/usr/bin/python2-q-text-as-data is in python-q-text-as-data 1.4.0-1.
This file is owned by root:root, with mode 0o755.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 | #! /usr/bin/python
# Copyright (C) 2012-2014 Harel Ben-Attia
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details (doc/LICENSE contains
# a copy of it)
#
#
# Name : q (With respect to The Q Continuum)
# Author : Harel Ben Attia - harelba@gmail.com, harelba @ github, @harelba on twitter
# Requires : python with sqlite3 (standard in python>=2.6)
#
#
# q allows performing SQL-like statements on tabular text data.
#
# Its purpose is to bring SQL expressive power to manipulating text data using the Linux command line.
#
# Full Documentation and details in https://github.com/harelba/q
#
# Run with --help for command line details
#
q_version = "1.4.0"
import os
import sys
import sqlite3
import gzip
import glob
from optparse import OptionParser,OptionGroup
import traceback as tb
import codecs
import locale
import time
import re
from ConfigParser import ConfigParser
import traceback
import csv
DEBUG = False
def get_stdout_encoding(encoding_override=None):
if encoding_override is not None and encoding_override != 'none':
return encoding_override
if sys.stdout.isatty():
return sys.stdout.encoding
else:
return locale.getpreferredencoding()
SHOW_SQL = False
p = ConfigParser()
p.read([os.path.expanduser('~/.qrc'), '.qrc'])
def get_option_with_default(p, option_type, option, default):
if not p.has_option('options', option):
return default
if option_type == 'boolean':
return p.getboolean('options', option)
elif option_type == 'int':
return p.getint('options', option)
elif option_type == 'string':
return p.get('options', option)
elif option_type == 'escaped_string':
return p.get('options', option).decode('string-escape')
else:
raise Exception("Unknown option type")
default_beautify = get_option_with_default(p, 'boolean', 'beautify', False)
default_gzipped = get_option_with_default(p, 'boolean', 'gzipped', False)
default_delimiter = get_option_with_default(
p, 'escaped_string', 'delimiter', None)
default_output_delimiter = get_option_with_default(
p, 'escaped_string', 'output_delimiter', None)
default_skip_header = get_option_with_default(p, 'int', 'skip_header', 0)
default_formatting = get_option_with_default(p, 'string', 'formatting', None)
default_encoding = get_option_with_default(p, 'string', 'encoding', 'UTF-8')
default_output_encoding = get_option_with_default(p, 'string', 'encoding', None)
default_query_encoding = get_option_with_default(p, 'string', 'query_encoding', locale.getpreferredencoding())
default_output_header = get_option_with_default(p, 'string', 'output_header', False)
parser = OptionParser(usage="""
q allows performing SQL-like statements on tabular text data.
Its purpose is to bring SQL expressive power to manipulating text data using the Linux command line.
Basic usage is q "<sql like query>" where table names are just regular file names (Use - to read from standard input)
When the input contains a header row, use -H, and column names will be set according to the header row content. If there isn't a header row, then columns will automatically be named c1..cN.
Column types are detected automatically. Use -A in order to see the column name/type analysis.
Delimiter can be set using the -d (or -t) option. Output delimiter can be set using -D
All sqlite3 SQL constructs are supported.
Examples:
Example 1: ls -ltrd * | q "select c1,count(1) from - group by c1"
This example would print a count of each unique permission string in the current folder.
Example 2: seq 1 1000 | q "select avg(c1),sum(c1) from -"
This example would provide the average and the sum of the numbers in the range 1 to 1000
Example 3: sudo find /tmp -ls | q "select c5,c6,sum(c7)/1024.0/1024 as total from - group by c5,c6 order by total desc"
This example will output the total size in MB per user+group in the /tmp subtree
See the help or https://github.com/harelba/q for more details.
""")
#-----------------------------------------------
parser.add_option("-v", "--version", dest="version", default=False, action="store_true",
help="Print version")
#-----------------------------------------------
input_data_option_group = OptionGroup(parser,"Input Data Options")
input_data_option_group.add_option("-H", "--skip-header", dest="skip_header", default=default_skip_header, action="store_true",
help="Skip header row. This has been changed from earlier version - Only one header row is supported, and the header row is used for column naming")
input_data_option_group.add_option("-d", "--delimiter", dest="delimiter", default=default_delimiter,
help="Field delimiter. If none specified, then space is used as the delimiter.")
