/usr/share/pyshared/gluon/contrib/aes.py is in python-gluon 2.12.3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 | """Simple AES cipher implementation in pure Python following PEP-272 API
Homepage: https://bitbucket.org/intgr/pyaes/
The goal of this module is to be as fast as reasonable in Python while still
being Pythonic and readable/understandable. It is licensed under the permissive
MIT license.
Hopefully the code is readable and commented enough that it can serve as an
introduction to the AES cipher for Python coders. In fact, it should go along
well with the Stick Figure Guide to AES:
http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html
Contrary to intuition, this implementation numbers the 4x4 matrices from top to
bottom for efficiency reasons::
0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15
Effectively it's the transposition of what you'd expect. This actually makes
the code simpler -- except the ShiftRows step, but hopefully the explanation
there clears it up.
"""
####
# Copyright (c) 2010 Marti Raudsepp <marti@juffo.org>
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
####
from array import array
# Globals mandated by PEP 272:
# http://www.python.org/dev/peps/pep-0272/
MODE_ECB = 1
MODE_CBC = 2
#MODE_CTR = 6
block_size = 16
key_size = None
def new(key, mode=MODE_CBC, IV=None):
if mode == MODE_ECB:
return ECBMode(AES(key))
elif mode == MODE_CBC:
if IV is None:
raise ValueError("CBC mode needs an IV value!")
return CBCMode(AES(key), IV)
else:
raise NotImplementedError
#### AES cipher implementation
class AES(object):
block_size = 16
def __init__(self, key):
self.setkey(key)
def setkey(self, key):
"""Sets the key and performs key expansion."""
self.key = key
self.key_size = len(key)
if self.key_size == 16:
self.rounds = 10
elif self.key_size == 24:
self.rounds = 12
elif self.key_size == 32:
self.rounds = 14
else:
raise ValueError("Key length must be 16, 24 or 32 bytes")
self.expand_key()
def expand_key(self):
"""Performs AES key expansion on self.key and stores in self.exkey"""
# The key schedule specifies how parts of the key are fed into the
# cipher's round functions. "Key expansion" means performing this
# schedule in advance. Almost all implementations do this.
#
# Here's a description of AES key schedule:
# http://en.wikipedia.org/wiki/Rijndael_key_schedule
# The expanded key starts with the actual key itself
exkey = array('B', self.key)
# extra key expansion steps
if self.key_size == 16:
extra_cnt = 0
elif self.key_size == 24:
extra_cnt = 2
else:
extra_cnt = 3
# 4-byte temporary variable for key expansion
word = exkey[-4:]
# Each expansion cycle uses 'i' once for Rcon table lookup
for i in xrange(1, 11):
#### key schedule core:
# left-rotate by 1 byte
word = word[1:4] + word[0:1]
# apply S-box to all bytes
for j in xrange(4):
word[j] = aes_sbox[word[j]]
# apply the Rcon table to the leftmost byte
word[0] = word[0] ^ aes_Rcon[i]
#### end key schedule core
for z in xrange(4):
for j in xrange(4):
# mix in bytes from the last subkey
word[j] ^= exkey[-self.key_size + j]
exkey.extend(word)
# Last key expansion cycle always finishes here
if len(exkey) >= (self.rounds+1) * self.block_size:
break
# Special substitution step for 256-bit key
if self.key_size == 32:
for j in xrange(4):
# mix in bytes from the last subkey XORed with S-box of
# current word bytes
word[j] = aes_sbox[word[j]] ^ exkey[-self.key_size + j]
exkey.extend(word)
# Twice for 192-bit key, thrice for 256-bit key
for z in xrange(extra_cnt):
for j in xrange(4):
# mix in bytes from the last subkey
word[j] ^= exkey[-self.key_size + j]
exkey.extend(word)
self.exkey = exkey
def add_round_key(self, block, round):
"""AddRoundKey step in AES. This is where the key is mixed into plaintext"""
offset = round * 16
exkey = self.exkey
for i in xrange(16):
block[i] ^= exkey[offset + i]
#print 'AddRoundKey:', block
def sub_bytes(self, block, sbox):
"""SubBytes step, apply S-box to all bytes
Depending on whether encrypting or decrypting, a different sbox array
is passed in.
