This file is indexed.

/usr/lib/python2.7/dist-packages/peak/rules/criteria.py is in python-peak.rules 0.5a1+r2713-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
from peak.rules.core import *
from peak.rules.core import sorted, frozenset, set
from peak.util.decorators import struct
from weakref import ref
from sys import maxint
from peak.util.extremes import Min, Max
__all__ = [
    'Range', 'Value', 'IsObject', 'Class', 'tests_for',
    'Conjunction', 'Disjunction', 'Test', 'Signature',
    'Inequality', 'DisjunctionSet', 'OrElse', 'Intersection',
]

class Intersection(object):
    """Abstract base for conjunctions and signatures"""
    __slots__ = ()

class Disjunction(object):
    """Abstract base for DisjunctionSet and OrElse
    
    Note that a Disjunction can never have less than 2 members, as creating a
    Disjunction with only 1 item returns that item, and creating one with no
    items returns ``False`` (as no acceptable conditions means "never true").
    """
    __slots__ = ()

    def __new__(cls, input):
        if cls is Disjunction:
            return DisjunctionSet(input)
        return super(Disjunction, cls).__new__(cls)

when(negate, (Disjunction,))(lambda c: reduce(intersect, map(negate, c)))
        
struct()
def Range(lo=(Min,-1), hi=(Max,1)):
    if hi<=lo: return False
    return lo, hi

struct()
def Value(value, match=True):
    return value, match

when(implies, (Value, Range))(
    # ==Value implies Range if Value is within range
    lambda c1, c2: c1.match and c2.lo <= (c1.value, 0) <= (c2.hi)
)
when(implies, (Range, Value))(
    # Range implies !=Value if Value is out of range
    lambda c1, c2: not c2.match and not (c1.lo <= (c2.value, 0) <= (c1.hi)) or
                   c2.match and c1==Range((c2.value,-1), (c2.value,1))
)
when(implies, (Range, Range))(
    # Range1 implies Range2 if both points are within Range2's bounds
    lambda c1, c2: c1.lo >= c2.lo and c1.hi <= c2.hi
)
when(implies, (Value, Value))(
    lambda c1, c2: c1==c2 or (c1.match and not c2.match and c1.value!=c2.value)
)
when(intersect, (Range, Range))(
    lambda c1, c2: Range(max(c1.lo, c2.lo), min(c1.hi, c2.hi))
)

def to_range(v):
    lo, hi = (v.value, -1), (v.value, 1)
    if v.match:
        return Range(lo, hi)
    return Disjunction([Range(hi=lo), Range(lo=hi)])

when(intersect, (Value, Value))
def intersect_values(c1, c2):
    if c1==c2: return c1
    return intersect(to_range(c1), to_range(c2))

# if a value is a point inside a range, the implication rules would handle it;
# therefore, they are either !=values, or outside the range (and thus empty)
when(intersect, (Range, Value))(
    lambda c1, c2: not c2.match and intersect(c1, to_range(c2)) or False
)
when(intersect, (Value, Range))(
    lambda c1, c2: not c1.match and intersect(to_range(c1), c2) or False
)


when(negate, (Value,))(lambda c: Value(c.value, not c.match))
when(negate, (Range,))(lambda c: Disjunction([Range(hi=c.lo), Range(lo=c.hi)]))


struct()
def Class(cls, match=True):
    return cls, match

when(negate, (Class,))(lambda c: Class(c.cls, not c.match))

when(implies, (Class, Class))
def class_implies(c1, c2):
    if c1==c2:
        # not isinstance(x) implies not isinstance(x) always
        #     isinstance(x) implies isintance(x)      always
        return True
    elif c1.match and c2.match:
        #     isinstance(x) implies     isinstance(y) if issubclass(x,y)
        return implies(c1.cls, c2.cls)
    elif c1.match or c2.match:
        # not isinstance(x) implies     isinstance(x) never
        #     isinstance(x) implies not isinstance(y) never
        return False
    else:
        # not isinstance(x) implies not isinstance(y) if issubclass(y, x)
        return implies(c2.cls, c1.cls)

when(intersect, (Class, Class))(lambda c1,c2: Conjunction([c1, c2]))

when(implies, (istype, Class))(lambda c1,c2:
    c1.match and (c2.match == implies(c1.type, c2.cls)) # use ob/inst rules
)
when(implies, (Class, istype))(lambda c1,c2:
    c1.match and not c2.match and c1.cls is not c2.type
    and issubclass(c1.cls, c2.type)
)





struct()
def Test(expr, criterion):
    d = disjuncts(criterion)
    if len(d)!=1:
        return Disjunction([Test(expr, c) for c in d])
    return expr, criterion

