This file is indexed.

/usr/lib/python2.7/dist-packages/geopandas/plotting.py is in python-geopandas 0.1.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
from __future__ import print_function

import numpy as np
from six import next
from six.moves import xrange


def plot_polygon(ax, poly, facecolor='red', edgecolor='black', alpha=0.5):
    """ Plot a single Polygon geometry """
    from descartes.patch import PolygonPatch
    a = np.asarray(poly.exterior)
    # without Descartes, we could make a Patch of exterior
    ax.add_patch(PolygonPatch(poly, facecolor=facecolor, alpha=alpha))
    ax.plot(a[:, 0], a[:, 1], color=edgecolor)
    for p in poly.interiors:
        x, y = zip(*p.coords)
        ax.plot(x, y, color=edgecolor)


def plot_multipolygon(ax, geom, facecolor='red', alpha=0.5):
    """ Can safely call with either Polygon or Multipolygon geometry
    """
    if geom.type == 'Polygon':
        plot_polygon(ax, geom, facecolor=facecolor, alpha=alpha)
    elif geom.type == 'MultiPolygon':
        for poly in geom.geoms:
            plot_polygon(ax, poly, facecolor=facecolor, alpha=alpha)


def plot_linestring(ax, geom, color='black', linewidth=1):
    """ Plot a single LineString geometry """
    a = np.array(geom)
    ax.plot(a[:,0], a[:,1], color=color, linewidth=linewidth)


def plot_multilinestring(ax, geom, color='red', linewidth=1):
    """ Can safely call with either LineString or MultiLineString geometry
    """
    if geom.type == 'LineString':
        plot_linestring(ax, geom, color=color, linewidth=linewidth)
    elif geom.type == 'MultiLineString':
        for line in geom.geoms:
            plot_linestring(ax, line, color=color, linewidth=linewidth)


def plot_point(ax, pt, marker='o', markersize=2):
    """ Plot a single Point geometry """
    ax.plot(pt.x, pt.y, marker=marker, markersize=markersize, linewidth=0)


def gencolor(N, colormap='Set1'):
    """
    Color generator intended to work with one of the ColorBrewer
    qualitative color scales.

    Suggested values of colormap are the following:

        Accent, Dark2, Paired, Pastel1, Pastel2, Set1, Set2, Set3

    (although any matplotlib colormap will work).
    """
    from matplotlib import cm
    # don't use more than 9 discrete colors
    n_colors = min(N, 9)
    cmap = cm.get_cmap(colormap, n_colors)
    colors = cmap(range(n_colors))
    for i in xrange(N):
        yield colors[i % n_colors]

def plot_series(s, colormap='Set1', alpha=0.5, axes=None):
    """ Plot a GeoSeries

        Generate a plot of a GeoSeries geometry with matplotlib.

        Parameters
        ----------

        Series
            The GeoSeries to be plotted.  Currently Polygon,
            MultiPolygon, LineString, MultiLineString and Point
            geometries can be plotted.

        colormap : str (default 'Set1')
            The name of a colormap recognized by matplotlib.  Any
            colormap will work, but categorical colormaps are
            generally recommended.  Examples of useful discrete
            colormaps include:

                Accent, Dark2, Paired, Pastel1, Pastel2, Set1, Set2, Set3

        alpha : float (default 0.5)
            Alpha value for polygon fill regions.  Has no effect for
            lines or points.

        axes : matplotlib.pyplot.Artist (default None)
            axes on which to draw the plot

        Returns
        -------

        matplotlib axes instance
    """
    import matplotlib.pyplot as plt
    if axes == None:
        fig = plt.gcf()
        fig.add_subplot(111, aspect='equal')
        ax = plt.gca()
    else:
        ax = axes
    color = gencolor(len(s), colormap=colormap)
    for geom in s:
        if geom.type == 'Polygon' or geom.type == 'MultiPolygon':
            plot_multipolygon(ax, geom, facecolor=next(color), alpha=alpha)
        elif geom.type == 'LineString' or geom.type == 'MultiLineString':
            plot_multilinestring(ax, geom, color=next(color))
        elif geom.type == 'Point':
            plot_point(ax, geom)
    plt.draw()
    return ax


def plot_dataframe(s, column=None, colormap=None, alpha=0.5,
                   categorical=False, legend=False, axes=None, scheme=None,
                   k=5):
    """ Plot a GeoDataFrame

        Generate a plot of a GeoDataFrame with matplotlib.  If a
        column is specified, the plot coloring will be based on values
        in that column.  Otherwise, a categorical plot of the
        geometries in the `geometry` column will be generated.