"""
for i in xrange(16):
block[i] = sbox[block[i]]
#print 'SubBytes :', block
def shift_rows(self, b):
"""ShiftRows step. Shifts 2nd row to left by 1, 3rd row by 2, 4th row by 3
Since we're performing this on a transposed matrix, cells are numbered
from top to bottom::
0 4 8 12 -> 0 4 8 12 -- 1st row doesn't change
1 5 9 13 -> 5 9 13 1 -- row shifted to left by 1 (wraps around)
2 6 10 14 -> 10 14 2 6 -- shifted by 2
3 7 11 15 -> 15 3 7 11 -- shifted by 3
"""
b[1], b[5], b[ 9], b[13] = b[ 5], b[ 9], b[13], b[ 1]
b[2], b[6], b[10], b[14] = b[10], b[14], b[ 2], b[ 6]
b[3], b[7], b[11], b[15] = b[15], b[ 3], b[ 7], b[11]
#print 'ShiftRows :', b
def shift_rows_inv(self, b):
"""Similar to shift_rows above, but performed in inverse for decryption."""
b[ 5], b[ 9], b[13], b[ 1] = b[1], b[5], b[ 9], b[13]
b[10], b[14], b[ 2], b[ 6] = b[2], b[6], b[10], b[14]
b[15], b[ 3], b[ 7], b[11] = b[3], b[7], b[11], b[15]
#print 'ShiftRows :', b
def mix_columns(self, block):
"""MixColumns step. Mixes the values in each column"""
# Cache global multiplication tables (see below)
mul_by_2 = gf_mul_by_2
mul_by_3 = gf_mul_by_3
# Since we're dealing with a transposed matrix, columns are already
# sequential
for i in xrange(4):
col = i * 4
#v0, v1, v2, v3 = block[col : col+4]
v0, v1, v2, v3 = (block[col], block[col + 1], block[col + 2],
block[col + 3])
block[col ] = mul_by_2[v0] ^ v3 ^ v2 ^ mul_by_3[v1]
block[col+1] = mul_by_2[v1] ^ v0 ^ v3 ^ mul_by_3[v2]
block[col+2] = mul_by_2[v2] ^ v1 ^ v0 ^ mul_by_3[v3]
block[col+3] = mul_by_2[v3] ^ v2 ^ v1 ^ mul_by_3[v0]
#print 'MixColumns :', block
def mix_columns_inv(self, block):
"""Similar to mix_columns above, but performed in inverse for decryption."""
# Cache global multiplication tables (see below)
mul_9 = gf_mul_by_9
mul_11 = gf_mul_by_11
mul_13 = gf_mul_by_13
mul_14 = gf_mul_by_14
# Since we're dealing with a transposed matrix, columns are already
# sequential
for i in xrange(4):
col = i * 4
v0, v1, v2, v3 = (block[col], block[col + 1], block[col + 2],
block[col + 3])
#v0, v1, v2, v3 = block[col:col+4]
block[col ] = mul_14[v0] ^ mul_9[v3] ^ mul_13[v2] ^ mul_11[v1]
block[col+1] = mul_14[v1] ^ mul_9[v0] ^ mul_13[v3] ^ mul_11[v2]
block[col+2] = mul_14[v2] ^ mul_9[v1] ^ mul_13[v0] ^ mul_11[v3]
block[col+3] = mul_14[v3] ^ mul_9[v2] ^ mul_13[v1] ^ mul_11[v0]
#print 'MixColumns :', block
def encrypt_block(self, block):
"""Encrypts a single block. This is the main AES function"""