when(negate, (Test,))(lambda c: Test(c.expr, negate(c.criterion)))

when(implies, (Test, Test))(
    lambda c1, c2: c1.expr==c2.expr and implies(c1.criterion, c2.criterion)
)

when(intersect, (Test, Test))
def intersect_tests(c1, c2):
    if c1.expr==c2.expr:
        return Test(c1.expr, intersect(c1.criterion, c2.criterion))
    else:
        return Signature([c1, c2])

inequalities = {
    '>':  lambda v: Range(lo=(v, 1)),
    '>=': lambda v: Range(lo=(v,-1)),
    '<':  lambda v: Range(hi=(v,-1)),
    '<=': lambda v: Range(hi=(v, 1)),
    '!=': lambda v: Value(v, False),
    '==': lambda v: Value(v, True),
}

inequalities['=<'] = inequalities['<=']
inequalities['=>'] = inequalities['>=']
inequalities['<>'] = inequalities['!=']

def Inequality(op, value):
    return inequalities[op](value)






class Signature(Intersection, tuple):
    """Represent and-ed Tests, in sequence"""

    __slots__ = ()

    def __new__(cls, input):
        output = []
        index = {}
        input = iter(input)
        for new in input:
            if new is True:
                continue
            elif new is False:
                return False
            assert isinstance(new, Test), \
                "Signatures can only contain ``criteria.Test`` instances"
            expr = new.expr
            if expr in index:
                posn = index[expr]
                old = output[posn]
                if old==new:
                    continue    # 'new' is irrelevant, skip it
                new = output[posn] = intersect(old, new)
                if new is False: return False
            else:
                index[expr] = len(output)
                output.append(new)

        if not output:
            return True
        elif len(output)==1:
            return output[0]
        return tuple.__new__(cls, output)

    def __repr__(self):
        return "Signature("+repr(list(self))+")"

when(negate, (Signature,))(lambda c: OrElse(map(negate, c)))



class IsObject(int):
    """Criterion for 'is' comparisons"""

    __slots__ = 'ref', 'match'

    def __new__(cls, ob, match=True):
        self = IsObject.__base__.__new__(cls, id(ob)&maxint)
        self.match = match
        self.ref = ob
        return self

    def __eq__(self,other):
        return self is other or (
            isinstance(other, IsObject) and self.match==other.match
            and self.ref is other.ref
        ) or (isinstance(other,(int,long)) and int(self)==other and self.match)

    def __ne__(self,other):
        return not (self==other)

    def __repr__(self):
        return "IsObject(%r, %r)" % (self.ref, self.match)

when(negate, (IsObject,))(lambda c: IsObject(c.ref, not c.match))

when(implies, (IsObject, IsObject))
def implies_objects(c1, c2):
    # c1 implies c2 if it's identical, or if c1=="is x" and c2=="is not y"
    return c1==c2 or (c1.match and not c2.match and c1.ref is not c2.ref)

when(intersect, (IsObject, IsObject))
def intersect_objects(c1, c2):
    #  'is x and is y'            'is not x and is x'
    if (c1.match and c2.match) or (c1.ref is c2.ref):
        return False
    else:
        # "is not x and is not y"
        return Conjunction([c1,c2])



class DisjunctionSet(Disjunction, frozenset):
    """Set of minimal or-ed conditions (i.e. no redundant/implying items)

    Note that a Disjunction can never have less than 2 members, as creating a
    Disjunction with only 1 item returns that item, and creating one with no
    items returns ``False`` (as no acceptable conditions means "never true").
    """
    def __new__(cls, input):
        output = []
        for item in input:
            for new in disjuncts(item):
                for old in output[:]:
                    if implies(new, old):
                        break
                    elif implies(old, new):
                        output.remove(old)
                else:
                    output.append(new)
        if not output:
            return False
        elif len(output)==1:
            return output[0]
        return frozenset.__new__(cls, output)

when(implies, (Disjunction, (object, Disjunction)))
def union_implies(c1, c2):  # Or(...) implies x if all its disjuncts imply x
    for c in c1:
        if not implies(c, c2):
            return False
    else:
        return True

when(implies, (object, Disjunction))
def ob_implies_union(c1, c2):   # x implies Or(...) if it implies any disjunct
    for c in c2:
        if implies(c1, c):
            return True
    else:
        return False