input_data_option_group.add_option("-t", "--tab-delimited", dest="tab_delimited", default=False, action="store_true",
help="Same as -d <tab>. Just a shorthand for handling standard tab delimited file You can use $'\\t' if you want (this is how Linux expects to provide tabs in the command line")
input_data_option_group.add_option("-e", "--encoding", dest="encoding", default=default_encoding,
help="Input file encoding. Defaults to UTF-8. set to none for not setting any encoding - faster, but at your own risk...")
input_data_option_group.add_option("-z", "--gzipped", dest="gzipped", default=default_gzipped, action="store_true",
help="Data is gzipped. Useful for reading from stdin. For files, .gz means automatic gunzipping")
input_data_option_group.add_option("-A", "--analyze-only", dest="analyze_only", action='store_true',
help="Analyze sample input and provide information about data types")
input_data_option_group.add_option("-m", "--mode", dest="mode", default="relaxed",
help="Data parsing mode. fluffy, relaxed and strict. In strict mode, the -c column-count parameter must be supplied as well")
input_data_option_group.add_option("-c", "--column-count", dest="column_count", default=None,
help="Specific column count when using relaxed or strict mode")
input_data_option_group.add_option("-k", "--keep-leading-whitespace", dest="keep_leading_whitespace_in_values", default=False, action="store_true",
help="Keep leading whitespace in values. Default behavior strips leading whitespace off values, in order to provide out-of-the-box usability for simple use cases. If you need to preserve whitespace, use this flag.")
parser.add_option_group(input_data_option_group)
#-----------------------------------------------
output_data_option_group = OptionGroup(parser,"Output Options")
output_data_option_group.add_option("-D", "--output-delimiter", dest="output_delimiter", default=default_output_delimiter,
help="Field delimiter for output. If none specified, then the -d delimiter is used if present, or space if no delimiter is specified")
output_data_option_group.add_option("-T", "--tab-delimited-output", dest="tab_delimited_output", default=False, action="store_true",
help="Same as -D <tab>. Just a shorthand for outputing tab delimited output. You can use -D $'\\t' if you want.")
output_data_option_group.add_option("-O", "--output-header", dest="output_header", default=default_output_header, action="store_true",help="Output header line. Output column-names are determined from the query itself. Use column aliases in order to set your column names in the query. For example, 'select name FirstName,value1/value2 MyCalculation from ...'. This can be used even if there was no header in the input.")
output_data_option_group.add_option("-b", "--beautify", dest="beautify", default=default_beautify, action="store_true",
help="Beautify output according to actual values. Might be slow...")
output_data_option_group.add_option("-f", "--formatting", dest="formatting", default=default_formatting,
help="Output-level formatting, in the format X=fmt,Y=fmt etc, where X,Y are output column numbers (e.g. 1 for first SELECT column etc.")
output_data_option_group.add_option("-E", "--output-encoding", dest="output_encoding", default=default_output_encoding,
help="Output encoding. Defaults to 'none', leading to selecting the system/terminal encoding")
parser.add_option_group(output_data_option_group)
#-----------------------------------------------
query_option_group = OptionGroup(parser,"Query Related Options")
query_option_group.add_option("-q", "--query-filename", dest="query_filename", default=None,
help="Read query from the provided filename instead of the command line, possibly using the provided query encoding (using -Q).")
query_option_group.add_option("-Q", "--query-encoding", dest="query_encoding", default=default_query_encoding,
help="query text encoding. Experimental. Please send your feedback on this")
parser.add_option_group(query_option_group)
#-----------------------------------------------
def regexp(regular_expression, data):
if data is not None:
if type(data) is not str:
data = str(data)
return re.search(regular_expression, data) is not None
else:
return False
class Sqlite3DBResults(object):
def __init__(self,query_column_names,results):
self.query_column_names = query_column_names
self.results = results
class Sqlite3DB(object):
