/usr/share/pyshared/fmcs.py is in python-fmcs 1.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 | #!/usr/bin/env python
# This work was funded by Roche and generously donated to the free
# and open source cheminformatics community.
## Copyright (c) 2012 Andrew Dalke Scientific AB
## Andrew Dalke <dalke@dalkescientific.com>
##
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are
## met:
##
## * Redistributions of source code must retain the above copyright
## notice, this list of conditions and the following disclaimer.
##
## * Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in
## the documentation and/or other materials provided with the
## distribution.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
## "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
## LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
## A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
## HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
## SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
## LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
## DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
## THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
## (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""FMCS - Find Maximum Common Substructure
This software finds the maximum common substructure of a set of
structures and reports it as a SMARTS strings.
This implements what I think is a new algorithm for the MCS problem.
The core description is:
best_substructure = None
pick one structure as the query, and other as the targets
for each substructure in the query graph:
convert it to a SMARTS string based on the desired match properties
if the SMARTS pattern exists in all of the targets:
then this is a common substructure
keep track of the maximum such common structure,
The SMARTS string depends on the desired match properties. For
example, if ring atoms are only allowed to match ring atoms then an
aliphatic ring carbon in the query is converted to the SMARTS "[C;R]",
and the double-bond ring bond converted to "=;@" while the respectice
chain-only version are "[C;!R]" and "=;!@".
The algorithm I outlined earlier will usually take a long time. There
are several ways to speed it up.
== Bond elimination ==
As the first step, remove bonds which obviously cannot be part of the
MCS.
This requires atom and bond type information, which I store as SMARTS
patterns. A bond can only be in the MCS if its canonical bond type is
present in all of the structures. A bond type is string made of the
SMARTS for one atom, the SMARTS for the bond, and the SMARTS for the
other atom. The canonical bond type is the lexographically smaller of
the two possible bond types for a bond.
The atom and bond SMARTS depend on the type comparison used.
The "ring-matches-ring-only" option adds an "@" or "!@" to the bond
SMARTS, so that the canonical bondtype for "C-C" becomes [#6]-@[#6] or
[#6]-!@[#6] if the bond is in a ring or not in a ring, and if atoms
are compared by element and bonds are compared by bondtype. (This
option does not add "R" or "!R" to the atom SMARTS because there
should be a single bond in the MCS of c1ccccc1O and CO.)
The result of all of this atom and bond typing is a "TypedMolecule"
for each input structure.
I then find which canonical bondtypes are present in all of the
structures. I convert each TypedMolecule into a
FragmentedTypedMolecule which has the same atom information but only
those bonds whose bondtypes are in all of the structures. This can
break a structure into multiple, disconnected fragments, hence the
name.
(BTW, I would like to use the fragmented molecules as the targets
because I think the SMARTS match would go faster, but the RDKit SMARTS
matcher doesn't like them. I think it's because the new molecule
hasn't been sanitized and the underlying data structure the ring
information doesn't exist. Instead, I use the input structures for the
SMARTS match.)
== Use the structure with the smallest largest fragment as the query ==
== and sort the targets by the smallest largest fragment ==
I pick one of the FragmentedTypedMolecule instances as the source of
substructure enumeration. Which one?
My heuristic is to use the one with the smallest largest fragment.
Hopefully it produces the least number of subgraphs, but that's also
related to the number of rings, so a large linear graph will product
fewer subgraphs than a small fused ring system. I don't know how to
quantify that.
For each of the fragmented structures, I find the number of atoms in
the fragment with the most atoms, and I find the number of bonds in
the fragment with the most bonds. These might not be the same
fragment.
I sort the input structures by the number of bonds in the largest
fragment, with ties broken first on the number of atoms, and then on
the input order. The smallest such structure is the query structure,
and the remaining are the targets.
== Use a breadth-first search and a priority queue to ==
== enumerate the fragment subgraphs ==
I extract each of the fragments from the FragmentedTypedMolecule into
a TypedFragment, which I use to make an EnumerationMolecule. An
enumeration molecule contains a pair of directed edges for each atom,
which simplifies the enumeration algorithm.
The enumeration algorithm is based around growing a seed. A seed
contains the current subgraph atoms and bonds as well as an exclusion
set of bonds which cannot be used for future grown. The initial seed
is the first bond in the fragment, which may potentially grow to use
the entire fragment. The second seed is the second bond in the
fragment, which is excluded from using the first bond in future
growth. The third seed starts from the third bond, which may not use
the first or second bonds during growth, and so on.
A seed can grow along bonds connected to an atom in the seed but which
aren't already in the seed and aren't in the set of excluded bonds for
the seed. If there are no such bonds then subgraph enumeration ends
for this fragment. Given N bonds there are 2**N-1 possible ways to
grow, which is just the powerset of the available bonds, excluding the
no-growth case.
This breadth-first growth takes into account all possibilties of using
the available N bonds so all of those bonds are added to the exclusion
set of the newly expanded subgraphs.
For performance reasons, the bonds used for growth are separated into
'internal' bonds, which connect two atoms already in the subgraph, and
'external' bonds, which lead outwards to an atom not already in the
subgraph.
Each seed growth can add from 0 to N new atoms and bonds. The goal is
to maximize the subgraph size so the seeds are stored in a priority
queue, ranked so the seed with the most bonds is processed first. This
turns the enumeration into something more like a depth-first search.
== Prune seeds which aren't found in all of the structures ==
At each stage of seed growth I check that the new seed exists in all
of the original structures. (Well, all except the one which I
enumerate over in the first place; by definition that one will match.)
If it doesn't match then there's no reason to include this seed or any
larger seeds made from it.
The check is easy; I turn the subgraph into its corresponding SMARTS
string and use RDKit's normal SMARTS matcher to test for a match.
There are three ways to generate a SMARTS string: 1) arbitrary, 2)
canonical, 3) hybrid.
I have not tested #1. During most of the development I assumed that
SMARTS matches across a few hundred structures would be slow, so that
the best solution is to generate a *canonical* SMARTS and cache the
match information.
Well, it turns out that my canonical SMARTS match code takes up most
of the FMCS run-time. If I drop the canonicalization step then the
code averages about 5-10% faster. This isn't the same as #1 - I still
do the initial atom assignment based on its neighborhood, which is
like a circular fingerprint of size 2 and *usually* gives a consistent
SMARTS pattern, which I can then cache.
However, there are times when the non-canonical SMARTS code is slower.
Obviously one is if there are a lot of structures, and another if is
there is a lot of symmetry. I'm still working on characterizing this.
== Maximize atoms? or bonds? ==
The above algorithm enumerates all subgraphs of the query and
identifies those subgraphs which are common to all input structures.
It's trivial then to keep track of the current "best" subgraph, which
can defined as having the subgraph with the most atoms, or the most
bonds. Both of those options are implemented.
It would not be hard to keep track of all other subgraphs which are
the same size.
