This file is indexed.

/usr/lib/python2.7/dist-packages/openopt/solvers/Standalone/lsqr.py is in python-openopt 0.38+svn1589-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
"""
Solve the least-squares problem

  minimize ||Ax-b||

using LSQR.  This is a line-by-line translation from Matlab code
available at http://www.stanford.edu/~saunders/lsqr.

Michael P. Friedlander, University of British Columbia
Dominique Orban, Ecole Polytechnique de Montreal
$Id$
"""

from numpy import zeros, dot
from openopt.kernel.ooMisc import norm
from math import sqrt

# Simple shortcuts---linalg.norm is too slow for small vectors
def normof2(x,y): return sqrt(x**2 + y**2)
def normof4(x1,x2,x3,x4): return sqrt(x1**2 + x2**2 + x3**2 + x4**2)

def lsqr( m, n, aprod, b, damp, atol, btol, conlim, itnlim, show, wantvar = False, callback = lambda x: None):
    """
    [ x, istop, itn, r1norm, r2norm, anorm, acond, arnorm, xnorm, var ]...
    = lsqr( m, n, @aprod, b, damp, atol, btol, conlim, itnlim, show );
    
    LSQR solves  Ax = b  or  min ||b - Ax||_2  if damp = 0, or

       min || [ b ]  -  [   A    ] x ||   otherwise.
           || [ 0 ]     [ damp I ]   ||2

    A  is an m by n matrix defined by  y = aprod(mode, m, n, x),
    where aprod refers to a function that performs the matrix-vector operations.
    If mode = 1,   aprod  must return  y = Ax   without altering x.
    If mode = 2,   aprod  must return  y = A'x  without altering x.

    ----------------------------------------------------------------------
    LSQR uses an iterative (conjugate-gradient-like) method.

    For further information, see 

    1. C. C. Paige and M. A. Saunders (1982a).
       LSQR: An algorithm for sparse linear equations and sparse least squares,
       ACM TOMS 8(1), 43-71.
    2. C. C. Paige and M. A. Saunders (1982b).
       Algorithm 583.  LSQR: Sparse linear equations and least squares problems,
       ACM TOMS 8(2), 195-209.
    3. M. A. Saunders (1995).  Solution of sparse rectangular systems using
       LSQR and CRAIG, BIT 35, 588-604.

    Input parameters:

    atol, btol  are stopping tolerances.  If both are 1.0e-9 (say),
                the final residual norm should be accurate to about 9 digits.
                (The final x will usually have fewer correct digits,
                depending on cond(A) and the size of damp.)
    conlim      is also a stopping tolerance.  lsqr terminates if an estimate
                of cond(A) exceeds conlim.  For compatible systems Ax = b,
                conlim could be as large as 1.0e+12 (say).  For least-squares
                problems, conlim should be less than 1.0e+8.
                Maximum precision can be obtained by setting
                atol = btol = conlim = zero, but the number of iterations
                may then be excessive.
    itnlim      is an explicit limit on iterations (for safety).
    show        if set to 1, gives an iteration log.
                If set to 0, suppresses output.

    Output parameters:

    x           is the final solution.
    istop       gives the reason for termination.
    istop       = 1 means x is an approximate solution to Ax = b.
                = 2 means x approximately solves the least-squares problem.
                r1norm      = norm(r), where r = b - Ax.
                r2norm      = sqrt( norm(r)^2  +  damp^2 * norm(x)^2 )
                = r1norm if damp = 0.
    anorm       = estimate of Frobenius norm of Abar = [  A   ].
                                                       [damp*I]
    acond       = estimate of cond(Abar).
    arnorm      = estimate of norm(A'*r - damp^2*x).
    xnorm       = norm(x).
    var         (if present) estimates all diagonals of (A'A)^{-1} (if damp=0)
                or more generally (A'A + damp^2*I)^{-1}.
                This is well defined if A has full column rank or damp > 0.
                (Not sure what var means if rank(A) < n and damp = 0.)
                