def __init__(self, show_sql=SHOW_SQL):
self.show_sql = show_sql
self.conn = sqlite3.connect(':memory:')
self.last_temp_table_id = 10000
self.cursor = self.conn.cursor()
self.type_names = {
str: 'TEXT', int: 'INT', long : 'INT' , float: 'FLOAT', None: 'TEXT'}
self.numeric_column_types = set([int, long, float])
self.add_user_functions()
def add_user_functions(self):
self.conn.create_function("regexp", 2, regexp)
def is_numeric_type(self, column_type):
return column_type in self.numeric_column_types
def update_many(self, sql, params):
try:
if self.show_sql:
print sql, " params: " + str(params)
self.cursor.executemany(sql, params)
finally:
pass # cursor.close()
def execute_and_fetch(self, q):
try:
if self.show_sql:
print repr(q)
self.cursor.execute(q)
if self.cursor.description is not None:
# we decode the column names, so they can be encoded to any output format later on
query_column_names = [c[0].decode('utf-8') for c in self.cursor.description]
else:
query_column_names = None
result = self.cursor.fetchall()
finally:
pass # cursor.close()
return Sqlite3DBResults(query_column_names,result)
def _get_as_list_str(self, l):
return ",".join(['"%s"' % x.replace('"', '""') for x in l])
def _get_col_values_as_list_str(self, col_vals, col_types):
result = []
for col_val, col_type in zip(col_vals, col_types):
if col_val == '' and col_type is not str:
col_val = "null"
else:
if col_val is not None:
if "'" in col_val:
col_val = col_val.replace("'", "''")
col_val = "'" + col_val + "'"
else:
col_val = "null"
result.append(col_val)
return ",".join(result)
def generate_insert_row(self, table_name, column_names):
col_names_str = self._get_as_list_str(column_names)
question_marks = ", ".join(["?" for i in range(0, len(column_names))])
return 'INSERT INTO %s (%s) VALUES (%s)' % (table_name, col_names_str, question_marks)
def generate_begin_transaction(self):
return "BEGIN TRANSACTION"
def generate_end_transaction(self):
return "COMMIT"
# Get a list of column names so order will be preserved (Could have used OrderedDict, but
# then we would need python 2.7)
def generate_create_table(self, table_name, column_names, column_dict):
# Convert dict from python types to db types
column_name_to_db_type = dict(
(n, self.type_names[t]) for n, t in column_dict.iteritems())
column_defs = ','.join(['"%s" %s' % (
n.replace('"', '""'), column_name_to_db_type[n]) for n in column_names])
return 'CREATE TABLE %s (%s)' % (table_name, column_defs)
def generate_temp_table_name(self):
self.last_temp_table_id += 1
return "temp_table_%s" % self.last_temp_table_id
def generate_drop_table(self, table_name):
return "DROP TABLE %s" % table_name
def drop_table(self, table_name):
return self.execute_and_fetch(self.generate_drop_table(table_name))
class BadHeaderException(Exception):
def __init__(self, msg):
self.msg = msg
def __str(self):
return repr(self.msg)
class EmptyDataException(Exception):
def __init__(self):
pass
class FileNotFoundException(Exception):
def __init__(self, msg):
self.msg = msg
def __str(self):
return repr(self.msg)
class ColumnCountMismatchException(Exception):
def __init__(self, msg):
self.msg = msg
def __str(self):
return repr(self.msg)
# Simplistic Sql "parsing" class... We'll eventually require a real SQL parser which will provide us with a parse tree
#
# A "qtable" is a filename which behaves like an SQL table...
class Sql(object):
def __init__(self, sql):
# Currently supports only standard SELECT statements
# Holds original SQL
self.sql = sql
# Holds sql parts
self.sql_parts = sql.split()
# Set of qtable names
self.qtable_names = set()
# Dict from qtable names to their positions in sql_parts. Value here is a *list* of positions,
# since it is possible that the same qtable_name (file) is referenced in multiple positions
# and we don't want the database table to be recreated for each
# reference
self.qtable_name_positions = {}
# Dict from qtable names to their effective (actual database) table
# names
self.qtable_name_effective_table_names = {}
self.query_column_names = None
# Go over all sql parts
idx = 0
while idx < len(self.sql_parts):
# Get the part string
part = self.sql_parts[idx]
# If it's a FROM or a JOIN
if part.upper() in ['FROM', 'JOIN']:
# and there is nothing after it,
if idx == len(self.sql_parts) - 1:
# Just fail
raise Exception(
'FROM/JOIN is missing a table name after it')
qtable_name = self.sql_parts[idx + 1]