== --complete-ring-only implementation ==
The "complete ring only" option is implemented by first enabling the
"ring-matches-ring-only" option, as otherwise it doesn't make sense.
Second, in order to be a "best" subgraph, all bonds in the subgraph
which are ring bonds in the original molecule must also be in a ring
in the subgraph. This is handled as a post-processing step.
(Note: some possible optimizations, like removing ring bonds from
structure fragments which are not in a ring, are not yet implemented.)
== Prune seeds which have no potential for growing large enough ==
Given a seed, its set of edges available for growth, and the set of
excluded bonds, figure out the maximum possible growth for the seed.
If this maximum possible is less than the current best subgraph then
prune.
This requires a graph search, currently done in Python, which is a bit
expensive. To speed things up, I precompute some edge information.
That is, if I know that a given bond is a chain bond (not in a ring)
then I can calculate the maximum number of atoms and bonds for seed
growth along that bond, in either direction. However, precomputation
doesn't take into account the excluded bonds, so after a while the
predicted value is too high.
Again, I'm still working on characterizing this, and an implementation
in C++ would have different tradeoffs.
"""
__version__ = "1.0"
__version_info = (1, 0, 0)
import sys
try:
from rdkit import Chem
except ImportError:
sys.stderr.write("Please install RDKit from http://www.rdkit.org/\n")
raise
import argparse
import copy
import itertools
import re
import weakref
from heapq import heappush, heappop, heapify
from itertools import chain, combinations, product
import collections
from collections import defaultdict
import time
### A place to set global options
# (Is this really useful?)
class Default(object):
timeout = None
timeout_string = "none"
maximize = "bonds"
atom_compare = "elements"
bond_compare = "bondtypes"
match_valences = False
ring_matches_ring_only = False
complete_rings_only = False
####### Atom type and bond type information #####
# Lookup up the atomic symbol given its atomic number
_get_symbol = Chem.GetPeriodicTable().GetElementSymbol
# Lookup table to get the SMARTS for an atom given its element
# This uses the '#<n>' notation for atoms which may be aromatic.
# Eg, '#6' for carbon, instead of 'C,c'.
# Use the standard element symbol for atoms which can't be aromatic.
class AtomSmartsNoAromaticity(dict):
def __missing__(self, eleno):
value = _get_symbol(eleno)
self[eleno] = value
return value
_atom_smarts_no_aromaticity = AtomSmartsNoAromaticity()
# Initialize to the ones which need special treatment
# RDKit supports b, c, n, o, p, s, se, and te.
# Daylight and OpenSMILES don't 'te' but do support 'as'
# For better portability, I use the '#' notation for all of them.
for eleno in (5, 6, 7, 8, 15, 16, 33, 34, 52):
_atom_smarts_no_aromaticity[eleno] = "#" + str(eleno)
assert _atom_smarts_no_aromaticity[6] == "#6"
assert _atom_smarts_no_aromaticity[2] == "He"
# Match any atom
def atom_typer_any(atoms):
return ["*"] * len(atoms)
# Match atom by atomic element; usually by symbol
def atom_typer_elements(atoms):
return [_atom_smarts_no_aromaticity[atom.GetAtomicNum()] for atom in atoms]
# Match atom by isotope number. This depends on the RDKit version
if hasattr(Chem.Atom, "GetIsotope"):
def atom_typer_isotopes(atoms):
return ["%d*" % atom.GetIsotope() for atom in atoms]
else:
# Before mid-2012, RDKit only supported atomic mass, not isotope.
# [12*] matches atoms whose mass is 12.000 +/- 0.5/1000
# This generally works, excepting elements which have no
# Tc, Pm, Po, At, Rn, Fr, Ra, Ac, Np, Pu, Am, Cm,
# Bk, Cf, Es, Fm, Md, No, Lr
# natural abundance; [98Tc] is the same as [Tc], etc.
# This leads to problems because I don't have a way to
# define the SMARTS for "no defined isotope." In SMILES/SMARTS
# that's supposed to be through isotope 0.
# The best I can do is force the non-integer masses to 0 and
# use isotope 0 to match them. That's clumsy, but it gives
# the expected result.
def atom_typer_isotopes(atoms):
atom_smarts_types = []
for atom in atoms:
mass = atom.GetMass()
int_mass = int(round(mass * 1000))
if int_mass % 1000 == 0:
# This is close enough that RDKit's match will work
atom_smarts = "%d*" % (int_mass//1000)
else:
# Probably in natural abundance. In any case,
# there's no SMARTS for this pattern, so force
# everything to 0.
atom.SetMass(0.0) # XX warning; in-place modification of the input!
atom_smarts = "0*"
atom_smarts_types.append(atom_smarts)
return atom_smarts_types
# Match any bond
def bond_typer_any(bonds):
return ["~"] * len(bonds)
# Match bonds based on bond type, including aromaticity
def bond_typer_bondtypes(bonds):
# Aromaticity matches are important
bond_smarts_types = []
for bond in bonds:
bond_term = bond.GetSmarts()
if not bond_term:
# The SMILES "", means "single or aromatic" as SMARTS.
# Figure out which one.
if bond.GetIsAromatic():
bond_term = ':'
else:
bond_term = '-'
bond_smarts_types.append(bond_term)
return bond_smarts_types
atom_typers = {
"any": atom_typer_any,
"elements": atom_typer_elements,
"isotopes": atom_typer_isotopes,
}
bond_typers = {
"any": bond_typer_any,
"bondtypes": bond_typer_bondtypes,
}
default_atom_typer = atom_typers[Default.atom_compare]
default_bond_typer = bond_typers[Default.bond_compare]