# For efficiency reasons, the state between steps is transmitted via a
# mutable array, not returned.
self.add_round_key(block, 0)
for round in xrange(1, self.rounds):
self.sub_bytes(block, aes_sbox)
self.shift_rows(block)
self.mix_columns(block)
self.add_round_key(block, round)
self.sub_bytes(block, aes_sbox)
self.shift_rows(block)
# no mix_columns step in the last round
self.add_round_key(block, self.rounds)
def decrypt_block(self, block):
"""Decrypts a single block. This is the main AES decryption function"""
# For efficiency reasons, the state between steps is transmitted via a
# mutable array, not returned.
self.add_round_key(block, self.rounds)
# count rounds down from 15 ... 1
for round in xrange(self.rounds-1, 0, -1):
self.shift_rows_inv(block)
self.sub_bytes(block, aes_inv_sbox)
self.add_round_key(block, round)
self.mix_columns_inv(block)
self.shift_rows_inv(block)
self.sub_bytes(block, aes_inv_sbox)
self.add_round_key(block, 0)
# no mix_columns step in the last round
#### ECB mode implementation
class ECBMode(object):
"""Electronic CodeBook (ECB) mode encryption.
Basically this mode applies the cipher function to each block individually;
no feedback is done. NB! This is insecure for almost all purposes
"""
def __init__(self, cipher):
self.cipher = cipher
self.block_size = cipher.block_size
def ecb(self, data, block_func):
"""Perform ECB mode with the given function"""
if len(data) % self.block_size != 0:
raise ValueError("Plaintext length must be multiple of 16")
block_size = self.block_size
data = array('B', data)
for offset in xrange(0, len(data), block_size):
block = data[offset : offset+block_size]
block_func(block)
data[offset : offset+block_size] = block
return data.tostring()
def encrypt(self, data):
"""Encrypt data in ECB mode"""
return self.ecb(data, self.cipher.encrypt_block)
def decrypt(self, data):
"""Decrypt data in ECB mode"""
return self.ecb(data, self.cipher.decrypt_block)
#### CBC mode
class CBCMode(object):
"""Cipher Block Chaining (CBC) mode encryption. This mode avoids content leaks.
In CBC encryption, each plaintext block is XORed with the ciphertext block
preceding it; decryption is simply the inverse.
"""
# A better explanation of CBC can be found here:
# http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation#Cipher-block_chaining_.28CBC.29
def __init__(self, cipher, IV):
self.cipher = cipher
self.block_size = cipher.block_size
self.IV = array('B', IV)
def encrypt(self, data):
"""Encrypt data in CBC mode"""
block_size = self.block_size
if len(data) % block_size != 0:
raise ValueError("Plaintext length must be multiple of 16")
data = array('B', data)
IV = self.IV
for offset in xrange(0, len(data), block_size):
block = data[offset : offset+block_size]
# Perform CBC chaining
for i in xrange(block_size):
block[i] ^= IV[i]
self.cipher.encrypt_block(block)
data[offset : offset+block_size] = block
IV = block
self.IV = IV
return data.tostring()
def decrypt(self, data):
"""Decrypt data in CBC mode"""
block_size = self.block_size
if len(data) % block_size != 0:
raise ValueError("Ciphertext length must be multiple of 16")
data = array('B', data)
IV = self.IV
for offset in xrange(0, len(data), block_size):
ctext = data[offset : offset+block_size]
block = ctext[:]
self.cipher.decrypt_block(block)