# Otherwise, the next part contains the qtable name. In most cases the next part will be only the qtable name.
# We handle one special case here, where this is a subquery as a column: "SELECT (SELECT ... FROM qtable),100 FROM ...".
# In that case, there will be an ending paranthesis as part of the name, and we want to handle this case gracefully.
# This is obviously a hack of a hack :) Just until we have
# complete parsing capabilities
if ')' in qtable_name:
leftover = qtable_name[qtable_name.index(')'):]
self.sql_parts.insert(idx + 2, leftover)
qtable_name = qtable_name[:qtable_name.index(')')]
self.sql_parts[idx + 1] = qtable_name
self.qtable_names.add(qtable_name)
if qtable_name not in self.qtable_name_positions.keys():
self.qtable_name_positions[qtable_name] = []
self.qtable_name_positions[qtable_name].append(idx + 1)
idx += 2
else:
idx += 1
def set_effective_table_name(self, qtable_name, effective_table_name):
if qtable_name not in self.qtable_names:
raise Exception("Unknown qtable %s" % qtable_name)
if qtable_name in self.qtable_name_effective_table_names.keys():
raise Exception(
"Already set effective table name for qtable %s" % qtable_name)
self.qtable_name_effective_table_names[
qtable_name] = effective_table_name
def get_effective_sql(self):
if len(filter(lambda x: x is None, self.qtable_name_effective_table_names)) != 0:
raise Exception('There are qtables without effective tables')
effective_sql = [x for x in self.sql_parts]
for qtable_name, positions in self.qtable_name_positions.iteritems():
for pos in positions:
effective_sql[pos] = self.qtable_name_effective_table_names[
qtable_name]
return " ".join(effective_sql)
def execute_and_fetch(self, db):
db_results_obj = db.execute_and_fetch(self.get_effective_sql())
return db_results_obj
class LineSplitter(object):
def __init__(self, delimiter, expected_column_count):
self.delimiter = delimiter
self.expected_column_count = expected_column_count
if delimiter is not None:
escaped_delimiter = re.escape(delimiter)
self.split_regexp = re.compile('(?:%s)+' % escaped_delimiter)
else:
self.split_regexp = re.compile(r'\s+')
def split(self, line):
if line and line[-1] == '\n':
line = line[:-1]
return self.split_regexp.split(line, max_split=self.expected_column_count)
class TableColumnInferer(object):
def __init__(self, mode, expected_column_count, input_delimiter, skip_header=False):
self.inferred = False
self.mode = mode
self.rows = []
self.skip_header = skip_header
self.header_row = None
self.expected_column_count = expected_column_count
self.input_delimiter = input_delimiter
def analyze(self, col_vals):
if self.inferred:
raise Exception("Already inferred columns")
if self.skip_header and self.header_row is None:
self.header_row = col_vals
else:
self.rows.append(col_vals)
if len(self.rows) < 100:
return False
self.do_analysis()
return True
def force_analysis(self):
# This method is called whenever there is no more data, and an analysis needs
# to be performed immediately, regardless of the amount of sample data that has
# been collected
self.do_analysis()
def determine_type_of_value(self, value):
if value is not None:
value = value.strip()
if value == '' or value is None:
return None
try:
i = int(value)
if type(i) == long:
return long
else:
return int
except:
pass
try:
f = float(value)
return float
except:
pass
return str
def determine_type_of_value_list(self, value_list):
type_list = [self.determine_type_of_value(v) for v in value_list]
all_types = set(type_list)
if len(set(type_list)) == 1:
# all the sample lines are of the same type
return type_list[0]
else:
# check for the number of types without nulls,
type_list_without_nulls = filter(
lambda x: x is not None, type_list)
# If all the sample lines are of the same type,
if len(set(type_list_without_nulls)) == 1:
# return it
return type_list_without_nulls[0]
else:
return str
def do_analysis(self):
if self.mode == 'strict':
self._do_strict_analysis()
elif self.mode in ['relaxed', 'fluffy']:
self._do_relaxed_analysis()
else:
raise Exception('Unknown parsing mode %s' % self.mode)
if self.column_count == 1:
print >>sys.stderr, "Warning: column count is one - did you provide the correct delimiter?"
if self.column_count == 0:
raise Exception("Detected a column count of zero... Failing")
self.infer_column_types()
self.infer_column_names()
def validate_column_names(self, value_list):
column_name_errors = []
for v in value_list:
if v is None:
# we allow column names to be None, in relaxed mode it'll be filled with default names.
# RLRL
continue
if ',' in v:
column_name_errors.append(
(v, "Column name cannot contain commas"))
continue
if self.input_delimiter in v:
column_name_errors.append(
(v, "Column name cannot contain the input delimiter. Please make sure you've set the correct delimiter"))
continue
if '\n' in v:
column_name_errors.append(
(v, "Column name cannot contain newline"))
continue
if v != v.strip():
column_name_errors.append(
(v, "Column name contains leading/trailing spaces"))
continue
try:
v.encode("utf-8", "strict").decode("utf-8")
except:
column_name_errors.append(
(v, "Column name must be UTF-8 Compatible"))
continue
nul_index = v.find("\x00")
if nul_index >= 0:
column_name_errors.append(
(v, "Column name cannot contain NUL"))
continue
t = self.determine_type_of_value(v)
if t != str:
column_name_errors.append((v, "Column name must be a string"))
return column_name_errors
def infer_column_names(self):
if self.header_row is not None:
column_name_errors = self.validate_column_names(self.header_row)
if len(column_name_errors) > 0:
raise BadHeaderException("Header must contain only strings and not numbers or empty strings: '%s'\n%s" % (
",".join(self.header_row), "\n".join(["'%s': %s" % (x, y) for x, y in column_name_errors])))
# use header row in order to name columns
if len(self.header_row) < self.column_count:
if self.mode == 'strict':
raise ColumnCountMismatchException("Strict mode. Header row contains less columns than expected column count(%s vs %s)" % (
len(self.header_row), self.column_count))
elif self.mode in ['relaxed', 'fluffy']:
# in relaxed mode, add columns to fill the missing ones
self.header_row = self.header_row + \
['c%s' % (x + len(self.header_row) + 1)
for x in xrange(self.column_count - len(self.header_row))]
elif len(self.header_row) > self.column_count:
if self.mode == 'strict':
raise ColumnCountMismatchException("Strict mode. Header row contains more columns than expected column count (%s vs %s)" % (
len(self.header_row), self.column_count))
elif self.mode in ['relaxed', 'fluffy']:
# In relaxed mode, just cut the extra column names
self.header_row = self.header_row[:self.column_count]
self.column_names = self.header_row
else:
# Column names are cX starting from 1
self.column_names = ['c%s' % (i + 1)
for i in range(self.column_count)]
def _do_relaxed_analysis(self):
column_count_list = [len(col_vals) for col_vals in self.rows]
if self.expected_column_count is not None:
self.column_count = self.expected_column_count
else:
# If not specified, we'll take the largest row in the sample rows
self.column_count = max(column_count_list)
def get_column_count_summary(self, column_count_list):
counts = {}
for column_count in column_count_list:
counts[column_count] = counts.get(column_count, 0) + 1
return ", ".join(["%s rows with %s columns" % (v, k) for k, v in counts.iteritems()])
def _do_strict_analysis(self):
column_count_list = [len(col_vals) for col_vals in self.rows]
if len(set(column_count_list)) != 1:
raise ColumnCountMismatchException('Strict mode. Column Count is expected to identical. Multiple column counts exist at the first part of the file. Try to check your delimiter, or change to relaxed mode. Details: %s' % (
self.get_column_count_summary(column_count_list)))
self.column_count = len(self.rows[0])
if self.expected_column_count is not None and self.column_count != self.expected_column_count:
raise ColumnCountMismatchException('Strict mode. Column count is expected to be %s but is %s' % (
self.expected_column_count, self.column_count))
self.infer_column_types()
def infer_column_types(self):
self.column_types = []
self.column_types2 = []
for column_number in xrange(self.column_count):
column_value_list = [
row[column_number] if column_number < len(row) else None for row in self.rows]
column_type = self.determine_type_of_value_list(column_value_list)
self.column_types.append(column_type)
column_value_list2 = [row[column_number] if column_number < len(
row) else None for row in self.rows[1:]]
column_type2 = self.determine_type_of_value_list(
column_value_list2)
self.column_types2.append(column_type2)
comparison = map(
lambda x: x[0] == x[1], zip(self.column_types, self.column_types2))
if False in comparison and not self.skip_header:
number_of_column_types = len(set(self.column_types))
if number_of_column_types == 1 and list(set(self.column_types))[0] == str:
print >>sys.stderr, 'Warning - There seems to be header line in the file, but -H has not been specified. All fields will be detected as text fields, and the header line will appear as part of the data'
def get_column_dict(self):
return dict(zip(self.column_names, self.column_types))