####### Support code for handling user-defined atom classes
# User-defined atom classes are handled in a round-about fashion. The
# fmcs code doesn't know atom classes, but it can handle isotopes.
# It's easy to label the atom isotopes and do an "isotopes" atom
# comparison. The hard part is if you want to get the match
# information back using the original structure data, without the
# tweaked isotopes.
# My solution uses "save_isotopes" and "save_atom_classes" to store
# the old isotope information and the atom class assignments (both
# ordered by atom position), associated with the molecule.
# Use "restore_isotopes()" to restore the molecule's isotope values
# from the saved values. Ise "get_selected_atom_classes" to get the
# atom classes used by specified atom indices.
if hasattr(Chem.Atom, "GetIsotope"):
def get_isotopes(mol):
return [atom.GetIsotope() for atom in mol.GetAtoms()]
def set_isotopes(mol, isotopes):
if mol.GetNumAtoms() != len(isotopes):
raise ValueError("Mismatch between the number of atoms and the number of isotopes")
for atom, isotope in zip(mol.GetAtoms(), isotopes):
atom.SetIsotope(isotope)
else:
# Backards compatibility. Before mid-2012, RDKit only supported atomic mass, not isotope.
def get_isotopes(mol):
return [atom.GetMass() for atom in mol.GetAtoms()]
def set_isotopes(mol, isotopes):
if mol.GetNumAtoms() != len(isotopes):
raise ValueError("Mismatch between the number of atoms and the number of isotopes")
for atom, isotope in zip(mol.GetAtoms(), isotopes):
atom.SetMass(isotope)
_isotope_dict = weakref.WeakKeyDictionary()
_atom_class_dict = weakref.WeakKeyDictionary()
def save_isotopes(mol, isotopes):
_isotope_dict[mol] = isotopes
def save_atom_classes(mol, atom_classes):
_atom_class_dict[mol] = atom_classes
def get_selected_atom_classes(mol, atom_indices):
atom_classes = _atom_class_dict.get(mol, None)
if atom_classes is None:
return None
return [atom_classes[index] for index in atom_indices]
def restore_isotopes(mol):
try:
isotopes = _isotope_dict[mol]
except KeyError:
raise ValueError("no isotopes to restore")
set_isotopes(mol, isotopes)
def assign_isotopes_from_class_tag(mol, atom_class_tag):
try:
atom_classes = mol.GetProp(atom_class_tag)
except KeyError:
raise ValueError("Missing atom class tag %r" % (atom_class_tag,))
fields = atom_classes.split()
if len(fields) != mol.GetNumAtoms():
raise ValueError("Mismatch between the number of atoms (#%d) and the number of atom classes (%d)" % (
mol.GetNumAtoms(), len(fields)))
new_isotopes = []
for field in fields:
if not field.isdigit():
raise ValueError("Atom class %r from tag %r must be a number" % (field, atom_class_tag))
isotope = int(field)
if not (1 <= isotope <= 10000):
raise ValueError("Atom class %r from tag %r must be in the range 1 to 10000" % (field, atom_class_tag))
new_isotopes.append(isotope)
save_isotopes(mol, get_isotopes(mol))
save_atom_classes(mol, new_isotopes)
set_isotopes(mol, new_isotopes)
### Different ways of storing atom/bond information about the input structures ###
# A TypedMolecule contains the input molecule, unmodified, along with
# atom type, and bond type information; both as SMARTS fragments. The
# "canonical_bondtypes" uniquely charactizes a bond; two bonds will
# match if and only if their canonical bondtypes match. (Meaning:
# bonds must be of equivalent type, and must go between atoms of
# equivalent types.)
class TypedMolecule(object):
def __init__(self, rdmol, rdmol_atoms, rdmol_bonds, atom_smarts_types,
bond_smarts_types, canonical_bondtypes):
self.rdmol = rdmol
# These exist as a performance hack. It's faster to store the
# atoms and bond as a Python list than to do GetAtoms() and
# GetBonds() again. The stage 2 TypedMolecule does not use
# these.
self.rdmol_atoms = rdmol_atoms
self.rdmol_bonds = rdmol_bonds
# List of SMARTS to use for each atom and bond
self.atom_smarts_types = atom_smarts_types
self.bond_smarts_types = bond_smarts_types
# List of canonical bondtype strings
self.canonical_bondtypes = canonical_bondtypes
# Question: Do I also want the original_rdmol_indices? With
# the normal SMARTS I can always do the substructure match
# again to find the indices, but perhaps this will be needed
# when atom class patterns are fully implemented.
# Start with a set of TypedMolecules. Find the canonical_bondtypes
# which only exist in all them, then fragment each TypedMolecule to
# produce a FragmentedTypedMolecule containing the same atom
# information but containing only bonds with those
# canonical_bondtypes.
class FragmentedTypedMolecule(object):
def __init__(self, rdmol, rdmol_atoms, orig_atoms, orig_bonds,
atom_smarts_types, bond_smarts_types, canonical_bondtypes):
self.rdmol = rdmol
self.rdmol_atoms = rdmol_atoms
self.orig_atoms = orig_atoms
self.orig_bonds = orig_bonds
# List of SMARTS to use for each atom and bond
self.atom_smarts_types = atom_smarts_types
self.bond_smarts_types = bond_smarts_types
# List of canonical bondtype strings
self.canonical_bondtypes = canonical_bondtypes
# A FragmentedTypedMolecule can contain multiple fragments. Once I've
# picked the FragmentedTypedMolecule to use for enumeration, I extract
# each of the fragments as the basis for an EnumerationMolecule.
class TypedFragment(object):
def __init__(self, rdmol,
orig_atoms, orig_bonds,
atom_smarts_types, bond_smarts_types, canonical_bondtypes):
self.rdmol = rdmol
self.orig_atoms = orig_atoms
self.orig_bonds = orig_bonds
self.atom_smarts_types = atom_smarts_types
self.bond_smarts_types = bond_smarts_types
self.canonical_bondtypes = canonical_bondtypes
# The two possible bond types are
# atom1_smarts + bond smarts + atom2_smarts
# atom2_smarts + bond smarts + atom1_smarts
# The canonical bond type is the lexically smaller of these two.
def get_canonical_bondtypes(rdmol, bonds, atom_smarts_types, bond_smarts_types):
canonical_bondtypes = []
for bond, bond_smarts in zip(bonds, bond_smarts_types):
atom1_smarts = atom_smarts_types[bond.GetBeginAtomIdx()]
atom2_smarts = atom_smarts_types[bond.GetEndAtomIdx()]
if atom1_smarts > atom2_smarts:
atom1_smarts, atom2_smarts = atom2_smarts, atom1_smarts
canonical_bondtypes.append("[%s]%s[%s]" % (atom1_smarts, bond_smarts, atom2_smarts))
return canonical_bondtypes
# Create a TypedMolecule using the element-based typing scheme
# TODO: refactor this. It doesn't seem right to pass boolean flags.
def get_typed_molecule(rdmol, atom_typer, bond_typer, match_valences = Default.match_valences,
ring_matches_ring_only = Default.ring_matches_ring_only):
atoms = list(rdmol.GetAtoms())
atom_smarts_types = atom_typer(atoms)
# Get the valence information, if requested
if match_valences:
new_atom_smarts_types = []
for (atom, atom_smarts_type) in zip(atoms, atom_smarts_types):
valence = atom.GetImplicitValence() + atom.GetExplicitValence()
valence_str = "v%d" % valence
if "," in atom_smarts_type:
atom_smarts_type += ";" + valence_str
else:
atom_smarts_type += valence_str
new_atom_smarts_types.append(atom_smarts_type)
atom_smarts_types = new_atom_smarts_types
# Store and reuse the bond information because I use it twice.
# In a performance test, the times went from 2.0 to 1.4 seconds by doing this.
bonds = list(rdmol.GetBonds())
bond_smarts_types = bond_typer(bonds)
if ring_matches_ring_only:
new_bond_smarts_types = []
for bond, bond_smarts in zip(bonds, bond_smarts_types):
if bond.IsInRing():
if bond_smarts == ":":
# No need to do anything; it has to be in a ring
pass
else:
if "," in bond_smarts:
bond_smarts += ";@"
else:
bond_smarts += "@"
else:
if "," in bond_smarts:
bond_smarts += ";!@"
else:
bond_smarts += "!@"
new_bond_smarts_types.append(bond_smarts)
bond_smarts_types = new_bond_smarts_types
canonical_bondtypes = get_canonical_bondtypes(rdmol, bonds, atom_smarts_types, bond_smarts_types)
return TypedMolecule(rdmol, atoms, bonds, atom_smarts_types, bond_smarts_types, canonical_bondtypes)
# Create a TypedMolecule using the user-defined atom classes (Not implemented!)
def get_specified_types(rdmol, atom_types, ring_matches_ring_only):
raise NotImplementedError("not tested!")
