buf_index] |= (0x80 >> (self.length % 8))
self.length += 1
def create_bytes(buffer, rs_blocks):
offset = 0
maxDcCount = 0
maxEcCount = 0
dcdata = [0] * len(rs_blocks)
ecdata = [0] * len(rs_blocks)
for r in range(len(rs_blocks)):
dcCount = rs_blocks[r].data_count
ecCount = rs_blocks[r].total_count - dcCount
maxDcCount = max(maxDcCount, dcCount)
maxEcCount = max(maxEcCount, ecCount)
dcdata[r] = [0] * dcCount
for i in range(len(dcdata[r])):
dcdata[r][i] = 0xff & buffer.buffer[i + offset]
offset += dcCount
# Get error correction polynomial.
rsPoly = base.Polynomial([1], 0)
for i in range(ecCount):
rsPoly = rsPoly * base.Polynomial([1, base.gexp(i)], 0)
rawPoly = base.Polynomial(dcdata[r], len(rsPoly) - 1)
modPoly = rawPoly % rsPoly
ecdata[r] = [0] * (len(rsPoly) - 1)
for i in range(len(ecdata[r])):
modIndex = i + len(modPoly) - len(ecdata[r])
if (modIndex >= 0):
ecdata[r][i] = modPoly[modIndex]
else:
ecdata[r][i] = 0
totalCodeCount = 0
for rs_block in rs_blocks:
totalCodeCount += rs_block.total_count
data = [None] * totalCodeCount
index = 0
for i in range(maxDcCount):
for r in range(len(rs_blocks)):
if i < len(dcdata[r]):
data[index] = dcdata[r][i]
index += 1
for i in range(maxEcCount):
for r in range(len(rs_blocks)):
if i < len(ecdata[r]):
data[index] = ecdata[r][i]
index += 1
return data
def create_data(version, error_correction, data_list):
buffer = BitBuffer()
for data in data_list:
buffer.put(data.mode, 4)
buffer.put(len(data), length_in_bits(data.mode, version))
data.write(buffer)
# Calculate the maximum number of bits for the given version.
rs_blocks = base.rs_blocks(version, error_correction)
bit_limit = 0
for block in rs_blocks:
bit_limit += block.data_count * 8
if len(buffer) > bit_limit:
raise exceptions.DataOverflowError(
"Code length overflow. Data size (%s) > size available (%s)" %
(len(buffer), bit_limit))
# Terminate the bits (add up to four 0s).
for i in range(min(bit_limit - len(buffer), 4)):
buffer.put_bit(False)
# Delimit the string into 8-bit words, padding with 0s if necessary.
delimit = len(buffer) % 8
if delimit:
for i in range(8 - delimit):
buffer.put_bit(False)
# Add special alternating padding bitstrings until buffer is full.
bytes_to_fill = (bit_limit - len(buffer)) // 8
for i in range(bytes_to_fill):
if i % 2 == 0:
buffer.put(PAD0, 8)
else:
buffer.put(PAD1, 8)
return create_bytes(buffer, rs_blocks)
|