    ----------------------------------------------------------------------
    """

    # Initialize.

    msg=['The exact solution is  x = 0                              ',
         'Ax - b is small enough, given atol, btol                  ',
         'The least-squares solution is good enough, given atol     ',
         'The estimate of cond(Abar) has exceeded conlim            ',
         'Ax - b is small enough for this machine                   ',
         'The least-squares solution is good enough for this machine',
         'Cond(Abar) seems to be too large for this machine         ',
         'The iteration limit has been reached                      ']

    if wantvar:
        var = zeros(n,1)
    else:
        var = None
    
#    if show:
#        print ' '
#        print 'LSQR            Least-squares solution of  Ax = b'
#        str1 = 'The matrix A has %8g rows  and %8g cols' % (m, n)
#        str2 = 'damp = %20.14e     wantvar = %-5s' % (damp, repr(wantvar))
#        str3 = 'atol = %8.2e                 conlim = %8.2e' % (atol, conlim)
#        str4 = 'btol = %8.2e                 itnlim = %8g' % (btol, itnlim)
#        print str1;   print str2;   print str3;   print str4;
        
    itn    = 0;   istop  = 0;   nstop  = 0
    ctol   = 0.0
    if conlim > 0.0: ctol = 1.0/conlim
    anorm  = 0.;	acond  = 0.
    dampsq = damp**2;	ddnorm = 0.;		res2   = 0.
    xnorm  = 0.;	xxnorm = 0.;		z      = 0.
    cs2    = -1.;	sn2    = 0.
    
    # Set up the first vectors u and v for the bidiagonalization.
    # These satisfy  beta*u = b,  alfa*v = A'u.
    
    u      = b[:m];	x    = zeros(n)
    alfa   = 0.;	beta = norm( u )
    if beta > 0:
        u = (1.0/beta) * u;	v = aprod(2, m, n, u)
        alfa = norm( v );

    if alfa > 0:
        v = (1.0/alfa) * v;    w = v.copy();
        
    arnorm = alfa * beta;
    if arnorm == 0:
#        print(msg[0])
        return (x, istop, itn, r1norm, r2norm, anorm, acond, arnorm, xnorm, var)

    rhobar = alfa;		phibar = beta;		bnorm  = beta;
    rnorm  = beta
    r1norm = rnorm
    r2norm = rnorm
    head1  = '   Itn      x(1)       r1norm     r2norm '
    head2  = ' Compatible   LS      Norm A   Cond A'
    
    if show:
#        print ' '
#        print head1+head2
        test1  = 1.0;		test2  = alfa / beta
        str1   = '%6g %12.5e'     % (itn,   x[0])
        str2   = ' %10.3e %10.3e' % (r1norm, r2norm)
        str3   = '  %8.1e %8.1e'  % (test1,  test2)
#        print str1+str2+str3
        
    # ------------------------------------------------------------------
    #     Main iteration loop.
    # ------------------------------------------------------------------
    while itn < itnlim:
        itn = itn + 1
        #   Perform the next step of the bidiagonalization to obtain the
        #   next  beta, u, alfa, v.  These satisfy the relations
        #              beta*u  =  a*v   -  alfa*u,
        #              alfa*v  =  A'*u  -  beta*v.

        u    = aprod(1, m, n, v)  -  alfa*u
        beta = norm( u );
        if beta > 0:
            u     = (1.0/beta) * u
            anorm = normof4(anorm, alfa, beta, damp)
            v     = aprod(2, m, n, u)  -  beta*v
            alfa  = norm( v )
            if alfa > 0:  v = (1.0/alfa) * v
        
        # Use a plane rotation to eliminate the damping parameter.
        # This alters the diagonal (rhobar) of the lower-bidiagonal matrix.

        rhobar1 = normof2(rhobar, damp)
        cs1     = rhobar / rhobar1
        sn1     = damp   / rhobar1
        psi     = sn1 * phibar
        phibar  = cs1 * phibar
        
        #  Use a plane rotation to eliminate the subdiagonal element (beta)
        # of the lower-bidiagonal matrix, giving an upper-bidiagonal matrix.
        
        rho     =   normof2(rhobar1, beta)
        cs      =   rhobar1/ rho
        sn      =   beta   / rho
        theta   =   sn * alfa
        rhobar  = - cs * alfa
        phi     =   cs * phibar
        phibar  =   sn * phibar
        tau     =   sn * phi
        
        # Update x and w.
            
        t1      =   phi  /rho;
        t2      = - theta/rho;
        dk      =   (1.0/rho)*w;
            
        x       = x      +  t1*w
        w       = v      +  t2*w
        ddnorm  = ddnorm +  norm(dk)**2
        if wantvar: var = var  +  dk*dk
            