# Make a copy because I will do some destructive edits
rdmol = copy.copy(rdmol)
atom_smarts_types = []
atoms = list(mol.GetAtoms())
for atom, atom_type in zip(atoms, atom_types):
atom.SetAtomicNum(0)
atom.SetMass(atom_type)
atom_term = "%d*" % (atom_type,)
if ring_matches_ring_only:
if atom.IsInRing():
atom_term += "R"
else:
atom_term += "!R"
atom_smarts_types.append('[' + atom_term + ']')
bonds = list(rdmol.GetBonds())
bond_smarts_types = get_bond_smarts_types(mol, bonds, ring_matches_ring_only)
canonical_bondtypes = get_canonical_bondtypes(mol, bonds, atom_smarts_types, bond_smarts_types)
return TypedMolecule(mol, atoms, bonds, atom_smarts_types, bond_smarts_types, canonical_bondtypes)
def convert_input_to_typed_molecules(mols, atom_typer, bond_typer, match_valences, ring_matches_ring_only):
typed_mols = []
for molno, rdmol in enumerate(mols):
typed_mol = get_typed_molecule(rdmol, atom_typer, bond_typer,
match_valences=match_valences, ring_matches_ring_only=ring_matches_ring_only)
typed_mols.append(typed_mol)
return typed_mols
def _check_atom_classes(molno, num_atoms, atom_classes):
if num_atoms != len(atom_classes):
raise ValueError("mols[%d]: len(atom_classes) must be the same as the number of atoms" % (molno,))
for atom_class in atom_classes:
if not isinstance(atom_class, int):
raise ValueError("mols[%d]: atom_class elements must be integers" % (molno,))
if not (1 <= atom_class < 1000):
raise ValueError("mols[%d]: atom_class elements must be in the range 1 <= value < 1000" %
(molno,))
#############################################
# This section deals with finding the canonical bondtype counts and
# making new TypedMolecule instances where the atoms contain only the
# bond types which are in all of the structures.
# In the future I would like to keep track of the bond types which are
# in the current subgraph. If any subgraph bond type count is ever
# larger than the maximum counts computed across the whole set, then
# prune. But so far I don't have a test set which drives the need for
# that.
# Return a dictionary mapping iterator item to occurence count
def get_counts(it):
d = defaultdict(int)
for item in it:
d[item] += 1
return dict(d)
# Merge two count dictionaries, returning the smallest count for any
# entry which is in both.
def intersect_counts(counts1, counts2):
d = {}
for k, v1 in counts1.iteritems():
if k in counts2:
v = min(v1, counts2[k])
d[k] = v
return d
# Figure out which canonical bonds SMARTS occur in every molecule
def get_canonical_bondtype_counts(typed_mols):
# Get all of the canonical bond counts in the first molecule
bondtype_counts = get_counts(typed_mols[0].canonical_bondtypes)
# Iteratively intersect it with the other typed molecules
for typed_mol in typed_mols[1:]:
new_counts = get_counts(typed_mol.canonical_bondtypes)
bondtype_counts = intersect_counts(bondtype_counts, new_counts)
return bondtype_counts
# If I know which bondtypes exist in all of the structures, I can
# remove all bonds which aren't in all structures. RDKit's Molecule
# class doesn't let me edit in-place, so I end up making a new one
# which doesn't have unsupported bond types.
def remove_unknown_bondtypes(typed_mol, supported_canonical_bondtypes):
emol = Chem.EditableMol(Chem.Mol())
# Copy all of the atoms, even those which don't have any bonds.
for atom in typed_mol.rdmol_atoms:
emol.AddAtom(atom)
# Copy over all the bonds with a supported bond type.
# Make sure to update the bond SMARTS and canonical bondtype lists.
orig_bonds = []
new_bond_smarts_types = []
new_canonical_bondtypes = []
for bond, bond_smarts, canonical_bondtype in zip(typed_mol.rdmol_bonds, typed_mol.bond_smarts_types,
typed_mol.canonical_bondtypes):
if canonical_bondtype in supported_canonical_bondtypes:
orig_bonds.append(bond)
new_bond_smarts_types.append(bond_smarts)
new_canonical_bondtypes.append(canonical_bondtype)
emol.AddBond(bond.GetBeginAtomIdx(), bond.GetEndAtomIdx(), bond.GetBondType())
new_mol = emol.GetMol()
return FragmentedTypedMolecule(new_mol, list(new_mol.GetAtoms()),
typed_mol.rdmol_atoms, orig_bonds,
typed_mol.atom_smarts_types, new_bond_smarts_types,
new_canonical_bondtypes)
# The molecule at this point has been (potentially) fragmented by
# removing bonds with unsupported bond types. The MCS cannot contain
# more atoms than the fragment of a given molecule with the most
# atoms, and the same for bonds. Find those upper limits. Note that
# the fragment with the most atoms is not necessarily the one with the
# most bonds.
def find_upper_fragment_size_limits(rdmol, atoms):
max_num_atoms = max_twice_num_bonds = 0
for atom_indices in Chem.GetMolFrags(rdmol):
num_atoms = len(atom_indices)
if num_atoms > max_num_atoms:
max_num_atoms = num_atoms
# Every bond is connected to two atoms, so this is the
# simplest way to count the number of bonds in the fragment.
twice_num_bonds = 0
for atom_index in atom_indices:
# XXX Why is there no 'atom.GetNumBonds()'?
twice_num_bonds += sum(1 for bond in atoms[atom_index].GetBonds())
if twice_num_bonds > max_twice_num_bonds:
max_twice_num_bonds = twice_num_bonds
return max_num_atoms, max_twice_num_bonds // 2
####### Convert the selected TypedMolecule into an EnumerationMolecule
# I convert one of the typed fragment molecules (specifically, the one
# with the smallest largest fragment score) into a list of
# EnumerationMolecule instances. Each fragment from the typed molecule
# gets turned into an EnumerationMolecule.
# An EnumerationMolecule contains the data I need to enumerate all of
# its subgraphs.
# An EnumerationMolecule contains a list of 'Atom's and list of 'Bond's.
# Atom and Bond indices are offsets into those respective lists.
# An Atom has a list of "bond_indices", which are offsets into the bonds.
# A Bond has a 2-element list of "atom_indices", which are offsets into the atoms.
EnumerationMolecule = collections.namedtuple("Molecule", "rdmol atoms bonds directed_edges")
Atom = collections.namedtuple("Atom", "real_atom atom_smarts bond_indices is_in_ring")
Bond = collections.namedtuple("Bond", "real_bond bond_smarts canonical_bondtype atom_indices is_in_ring")
# A Bond is linked to by two 'DirectedEdge's; one for each direction.
# The DirectedEdge.bond_index references the actual RDKit bond instance.
# 'end_atom_index' is the index of the destination atom of the directed edge
# This is used in a 'directed_edges' dictionary so that
# [edge.end_atom_index for edge in directed_edges[atom_index]]
# is the list of all atom indices connected to 'atom_index'
DirectedEdge = collections.namedtuple("DirectedEdge",
"bond_index end_atom_index")
# A Subgraph is a list of atom and bond indices in an EnumerationMolecule
Subgraph = collections.namedtuple("Subgraph", "atom_indices bond_indices")
def get_typed_fragment(typed_mol, atom_indices):
rdmol = typed_mol.rdmol
rdmol_atoms = typed_mol.rdmol_atoms
# I need to make a new RDKit Molecule containing only the fragment.
# XXX Why is that? Do I use the molecule for more than the number of atoms and bonds?
# Copy over the atoms
emol = Chem.EditableMol(Chem.Mol())
atom_smarts_types = []
atom_map = {}
for i, atom_index in enumerate(atom_indices):
atom = rdmol_atoms[atom_index]
emol.AddAtom(atom)
atom_smarts_types.append(typed_mol.atom_smarts_types[atom_index])
atom_map[atom_index] = i
# Copy over the bonds.
orig_bonds = []
bond_smarts_types = []
new_canonical_bondtypes = []
for bond, orig_bond, bond_smarts, canonical_bondtype in zip(
rdmol.GetBonds(), typed_mol.orig_bonds,
typed_mol.bond_smarts_types, typed_mol.canonical_bondtypes):
begin_atom_idx = bond.GetBeginAtomIdx()
end_atom_idx = bond.GetEndAtomIdx()
count = (begin_atom_idx in atom_map) + (end_atom_idx in atom_map)
# Double check that I have a proper fragment
if count == 2:
bond_smarts_types.append(bond_smarts)
new_canonical_bondtypes.append(canonical_bondtype)
emol.AddBond(atom_map[begin_atom_idx], atom_map[end_atom_idx], bond.GetBondType())
orig_bonds.append(orig_bond)
elif count == 1:
raise AssertionError("connected/disconnected atoms?")
return TypedFragment(emol.GetMol(),
[typed_mol.orig_atoms[atom_index] for atom_index in atom_indices],
orig_bonds,
atom_smarts_types, bond_smarts_types, new_canonical_bondtypes)
def fragmented_mol_to_enumeration_mols(typed_mol, min_num_atoms=2):
if min_num_atoms < 2:
raise ValueError("min_num_atoms must be at least 2")
fragments = []
for atom_indices in Chem.GetMolFrags(typed_mol.rdmol):
# No need to even look at fragments which are too small.
if len(atom_indices) < min_num_atoms:
continue
# Convert a fragment from the TypedMolecule into a new
# TypedMolecule containing only that fragment.
# You might think I could merge 'get_typed_fragment()' with
# the code to generate the EnumerationMolecule. You're
# probably right. This code reflects history. My original code
# didn't break the typed molecule down to its fragments.
typed_fragment = get_typed_fragment(typed_mol, atom_indices)
rdmol = typed_fragment.rdmol
atoms = []
for atom, orig_atom, atom_smarts_type in zip(rdmol.GetAtoms(), typed_fragment.orig_atoms,
typed_fragment.atom_smarts_types):
bond_indices = [bond.GetIdx() for bond in atom.GetBonds()]
#assert atom.GetSymbol() == orig_atom.GetSymbol()
atom_smarts = '[' + atom_smarts_type + ']'
atoms.append(Atom(atom, atom_smarts, bond_indices, orig_atom.IsInRing()))
directed_edges = collections.defaultdict(list)
bonds = []
for bond_index, (bond, orig_bond, bond_smarts, canonical_bondtype) in enumerate(
zip(rdmol.GetBonds(), typed_fragment.orig_bonds,
typed_fragment.bond_smarts_types, typed_fragment.canonical_bondtypes)):
atom_indices = [bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()]
bonds.append(Bond(bond, bond_smarts, canonical_bondtype, atom_indices, orig_bond.IsInRing()))
directed_edges[atom_indices[0]].append(DirectedEdge(bond_index, atom_indices[1]))
directed_edges[atom_indices[1]].append(DirectedEdge(bond_index, atom_indices[0]))
fragment = EnumerationMolecule(rdmol, atoms, bonds, dict(directed_edges))
fragments.append(fragment)
# Optimistically try the largest fragments first
fragments.sort(key = lambda fragment: len(fragment.atoms), reverse=True)
return fragments
####### Canonical SMARTS generation using Weininger, Weininger, and Weininger's CANGEN
# CANGEN "combines two separate algorithms, CANON and GENES. The
# first stage, CANON, labels a molecualr structure with canonical
# labels. ... Each atom is given a numerical label on the basis of its
# topology. In the second stage, GENES generates the unique SMILES
# ... . [It] selects the starting atom and makes branching decisions
# by referring to the canonical labels as needed."
# CANON is based on the fundamental theorem of arithmetic, that is,
# the unique prime factorization theorem. Which means I need about as
# many primes as I have atoms.
# I could have a fixed list of a few thousand primes but I don't like
# having a fixed upper limit to my molecule size. I modified the code
# Georg Schoelly posted at http://stackoverflow.com/a/568618/64618 .
# This is one of many ways to generate an infinite sequence of primes.
def gen_primes():
d = defaultdict(list)
q = 2
while 1:
if q not in d:
yield q
d[q*q].append(q)
else:
for p in d[q]:
d[p+q].append(p)
del d[q]
q += 1
_prime_stream = gen_primes()
# Code later on uses _primes[n] and if that fails, calls _get_nth_prime(n)
_primes = []
def _get_nth_prime(n):
# Keep appending new primes from the stream until I have enough.
current_size = len(_primes)
while current_size <= n:
_primes.append(next(_prime_stream))
current_size += 1
return _primes[n]
# Prime it with more values then will likely occur
_get_nth_prime(1000)