        Parameters
        ----------

        GeoDataFrame
            The GeoDataFrame to be plotted.  Currently Polygon,
            MultiPolygon, LineString, MultiLineString and Point
            geometries can be plotted.

        column : str (default None)
            The name of the column to be plotted.

        categorical : bool (default False)
            If False, colormap will reflect numerical values of the
            column being plotted.  For non-numerical columns (or if
            column=None), this will be set to True.

        colormap : str (default 'Set1')
            The name of a colormap recognized by matplotlib.

        alpha : float (default 0.5)
            Alpha value for polygon fill regions.  Has no effect for
            lines or points.

        legend : bool (default False)
            Plot a legend (Experimental; currently for categorical
            plots only)

        axes : matplotlib.pyplot.Artist (default None)
            axes on which to draw the plot

        scheme : pysal.esda.mapclassify.Map_Classifier
            Choropleth classification schemes

        k   : int (default 5)
            Number of classes (ignored if scheme is None)


        Returns
        -------

        matplotlib axes instance
    """
    import matplotlib.pyplot as plt
    from matplotlib.lines import Line2D
    from matplotlib.colors import Normalize
    from matplotlib import cm

    if column is None:
        return plot_series(s.geometry, colormap=colormap, alpha=alpha, axes=axes)
    else:
        if s[column].dtype is np.dtype('O'):
            categorical = True
        if categorical:
            if colormap is None:
                colormap = 'Set1'
            categories = list(set(s[column].values))
            categories.sort()
            valuemap = dict([(k, v) for (v, k) in enumerate(categories)])
            values = [valuemap[k] for k in s[column]]
        else:
            values = s[column]
        if scheme is not None:
            values = __pysal_choro(values, scheme, k=k)
        cmap = norm_cmap(values, colormap, Normalize, cm)
        if axes == None:
            fig = plt.gcf()
            fig.add_subplot(111, aspect='equal')
            ax = plt.gca()
        else:
            ax = axes
        for geom, value in zip(s.geometry, values):
            if geom.type == 'Polygon' or geom.type == 'MultiPolygon':
                plot_multipolygon(ax, geom, facecolor=cmap.to_rgba(value), alpha=alpha)
            elif geom.type == 'LineString' or geom.type == 'MultiLineString':
                plot_multilinestring(ax, geom, color=cmap.to_rgba(value))
            # TODO: color point geometries
            elif geom.type == 'Point':
                plot_point(ax, geom)
        if legend:
            if categorical:
                patches = []
                for value, cat in enumerate(categories):
                    patches.append(Line2D([0], [0], linestyle="none",
                                          marker="o", alpha=alpha,
                                          markersize=10, markerfacecolor=cmap.to_rgba(value)))
                ax.legend(patches, categories, numpoints=1, loc='best')
            else:
                # TODO: show a colorbar
                raise NotImplementedError
    plt.draw()
    return ax


def __pysal_choro(values, scheme, k=5):
    """ Wrapper for choropleth schemes from PySAL for use with plot_dataframe

        Parameters
        ----------

        values
            Series to be plotted

        scheme
            pysal.esda.mapclassify classificatin scheme ['Equal_interval'|'Quantiles'|'Fisher_Jenks']

        k
            number of classes (2 <= k <=9)

        Returns
        -------

        values
            Series with values replaced with class identifier if PySAL is available, otherwise the original values are used
    """

    try: 
        from pysal.esda.mapclassify import Quantiles, Equal_Interval, Fisher_Jenks
        schemes = {}
        schemes['equal_interval'] = Equal_Interval
        schemes['quantiles'] = Quantiles
        schemes['fisher_jenks'] = Fisher_Jenks
        s0 = scheme
        scheme = scheme.lower()
        if scheme not in schemes:
            scheme = 'quantiles'
            print('Unrecognized scheme: ', s0)
            print('Using Quantiles instead')
        if k<2 or k>9:
            print('Invalid k: ', k)
            print('2<=k<=9, setting k=5 (default)')
            k = 5
        binning = schemes[scheme](values, k)
        values = binning.yb
    except ImportError: 
        print('PySAL not installed, setting map to default')

    return values

def norm_cmap(values, cmap, normalize, cm):

    """ Normalize and set colormap

        Parameters
        ----------

        values
            Series or array to be normalized

        cmap
            matplotlib Colormap

        normalize
            matplotlib.colors.Normalize

        cm
            matplotlib.cm

        Returns
        -------
        n_cmap
            mapping of normalized values to colormap (cmap)
            
    """

    mn, mx = min(values), max(values)
    norm = normalize(vmin=mn, vmax=mx)
    n_cmap  = cm.ScalarMappable(norm=norm, cmap=cmap)
    return n_cmap