# We use @around for these conditions in order to avoid redundant implication
# testing during intersection, as well as to avoid ambiguity with the
# (object, bool) and  (bool, object) rules for intersect().
#
around(intersect, (Disjunction, object))(
    lambda c1, c2: type(c1)([intersect(x,c2) for x in c1])
)
around(intersect, (object, Disjunction))(
    lambda c1, c2: type(c2)([intersect(c1,x) for x in c2])
)
around(intersect, (Disjunction, Disjunction))(
    lambda c1, c2: type(c1)([intersect(x,y) for x in c1 for y in c2])
)
around(intersect, (Disjunction, Intersection))(
    lambda c1, c2: type(c1)([intersect(x,c2) for x in c1])
)
around(intersect, (Intersection, Disjunction))(
    lambda c1, c2: type(c2)([intersect(c1,x) for x in c2])
)

# XXX These rules prevent ambiguity with implies(object, bool) and
# (bool, object), at the expense of redundancy.  This can be cleaned up later
# when we allow cloning of actions for an existing rule.  (That is, when we can
# say "treat (bool, Disjunction) like (bool, object)" without duplicating the
# action.)
#
when(implies, (bool, Disjunction))(lambda c1, c2: not c1)
when(implies, (Disjunction, bool))(lambda c1, c2: c2)

# The disjuncts of a Disjunction are a list of its contents:
when(disjuncts, (DisjunctionSet,))(list)

abstract()
def tests_for(ob, engine=None):
    """Yield the tests composing ob, if any"""

when(tests_for, (Test,     ))(lambda ob, e: iter([ob]))
when(tests_for, (Signature,))(lambda ob, e: iter(ob))
when(tests_for, (bool,     ))(lambda ob, e: iter([]))


class Conjunction(Intersection, frozenset):
    """Set of minimal and-ed conditions (i.e. no redundant/implied items)

    Note that a Conjunction can never have less than 2 members, as
    creating a Conjunction with only 1 item returns that item, and
    creating one with no items returns ``True`` (since no required conditions
    means "always true").
    """
    def __new__(cls, input):
        output = []
        for new in input:
            for old in output[:]:
                if implies(old, new):
                    break
                elif implies(new, old):
                    output.remove(old)
                elif mutually_exclusive(new, old):
                    return False
            else:
                output.append(new)
        if not output:
            return True
        elif len(output)==1:
            return output[0]
        return frozenset.__new__(cls, output)

around(implies, (Intersection, object))
def set_implies(c1, c2):
    for c in c1:
        if implies(c, c2): return True
    else:
        return False

around(implies, ((Intersection, object), Intersection))
def ob_implies_set(c1, c2):
    for c in c2:
        if not implies(c1, c): return False
    else:
        return True


when(negate, (Conjunction,))(lambda c: Disjunction(map(negate, c)))

when(intersect, (istype,Class))
def intersect_type_class(c1, c2):
    if not c1.match: return Conjunction([c1,c2])
    return False

when(intersect, (Class, istype))
def intersect_type_class(c1, c2):
    if not c2.match: return Conjunction([c1,c2])
    return False

when(intersect, (istype,istype))
def intersect_type_type(c1, c2):
    # This is only called if there's no implication
    if c1.match or c2.match:
        return False    # so unless both are False matches, it's an empty set
    return Conjunction([c1, c2])

def mutually_exclusive(c1, c2):
    """Is the intersection of c1 and c2 known to be always false?"""
    return False

when(mutually_exclusive, (istype, istype))(
    lambda c1, c2: c1.match != c2.match and c1.type==c2.type
)















# Intersecting an intersection with something else should return a set of the
# same type as the leftmost intersection.  These methods are declared @around
# to avoid redundant implication testing during intersection, as well as to
# avoid ambiguity with the (object, bool) and  (bool, object) rules for
# intersect().
#
around(intersect, (Intersection, Intersection))(
    lambda c1, c2: type(c1)(list(c1)+list(c2))
)
around(intersect, (Intersection, object))(
    lambda c1, c2: type(c1)(list(c1)+[c2])
)
around(intersect, (object, Intersection))(
    lambda c1, c2: type(c2)([c1]+list(c2))
)

# Default intersection is a Conjunction
when(intersect, (object, object))(lambda c1, c2: Conjunction([c1,c2]))























class OrElse(Disjunction, tuple):
    """SEQUENCE of or-ed conditions (excluding redundant/implying items)"""

    def __new__(cls, input):
        output = []
        for item in input:
            for old in output[:]:
                if implies(item, old):
                    break
                elif implies(old, item):
                    output.remove(old)
            else:
                output.append(item)
        if not output:
            return False
        elif len(output)==1:
            return output[0]
        return tuple.__new__(cls, output)

    def __repr__(self):
        return "%s(%s)" % (self.__class__.__name__, list(self))


when(disjuncts, (OrElse,))
def sequential_disjuncts(c):
    pre = True
    out = set()
    for cond in c:
        out.update(disjuncts(intersect(pre, cond)))
        pre = intersect(pre, negate(cond))
    return list(out)