###
# The CANON algorithm is documented as:
# (1) Set atomic vector to initial invariants. Go to step 3.
# (2) Set vector to product of primes corresponding to neighbors' ranks.
# (3) Sort vector, maintaining stability over previous ranks.
# (4) Rank atomic vector.
# (5) If not invariants partitioning, go to step 2.
# (6) On first pass, save partitioning as symmetry classes [fmcs doesn't need this]
# (7) If highest rank is smaller than number of nodes, break ties, go to step 2
# (8) ... else done.
# I track the atom information as a list of CangenNode instances.
class CangenNode(object):
# Using __slots__ improves get_initial_cangen_nodes performance by over 10%
# and dropped my overall time (in one benchmark) from 0.75 to 0.73 seconds
__slots__ = ["index", "atom_smarts", "value", "neighbors", "rank", "outgoing_edges"]
def __init__(self, index, atom_smarts):
self.index = index
self.atom_smarts = atom_smarts # Used to generate the SMARTS output
self.value = 0
self.neighbors = []
self.rank = 0
self.outgoing_edges = []
# The outgoing edge information is used to generate the SMARTS output
# The index numbers are offsets in the subgraph, not in the original molecule
OutgoingEdge = collections.namedtuple("OutgoingEdge",
"from_atom_index bond_index bond_smarts other_node_idx other_node")
# Convert a Subgraph of a given EnumerationMolecule into a list of
# CangenNodes. This contains the more specialized information I need
# for canonicalization and for SMARTS generation.
def get_initial_cangen_nodes(subgraph, enumeration_mol, atom_assignment, do_initial_assignment=True):
# The subgraph contains a set of atom and bond indices in the enumeration_mol.
# The CangenNode corresponds to an atom in the subgraph, plus relations
# to other atoms in the subgraph.
# I need to convert from offsets in molecule space to offset in subgraph space.
# Map from enumeration mol atom indices to subgraph/CangenNode list indices
atom_map = {}
cangen_nodes = []
atoms = enumeration_mol.atoms
canonical_labels = []
for i, atom_index in enumerate(subgraph.atom_indices):
atom_map[atom_index] = i
cangen_nodes.append(CangenNode(i, atoms[atom_index].atom_smarts))
canonical_labels.append([])
# Build the neighbor and directed edge lists
for bond_index in subgraph.bond_indices:
bond = enumeration_mol.bonds[bond_index]
from_atom_index, to_atom_index = bond.atom_indices
from_subgraph_atom_index = atom_map[from_atom_index]
to_subgraph_atom_index = atom_map[to_atom_index]
from_node = cangen_nodes[from_subgraph_atom_index]
to_node = cangen_nodes[to_subgraph_atom_index]
from_node.neighbors.append(to_node)
to_node.neighbors.append(from_node)
canonical_bondtype = bond.canonical_bondtype
canonical_labels[from_subgraph_atom_index].append(canonical_bondtype)
canonical_labels[to_subgraph_atom_index].append(canonical_bondtype)
from_node.outgoing_edges.append(
OutgoingEdge(from_subgraph_atom_index, bond_index, bond.bond_smarts,
to_subgraph_atom_index, to_node))
to_node.outgoing_edges.append(
OutgoingEdge(to_subgraph_atom_index, bond_index, bond.bond_smarts,
from_subgraph_atom_index, from_node))
if do_initial_assignment:
# Do the initial graph invariant assignment. (Step 1 of the CANON algorithm)
# These are consistent only inside of the given 'atom_assignment' lookup.
for atom_index, node, canonical_label in zip(subgraph.atom_indices, cangen_nodes, canonical_labels):
# The initial invariant is the sorted canonical bond labels
# plus the atom smarts, separated by newline characters.
#
# This is equivalent to a circular fingerprint of width 2, and
# gives more unique information than the Weininger method.
canonical_label.sort()
canonical_label.append(atoms[atom_index].atom_smarts)
label = "\n".join(canonical_label)
# The downside of using a string is that I need to turn it
# into a number which is consistent across all of the SMARTS I
# generate as part of the MCS search. Use a lookup table for
# that which creates a new number of the label wasn't seen
# before, or uses the old one if it was.
node.value = atom_assignment[label]
return cangen_nodes
# Rank a sorted list (by value) of CangenNodes
def rerank(cangen_nodes):
rank = 0 # Note: Initial rank is 1, in line with the Weininger paper
prev_value = -1
for node in cangen_nodes:
if node.value != prev_value:
rank += 1
prev_value = node.value
node.rank = rank
# Given a start/end range in the CangenNodes, sorted by value,
# find the start/end for subranges with identical values
def find_duplicates(cangen_nodes, start, end):
result = []
prev_value = -1
count = 0
for index in xrange(start, end):
node = cangen_nodes[index]
if node.value == prev_value:
count += 1
else:
if count > 1:
# New subrange containing duplicates
result.append( (start, index) )
count = 1
prev_value = node.value
start = index
if count > 1:
# Last elements were duplicates
result.append( (start, end) )
return result
#@profile
def canon(cangen_nodes):
# Precondition: node.value is set to the initial invariant
# (1) Set atomic vector to initial invariants (assumed on input)
# Do the initial ranking
cangen_nodes.sort(key = lambda node: node.value)
rerank(cangen_nodes)
# Keep refining the sort order until it's unambiguous
master_sort_order = cangen_nodes[:]
# Find the start/end range for each stretch of duplicates
duplicates = find_duplicates(cangen_nodes, 0, len(cangen_nodes))
PRIMES = _primes # micro-optimization; make this a local name lookup
while duplicates:
# (2) Set vector to product of primes corresponding to neighbor's ranks
for node in cangen_nodes:
try:
node.value = PRIMES[node.rank]
except IndexError:
node.value = _get_nth_prime(node.rank)
for node in cangen_nodes:
# Apply the fundamental theorem of arithmetic; compute the
# product of the neighbors' primes
p = 1
for neighbor in node.neighbors:
p *= neighbor.value
node.value = p
# (3) Sort vector, maintaining stability over previous ranks
# (I maintain stability by refining ranges in the
# master_sort_order based on the new ranking)
cangen_nodes.sort(key = lambda node: node.value)
# (4) rank atomic vector
rerank(cangen_nodes)
# See if any of the duplicates have been resolved.
new_duplicates = []
unchanged = True # This is buggy? Need to check the entire state XXX
for (start, end) in duplicates:
# Special case when there's only two elements to store.
# This optimization sped up cangen by about 8% because I
# don't go through the sort machinery
if start+2 == end:
node1, node2 = master_sort_order[start], master_sort_order[end-1]
if node1.value > node2.value:
master_sort_order[start] = node2
master_sort_order[end-1] = node1
else:
subset = master_sort_order[start:end]
subset.sort(key = lambda node: node.value)
master_sort_order[start:end] = subset
subset_duplicates = find_duplicates(master_sort_order, start, end)
new_duplicates.extend(subset_duplicates)
if unchanged:
# Have we distinguished any of the duplicates?
if not (len(subset_duplicates) == 1 and subset_duplicates[0] == (start, end)):
unchanged = False
# (8) ... else done
# Yippee! No duplicates left. Everything has a unique value.
if not new_duplicates:
break
# (5) If not invariant partitioning, go to step 2
if not unchanged:
duplicates = new_duplicates
continue
duplicates = new_duplicates
# (6) On first pass, save partitioning as symmetry classes
pass # I don't need this information
# (7) If highest rank is smaller than number of nodes, break ties, go to step 2
# I follow the Weininger algorithm and use 2*rank or 2*rank-1.
# This requires that the first rank is 1, not 0.
for node in cangen_nodes:
node.value = node.rank * 2
# The choice of tie is arbitrary. Weininger breaks the first tie.
# I break the last tie because it's faster in Python to delete
# from the end than the beginning.
start, end = duplicates[-1]
cangen_nodes[start].value -= 1
if end == start+2:
# There were only two nodes with the same value. Now there
# are none. Remove information about that duplicate.
del duplicates[-1]
else:
# The first N-1 values are still duplicates.
duplicates[-1] = (start+1, end)
rerank(cangen_nodes)
# Restore to the original order (ordered by subgraph atom index)
# because the bond information used during SMARTS generation
# references atoms by that order.
cangen_nodes.sort(key=lambda node: node.index)
def get_closure_label(bond_smarts, closure):
if closure < 10:
return bond_smarts + str(closure)
else:
return bond_smarts + "%%%02d" % closure
# Precompute the initial closure heap. *Overall* performance went from 0.73 to 0.64 seconds!
_available_closures = range(1, 101)
heapify(_available_closures)
# The Weininger paper calls this 'GENES'; I call it "generate_smiles."
# I use a different algorithm than GENES. It's still use two
# passes. The first pass identifies the closure bonds using a
# depth-first search. The second pass builds the SMILES string.
def generate_smarts(cangen_nodes):
start_index = 0
best_rank = cangen_nodes[0].rank
for i, node in enumerate(cangen_nodes):
if node.rank < best_rank:
best_rank = node.rank
start_index = i
node.outgoing_edges.sort(key=lambda edge: edge.other_node.rank)
visited_atoms = [0] * len(cangen_nodes)
closure_bonds = set()
## First, find the closure bonds using a DFS
stack = []
atom_idx = start_index
stack.extend(reversed(cangen_nodes[atom_idx].outgoing_edges))
visited_atoms[atom_idx] = True
while stack:
edge = stack.pop()
if visited_atoms[edge.other_node_idx]:
closure_bonds.add(edge.bond_index)
else:
visited_atoms[edge.other_node_idx] = 1
for next_edge in reversed(cangen_nodes[edge.other_node_idx].outgoing_edges):
if next_edge.other_node_idx == edge.from_atom_index:
# Don't worry about going back along the same route
continue
stack.append(next_edge)
available_closures = _available_closures[:]
unclosed_closures = {}
# I've identified the closure bonds.
# Use a stack machine to traverse the graph and build the SMARTS.
# The instruction contains one of 4 instructions, with associated data
# 0: add the atom's SMARTS and put its connections on the machine
# 1: add the bond's SMARTS and put the other atom on the machine
# 3: add a ')' to the SMARTS
# 4: add a '(' and the bond SMARTS
smiles_terms = []
stack = [(0, (start_index, -1))]
while stack:
action, data = stack.pop()
if action == 0:
# Add an atom.
# The 'while 1:' emulates a goto for the special case
# where the atom is connected to only one other atom. I
# don't need to use the stack machinery for that case, and
# can speed up this function by about 10%.
while 1:
# Look at the bonds starting from this atom
num_neighbors = 0
atom_idx, prev_bond_idx = data
smiles_terms.append(cangen_nodes[atom_idx].atom_smarts)
outgoing_edges = cangen_nodes[atom_idx].outgoing_edges
for outgoing_edge in outgoing_edges:
bond_idx = outgoing_edge.bond_index
# Is this a ring closure bond?
if bond_idx in closure_bonds:
# Have we already seen it before?
if bond_idx not in unclosed_closures:
# This is new. Add as a ring closure.
closure = heappop(available_closures)
smiles_terms.append(get_closure_label(outgoing_edge.bond_smarts, closure))
unclosed_closures[bond_idx] = closure
else:
closure = unclosed_closures[bond_idx]
smiles_terms.append(get_closure_label(outgoing_edge.bond_smarts, closure))
heappush(available_closures, closure)
del unclosed_closures[bond_idx]
else:
# This is a new outgoing bond.
if bond_idx == prev_bond_idx:
# Don't go backwards along the bond I just came in on
continue
if num_neighbors == 0:
# This is the first bond. There's a good chance that
# it's the only bond.
data = (outgoing_edge.other_node_idx, bond_idx)
bond_smarts = outgoing_edge.bond_smarts
else:
# There are multiple bonds. Can't shortcut.
if num_neighbors == 1:
# Capture the information for the first bond
# This direction doesn't need the (branch) characters.
stack.append((0, data))
stack.append((1, bond_smarts))
# Add information for this bond
stack.append((3, None))
stack.append((0, (outgoing_edge.other_node_idx, bond_idx)))
stack.append((4, outgoing_edge.bond_smarts))
num_neighbors += 1
if num_neighbors != 1:
# If there's only one item then goto action==0 again.
break
smiles_terms.append(bond_smarts)
elif action == 1:
# Process a bond which does not need '()'s
smiles_terms.append(data) # 'data' is bond_smarts
continue
elif action == 3:
smiles_terms.append(')')
elif action == 4:
smiles_terms.append('(' + data) # 'data' is bond_smarts
else:
raise AssertionError
return "".join(smiles_terms)
# Full canonicalization is about 5% slower unless there are well over 100 structures
# in the data set, which is not expected to be common.
# Commented out the canon() step until there's a better solution (eg, adapt based
# in the input size.)
def make_canonical_smarts(subgraph, enumeration_mol, atom_assignment):
cangen_nodes = get_initial_cangen_nodes(subgraph, enumeration_mol, atom_assignment, True)
#canon(cangen_nodes)
smarts = generate_smarts(cangen_nodes)
return smarts
## def make_semicanonical_smarts(subgraph, enumeration_mol, atom_assignment):
## cangen_nodes = get_initial_cangen_nodes(subgraph, enumeration_mol, atom_assignment, True)
## # There's still some order because of the canonical bond typing, but it isn't perfect
## #canon(cangen_nodes)
## smarts = generate_smarts(cangen_nodes)
## return smarts
def make_arbitrary_smarts(subgraph, enumeration_mol, atom_assignment):
cangen_nodes = get_initial_cangen_nodes(subgraph, enumeration_mol, atom_assignment, False)
# Use an arbitrary order
for i, node in enumerate(cangen_nodes):
node.value = i
smarts = generate_smarts(cangen_nodes)