        # Use a plane rotation on the right to eliminate the
        # super-diagonal element (theta) of the upper-bidiagonal matrix.
        # Then use the result to estimate  norm(x).
            
        delta   =   sn2 * rho
        gambar  = - cs2 * rho
        rhs     =   phi  -  delta * z
        zbar    =   rhs / gambar
        xnorm   =   sqrt(xxnorm + zbar**2)
        gamma   =   normof2(gambar, theta)
        cs2     =   gambar / gamma
        sn2     =   theta  / gamma
        z       =   rhs    / gamma
        xxnorm  =   xxnorm  +  z**2
            
        # Test for convergence.
        # First, estimate the condition of the matrix  Abar,
        # and the norms of  rbar  and  Abar'rbar.
        
        acond   =   anorm * sqrt( ddnorm )
        res1    =   phibar**2
        res2    =   res2  +  psi**2
        rnorm   =   sqrt( res1 + res2 )
        arnorm  =   alfa * abs( tau )
        
        # 07 Aug 2002:
        # Distinguish between
        #    r1norm = ||b - Ax|| and
        #    r2norm = rnorm in current code
        #           = sqrt(r1norm^2 + damp^2*||x||^2).
        #    Estimate r1norm from
        #    r1norm = sqrt(r2norm^2 - damp^2*||x||^2).
        # Although there is cancellation, it might be accurate enough.
        
        r1sq    =   rnorm**2  -  dampsq * xxnorm
        r1norm  =   sqrt( abs(r1sq) )
        if r1sq < 0: r1norm = - r1norm
        r2norm  =   rnorm
        
        # Now use these norms to estimate certain other quantities,
        # some of which will be small near a solution.
        
        test1   =   rnorm / bnorm
        test2   =   arnorm/( anorm * rnorm )
        test3   =       1.0 / acond
        t1      =   test1 / (1    +  anorm * xnorm / bnorm)
        rtol    =   btol  +  atol *  anorm * xnorm / bnorm
        
        # The following tests guard against extremely small values of
        # atol, btol  or  ctol.  (The user may have set any or all of
        # the parameters  atol, btol, conlim  to 0.)
        # The effect is equivalent to the normal tests using
        # atol = eps,  btol = eps,  conlim = 1/eps.
        
        if itn >= itnlim:   istop = 7
        if 1 + test3  <= 1: istop = 6
        if 1 + test2  <= 1: istop = 5
        if 1 + t1     <= 1: istop = 4
        
        # Allow for tolerances set by the user.
        
        if  test3 <= ctol:  istop = 3
        if  test2 <= atol:  istop = 2
        if  test1 <= rtol:  istop = 1
        
        # See if it is time to print something.
            
        prnt = False;
        if n     <= 40       : prnt = True
        if itn   <= 10       : prnt = True
        if itn   >= itnlim-10: prnt = True
        if itn % 10 == 0     : prnt = True
        if test3 <=  2*ctol  : prnt = True
        if test2 <= 10*atol  : prnt = True
        if test1 <= 10*rtol  : prnt = True
        if istop !=  0       : prnt = True
        
        if prnt and show:
            str1 = '%6g %12.5e'     %(   itn,   x[0] )
            str2 = ' %10.3e %10.3e' %(r1norm, r2norm )
            str3 = '  %8.1e %8.1e'  %( test1,  test2 )
            str4 = ' %8.1e %8.1e'   %( anorm,  acond )
#            print str1+str2+str3+str4
                
        if istop > 0: break
        callback(x) # added for OpenOpt kernel

    # End of iteration loop.
    # Print the stopping condition.
        
#    if show:
#        print ' '
#        print 'LSQR finished'
#        print msg[istop]
#        print ' '
#        str1 = 'istop =%8g   r1norm =%8.1e'   %(istop, r1norm )
#        str2 = 'anorm =%8.1e   arnorm =%8.1e' %(anorm, arnorm )
#        str3 = 'itn   =%8g   r2norm =%8.1e'   %(  itn, r2norm )
#        str4 = 'acond =%8.1e   xnorm  =%8.1e' %(acond, xnorm  )
#        str5 = '                  bnorm  =%8.1e'    % bnorm
#        print str1 + '   ' + str2
#        print str3 + '   ' + str4
#        print str5
#        print ' '
        
    return ( x, istop, itn, r1norm, r2norm, anorm, acond, arnorm, xnorm, var )