# Perform CBC chaining
#for i in xrange(block_size):
# data[offset + i] ^= IV[i]
for i in xrange(block_size):
block[i] ^= IV[i]
data[offset : offset+block_size] = block
IV = ctext
#data[offset : offset+block_size] = block
self.IV = IV
return data.tostring()
####
def galois_multiply(a, b):
"""Galois Field multiplicaiton for AES"""
p = 0
while b:
if b & 1:
p ^= a
a <<= 1
if a & 0x100:
a ^= 0x1b
b >>= 1
return p & 0xff
# Precompute the multiplication tables for encryption
gf_mul_by_2 = array('B', [galois_multiply(x, 2) for x in range(256)])
gf_mul_by_3 = array('B', [galois_multiply(x, 3) for x in range(256)])
# ... for decryption
gf_mul_by_9 = array('B', [galois_multiply(x, 9) for x in range(256)])
gf_mul_by_11 = array('B', [galois_multiply(x, 11) for x in range(256)])
gf_mul_by_13 = array('B', [galois_multiply(x, 13) for x in range(256)])
gf_mul_by_14 = array('B', [galois_multiply(x, 14) for x in range(256)])
####
# The S-box is a 256-element array, that maps a single byte value to another
# byte value. Since it's designed to be reversible, each value occurs only once
# in the S-box
#
# More information: http://en.wikipedia.org/wiki/Rijndael_S-box
aes_sbox = array('B',
'637c777bf26b6fc53001672bfed7ab76'
'ca82c97dfa5947f0add4a2af9ca472c0'
'b7fd9326363ff7cc34a5e5f171d83115'
'04c723c31896059a071280e2eb27b275'
'09832c1a1b6e5aa0523bd6b329e32f84'
'53d100ed20fcb15b6acbbe394a4c58cf'
'd0efaafb434d338545f9027f503c9fa8'
'51a3408f929d38f5bcb6da2110fff3d2'
'cd0c13ec5f974417c4a77e3d645d1973'
'60814fdc222a908846eeb814de5e0bdb'
'e0323a0a4906245cc2d3ac629195e479'
'e7c8376d8dd54ea96c56f4ea657aae08'
'ba78252e1ca6b4c6e8dd741f4bbd8b8a'
'703eb5664803f60e613557b986c11d9e'
'e1f8981169d98e949b1e87e9ce5528df'
'8ca1890dbfe6426841992d0fb054bb16'.decode('hex')
)
# This is the inverse of the above. In other words:
# aes_inv_sbox[aes_sbox[val]] == val
aes_inv_sbox = array('B',
'52096ad53036a538bf40a39e81f3d7fb'
'7ce339829b2fff87348e4344c4dee9cb'
'547b9432a6c2233dee4c950b42fac34e'
'082ea16628d924b2765ba2496d8bd125'
'72f8f66486689816d4a45ccc5d65b692'
'6c704850fdedb9da5e154657a78d9d84'
'90d8ab008cbcd30af7e45805b8b34506'
'd02c1e8fca3f0f02c1afbd0301138a6b'
'3a9111414f67dcea97f2cfcef0b4e673'
'96ac7422e7ad3585e2f937e81c75df6e'
'47f11a711d29c5896fb7620eaa18be1b'
'fc563e4bc6d279209adbc0fe78cd5af4'
'1fdda8338807c731b11210592780ec5f'
'60517fa919b54a0d2de57a9f93c99cef'
'a0e03b4dae2af5b0c8ebbb3c83539961'
'172b047eba77d626e169146355210c7d'.decode('hex')
)
# The Rcon table is used in AES's key schedule (key expansion)
# It's a pre-computed table of exponentation of 2 in AES's finite field
#
# More information: http://en.wikipedia.org/wiki/Rijndael_key_schedule
aes_Rcon = array('B',
'8d01020408102040801b366cd8ab4d9a'
'2f5ebc63c697356ad4b37dfaefc59139'
'72e4d3bd61c29f254a943366cc831d3a'
'74e8cb8d01020408102040801b366cd8'
'ab4d9a2f5ebc63c697356ad4b37dfaef'
'c5913972e4d3bd61c29f254a943366cc'
'831d3a74e8cb8d01020408102040801b'
'366cd8ab4d9a2f5ebc63c697356ad4b3'
'7dfaefc5913972e4d3bd61c29f254a94'
'3366cc831d3a74e8cb8d010204081020'
'40801b366cd8ab4d9a2f5ebc63c69735'
'6ad4b37dfaefc5913972e4d3bd61c29f'
'254a943366cc831d3a74e8cb8d010204'
'08102040801b366cd8ab4d9a2f5ebc63'
'c697356ad4b37dfaefc5913972e4d3bd'
'61c29f254a943366cc831d3a74e8cb'.decode('hex')
)
|