def get_column_count(self):
return self.column_count
def get_column_names(self):
return self.column_names
def get_column_types(self):
return self.column_types
def encoded_csv_reader(encoding, f, dialect, **kwargs):
csv_reader = csv.reader(f, dialect, **kwargs)
if encoding is not None and encoding != 'none':
for row in csv_reader:
yield [unicode(x, encoding) for x in row]
else:
for row in csv_reader:
yield row
def normalized_filename(filename):
if filename == '-':
return 'stdin'
else:
return filename
class TableCreator(object):
def __init__(self, db, filenames_str, line_splitter, skip_header=False, gzipped=False, encoding='UTF-8', mode='fluffy', expected_column_count=None, input_delimiter=None):
self.db = db
self.filenames_str = filenames_str
self.skip_header = skip_header
self.gzipped = gzipped
self.table_created = False
self.line_splitter = line_splitter
self.encoding = encoding
self.mode = mode
self.expected_column_count = expected_column_count
self.input_delimiter = input_delimiter
self.column_inferer = TableColumnInferer(
mode, expected_column_count, input_delimiter, skip_header)
# Filled only after table population since we're inferring the table
# creation data
self.table_name = None
self.pre_creation_rows = []
self.buffered_inserts = []
# Column type indices for columns that contain numeric types. Lazily initialized
# so column inferer can do its work before this information is needed
self.numeric_column_indices = None
def get_table_name(self):
return self.table_name
def populate(self, analyze_only=False):
# Get the list of filenames
filenames = self.filenames_str.split("+")
# for each filename (or pattern)
for fileglob in filenames:
# Allow either stdin or a glob match
if fileglob == '-':
files_to_go_over = ['-']
else:
files_to_go_over = glob.glob(fileglob)
# If there are no files to go over,
if len(files_to_go_over) == 0:
raise FileNotFoundException(
"File %s has not been found" % fileglob)
# For each match
for filename in files_to_go_over:
self.current_filename = filename
self.lines_read = 0
# Check if it's standard input or a file
if filename == '-':
f = sys.stdin
else:
f = file(filename, 'rb')
# Wrap it with gzip decompression if needed
if self.gzipped or filename.endswith('.gz'):
f = gzip.GzipFile(fileobj=f)
self.read_file_using_csv(f, analyze_only)
if not self.table_created:
self.column_inferer.force_analysis()
self._do_create_table()
def _flush_pre_creation_rows(self):
for i, col_vals in enumerate(self.pre_creation_rows):
if self.skip_header and i == 0:
# skip header line
continue
self._insert_row(col_vals)
self._flush_inserts()
self.pre_creation_rows = []
def read_file_using_csv(self, f, analyze_only):
csv_reader = encoded_csv_reader(self.encoding, f, dialect='q')
try:
for col_vals in csv_reader:
self.lines_read += 1
self._insert_row(col_vals)
if analyze_only and self.column_inferer.inferred:
return
if self.lines_read == 0 or (self.lines_read == 1 and self.skip_header):
raise EmptyDataException()
finally:
if f != sys.stdin:
f.close()
self._flush_inserts()
def _insert_row(self, col_vals):
# If table has not been created yet
if not self.table_created:
# Try to create it along with another "example" line of data
self.try_to_create_table(col_vals)
# If the table is still not created, then we don't have enough data, just
# store the data and return
if not self.table_created:
self.pre_creation_rows.append(col_vals)
return
# The table already exists, so we can just add a new row
self._insert_row_i(col_vals)
def initialize_numeric_column_indices_if_needed(self):
# Lazy initialization of numeric column indices
if self.numeric_column_indices is None:
column_types = self.column_inferer.get_column_types()
self.numeric_column_indices = [idx for idx, column_type in enumerate(
column_types) if self.db.is_numeric_type(column_type)]
def nullify_values_if_needed(self, col_vals):
new_vals = col_vals[:]
for i in self.numeric_column_indices:
v = col_vals[i]
if v == '':
new_vals[i] = None
return new_vals
def normalize_col_vals(self, col_vals):
# Make sure that numeric column indices are initializd
self.initialize_numeric_column_indices_if_needed()
col_vals = self.nullify_values_if_needed(col_vals)
expected_col_count = self.column_inferer.get_column_count()
actual_col_count = len(col_vals)
if self.mode == 'strict':
if actual_col_count != expected_col_count:
raise ColumnCountMismatchException('Strict mode - Expected %s columns instead of %s columns in file %s row %s. Either use relaxed/fluffy modes or check your delimiter' % (
expected_col_count, actual_col_count, normalized_filename(self.current_filename), self.lines_read))
return col_vals
# in all non strict mode, we add dummy data to missing columns
if actual_col_count < expected_col_count:
col_vals = col_vals + \
[None for x in xrange(expected_col_count - actual_col_count)]
# in relaxed mode, we merge all extra columns to the last column value
if self.mode == 'relaxed':
if actual_col_count > expected_col_count:
xxx = col_vals[:expected_col_count - 1] + \
[self.input_delimiter.join(
col_vals[expected_col_count - 1:])]
return xxx
else:
return col_vals
if self.mode == 'fluffy':
if actual_col_count > expected_col_count:
raise ColumnCountMismatchException('Deprecated fluffy mode - Too many columns in file %s row %s (%s fields instead of %s fields). Consider moving to either relaxed or strict mode' % (
normalized_filename(self.current_filename), self.lines_read, actual_col_count, expected_col_count))
return col_vals
raise Exception("Unidentified parsing mode %s" % self.mode)
def _insert_row_i(self, col_vals):
col_vals = self.normalize_col_vals(col_vals)
effective_column_names = self.column_inferer.column_names[
:len(col_vals)]
if len(effective_column_names) > 0:
self.buffered_inserts.append((effective_column_names, col_vals))
else:
self.buffered_inserts.append((["c1"], [""]))
if len(self.buffered_inserts) < 5000:
return
self._flush_inserts()
def _flush_inserts(self):
# print self.db.execute_and_fetch(self.db.generate_begin_transaction())
# If the table is still not created, then we don't have enough data
if not self.table_created:
return
insert_row_stmt = self.db.generate_insert_row(
self.table_name, self.buffered_inserts[0][0])
params = [col_vals for col_names, col_vals in self.buffered_inserts]
self.db.update_many(insert_row_stmt, params)
# print self.db.execute_and_fetch(self.db.generate_end_transaction())
self.buffered_inserts = []
def try_to_create_table(self, col_vals):
if self.table_created:
raise Exception('Table is already created')
# Add that line to the column inferer
result = self.column_inferer.analyze(col_vals)
# If inferer succeeded,
if result:
self._do_create_table()
else:
pass # We don't have enough information for creating the table yet
def _do_create_table(self):
# Then generate a temp table name
self.table_name = self.db.generate_temp_table_name()
# Get the column definition dict from the inferer
column_dict = self.column_inferer.get_column_dict()
# Create the CREATE TABLE statement
create_table_stmt = self.db.generate_create_table(
self.table_name, self.column_inferer.get_column_names(), column_dict)
# And create the table itself
self.db.execute_and_fetch(create_table_stmt)
# Mark the table as created
self.table_created = True
self._flush_pre_creation_rows()
def drop_table(self):
if self.table_created:
self.db.drop_table(self.table_name)
def determine_max_col_lengths(m):
if len(m) == 0:
return []
max_lengths = [0 for x in xrange(0, len(m[0]))]
for row_index in xrange(0, len(m)):
for col_index in xrange(0, len(m[0])):
new_len = len(unicode(m[row_index][col_index]))
if new_len > max_lengths[col_index]:
max_lengths[col_index] = new_len
return max_lengths
(options, args) = parser.parse_args()
if options.version:
print "q version %s" % q_version
sys.exit(0)
if len(args) > 1:
print >>sys.stderr,"Must provide query as one parameter, enclosed in quotes, or through a file with the -f parameter"
sys.exit(1)
if len(args) == 0 and options.query_filename is None:
print >>sys.stderr,"Must provide a query in the command line, or through the a file with the -f parameter"
sys.exit(1)
if options.query_filename is not None:
if len(args) != 0:
print >>sys.stderr,"Can't provide both a query file and a query on the command line"
sys.exit(1)
try:
f = file(options.query_filename)
query_str = f.read()
f.close()
except:
print >>sys.stderr,"Could not read query from file %s" % options.query_filename
sys.exit(1)
else:
query_str = args[0]
if options.query_encoding is not None and options.query_encoding != 'none':
try:
query_str = query_str.decode(options.query_encoding)
except:
print >>sys.stderr,"Could not decode query using the provided query encoding (%s)" % options.query_encoding
sys.exit(3)
query_str = query_str.strip()
if len(query_str) == 0:
print >>sys.stderr,"Query cannot be empty"
sys.exit(1)
if options.mode not in ['fluffy', 'relaxed', 'strict']:
print >>sys.stderr, "Parsing mode can be one of fluffy, relaxed or strict"
sys.exit(13)
output_encoding = get_stdout_encoding(options.output_encoding)
try:
STDOUT = codecs.getwriter(output_encoding)(sys.stdout)
except:
print >>sys.stderr,"Could not create output stream using output encoding %s" % (output_encoding)
sys.exit(200)
# Create DB object
db = Sqlite3DB()
# Create SQL statment
sql_object = Sql('%s' % query_str)
# If the user flagged for a tab-delimited file then set the delimiter to tab
if options.tab_delimited:
options.delimiter = '\t'
if options.tab_delimited_output:
options.output_delimiter = '\t'
if options.delimiter is None:
options.delimiter = ' '
elif len(options.delimiter) != 1:
print >>sys.stderr, "Delimiter must be one character only"
sys.exit(5)
if options.keep_leading_whitespace_in_values:
skip_initial_space = False
else:
skip_initial_space = True
q_dialect = {'skipinitialspace': skip_initial_space, 'quoting': 0,
'delimiter': options.delimiter, 'quotechar': '"', 'doublequote': False}
csv.register_dialect('q', **q_dialect)
file_reading_method = 'csv'
if options.column_count is not None:
expected_column_count = int(options.column_count)
else:
# infer automatically
expected_column_count = None
# Create a line splitter
line_splitter = LineSplitter(options.delimiter, expected_column_count)
if options.encoding != 'none':
try:
codecs.lookup(options.encoding)
except LookupError:
print >>sys.stderr, "Encoding %s could not be found" % options.encoding
sys.exit(10)
try:
table_creators = []
# Get each "table name" which is actually the file name
for filename in sql_object.qtable_names:
# Create the matching database table and populate it
table_creator = TableCreator(db, filename, line_splitter, options.skip_header, options.gzipped, options.encoding,
mode=options.mode, expected_column_count=expected_column_count, input_delimiter=options.delimiter)
start_time = time.time()
table_creator.populate(options.analyze_only)
table_creators.append(table_creator)
if DEBUG:
print >>sys.stderr, "TIMING - populate time is %4.3f" % (
time.time() - start_time)
# Replace the logical table name with the real table name
sql_object.set_effective_table_name(filename, table_creator.table_name)
if options.analyze_only:
for table_creator in table_creators:
column_names = table_creator.column_inferer.get_column_names()
print "Table for file: %s" % normalized_filename(table_creator.filenames_str)
for k in column_names:
column_type = table_creator.column_inferer.get_column_dict()[k]
print " `%s` - %s" % (k, db.type_names[column_type].lower())
sys.exit(0)
# Execute the query and fetch the data
db_results_obj = sql_object.execute_and_fetch(db)
m = db_results_obj.results
output_column_name_list = db_results_obj.query_column_names
except EmptyDataException:
print >>sys.stderr, "Warning - data is empty"
sys.exit(0)
except FileNotFoundException, e:
print >>sys.stderr, e.msg
sys.exit(30)
except sqlite3.OperationalError, e:
msg = str(e)
print >>sys.stderr, "query error: %s" % msg
if "no such column" in msg and options.skip_header:
print >>sys.stderr, 'Warning - There seems to be a "no such column" error, and -H (header line) exists. Please make sure that you are using the column names from the header line and not the default (cXX) column names'
sys.exit(1)
except ColumnCountMismatchException, e:
print >>sys.stderr, e.msg
sys.exit(2)
except (UnicodeDecodeError, UnicodeError), e:
print >>sys.stderr, "Cannot decode data. Try to change the encoding by setting it using the -e parameter. Error:%s" % e
sys.exit(3)
except BadHeaderException, e:
print >>sys.stderr, "Bad header row: %s" % e.msg
sys.exit(35)
except KeyboardInterrupt:
print >>sys.stderr, "Interrupted"
sys.exit(0)
# If the user requested beautifying the output
if options.beautify:
max_lengths = determine_max_col_lengths(m)
if options.output_delimiter:
# If output delimiter is specified, then we use it
output_delimiter = options.output_delimiter
else:
# Otherwise,
if options.delimiter:
# if an input delimiter is specified, then we use it as the output as
# well
output_delimiter = options.delimiter
else:
# if no input delimiter is specified, then we use space as the default
# (since no input delimiter means any whitespace)
output_delimiter = " "
if options.formatting:
formatting_dict = dict(
[(x.split("=")[0], x.split("=")[1]) for x in options.formatting.split(",")])
else:
formatting_dict = None
try:
if options.output_header and output_column_name_list is not None:
m.insert(0,output_column_name_list)
for rownum, row in enumerate(m):
row_str = []
for i, col in enumerate(row):
if formatting_dict is not None and str(i + 1) in formatting_dict.keys():
fmt_str = formatting_dict[str(i + 1)]
else:
if options.beautify:
fmt_str = "%%-%ss" % max_lengths[i]
else:
fmt_str = "%s"
if col is not None:
row_str.append(fmt_str % col)
else:
row_str.append(fmt_str % "")
STDOUT.write(output_delimiter.join(row_str) + "\n")
except (UnicodeEncodeError, UnicodeError), e:
print >>sys.stderr, "Cannot encode data. Error:%s" % e
sys.exit(3)
except IOError, e:
if e.errno == 32:
# broken pipe, that's ok
pass
else:
# dont miss other problem for now
raise
except KeyboardInterrupt:
pass
try:
# Prevent python bug when order of pipe shutdowns is reversed
sys.stdout.flush()
except IOError, e:
pass
table_creator.drop_table()
|