return smarts
############## Subgraph enumeration ##################
# A 'seed' is a subgraph containing a subset of the atoms and bonds in
# the graph. The idea is to try all of the ways in which to grow the
# seed to make a new seed which contains the original seed.
# There are two ways to grow a seed:
# - add a bond which is not in the seed but where both of its
# atoms are in the seed
# - add a bond which is not in the seed but where one of its
# atoms is in the seed (and the other is not)
# The algorithm takes the seed, and finds all of both categories of
# bonds. If there are N total such bonds then there are 2**N-1
# possible new seeds which contain the original seed. This is simply
# the powerset of the possible bonds, excepting the case with no
# bonds.
# Generate all 2**N-1 new seeds. Place the new seeds back in the
# priority queue to check for additional growth.
# I place the seeds in priority queue, sorted by score (typically the
# number of atoms) to preferentially search larger structures first. A
# simple stack or deque wouldn't work because the new seeds have
# between 1 to N-1 new atoms and bonds.
# Some useful preamble code
# Taken from the Python documentation
def powerset(iterable):
"powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
s = list(iterable)
return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))
# Same as the above except the empty term is not returned
def nonempty_powerset(iterable):
"nonempty_powerset([1,2,3]) --> (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
s = list(iterable)
it = chain.from_iterable(combinations(s, r) for r in range(len(s)+1))
it.next()
return it
# Call this to get a new unique function. Used to break ties in the
# priority queue.
tiebreaker = itertools.count().next
### The enumeration code
# Given a set of atoms, find all of the ways to leave those atoms.
# There are two possibilities:
# 1) bonds; which connect two atoms which are already in 'atom_indices'
# 2) directed edges; which go to atoms that aren't in 'atom_indices'
# and which aren't already in visited_bond_indices. These are external
# to the subgraph.
# The return is a 2-element tuple containing:
# (the list of bonds from (1), the list of directed edges from (2))
def find_extensions(atom_indices, visited_bond_indices, directed_edges):
internal_bonds = set()
external_edges = []
for atom_index in atom_indices:
for directed_edge in directed_edges[atom_index]:
# Skip outgoing edges which have already been evaluated
if directed_edge.bond_index in visited_bond_indices:
continue
if directed_edge.end_atom_index in atom_indices:
# case 1: This bond goes to another atom which is already in the subgraph.
internal_bonds.add(directed_edge.bond_index)
else:
# case 2: This goes to a new (external) atom
external_edges.append(directed_edge)
# I don't think I need the list()
return list(internal_bonds), external_edges
# Given the 2-element tuple (internal_bonds, external_edges),
# construct all of the ways to combine them to generate a new subgraph
# from the old one. This is done via a powerset.
# This generates a two-element tuple containing:
# - the set of newly added atom indices (or None)
# - the new subgraph
def all_subgraph_extensions(enumeration_mol, subgraph, visited_bond_indices, internal_bonds, external_edges):
#print "Subgraph", len(subgraph.atom_indices), len(subgraph.bond_indices), "X", enumeration_mol.rdmol.GetNumAtoms()
#print "subgraph atoms", subgraph.atom_indices
#print "subgraph bonds", subgraph.bond_indices
#print "internal", internal_bonds, "external", external_edges
# only internal bonds
if not external_edges:
#assert internal_bonds, "Must have at least one internal bond"
it = nonempty_powerset(internal_bonds)
for internal_bond in it:
# Make the new subgraphs
bond_indices = set(subgraph.bond_indices)
bond_indices.update(internal_bond)
yield None, Subgraph(subgraph.atom_indices, frozenset(bond_indices)), 0, 0
return
# only external edges
if not internal_bonds:
it = nonempty_powerset(external_edges)
exclude_bonds = set(chain(visited_bond_indices, (edge.bond_index for edge in external_edges)))
for external_ext in it:
new_atoms = frozenset(ext.end_atom_index for ext in external_ext)
atom_indices = frozenset(chain(subgraph.atom_indices, new_atoms))
bond_indices = frozenset(chain(subgraph.bond_indices,
(ext.bond_index for ext in external_ext)))
num_possible_atoms, num_possible_bonds = find_extension_size(
enumeration_mol, new_atoms, exclude_bonds, external_ext)
#num_possible_atoms = len(enumeration_mol.atoms) - len(atom_indices)
#num_possible_bonds = len(enumeration_mol.bonds) - len(bond_indices)
yield new_atoms, Subgraph(atom_indices, bond_indices), num_possible_atoms, num_possible_bonds
return
# Both internal bonds and external edges
internal_powerset = list(powerset(internal_bonds))
external_powerset = powerset(external_edges)
exclude_bonds = set(chain(visited_bond_indices, (edge.bond_index for edge in external_edges)))
for external_ext in external_powerset:
if not external_ext:
# No external extensions. Must have at least one internal bond.
for internal_bond in internal_powerset[1:]:
bond_indices = set(subgraph.bond_indices)
bond_indices.update(internal_bond)
yield None, Subgraph(subgraph.atom_indices, bond_indices), 0, 0
else:
new_atoms = frozenset(ext.end_atom_index for ext in external_ext)
atom_indices = frozenset(chain(subgraph.atom_indices, new_atoms))
# no_go_bond_indices = set(chain(visited_bond_indices, extern
bond_indices = frozenset(chain(subgraph.bond_indices,
(ext.bond_index for ext in external_ext)))
num_possible_atoms, num_possible_bonds = find_extension_size(
enumeration_mol, atom_indices, exclude_bonds, external_ext)
#num_possible_atoms = len(enumeration_mol.atoms) - len(atom_indices)
for internal_bond in internal_powerset:
bond_indices2 = frozenset(chain(bond_indices, internal_bond))
#num_possible_bonds = len(enumeration_mol.bonds) - len(bond_indices2)
yield new_atoms, Subgraph(atom_indices, bond_indices2), num_possible_atoms, num_possible_bonds
def find_extension_size(enumeration_mol, known_atoms, exclude_bonds, directed_edges):
num_remaining_atoms = num_remaining_bonds = 0
visited_atoms = set(known_atoms)
visited_bonds = set(exclude_bonds)
#print "start atoms", visited_atoms
#print "start bonds", visited_bonds
#print "Along", [directed_edge.bond_index for directed_edge in directed_edges]
for directed_edge in directed_edges:
#print "Take", directed_edge
stack = [directed_edge.end_atom_index]
# simple depth-first search search
while stack:
atom_index = stack.pop()
for next_edge in enumeration_mol.directed_edges[atom_index]:
#print "Visit", next_edge.bond_index, next_edge.end_atom_index
bond_index = next_edge.bond_index
if bond_index in visited_bonds:
#print "Seen bond", bond_index
continue
num_remaining_bonds += 1
visited_bonds.add(bond_index)
#print "New BOND!", bond_index, "count", num_remaining_bonds
next_atom_index = next_edge.end_atom_index
if next_atom_index in visited_atoms:
#print "Seen atom"
continue
num_remaining_atoms += 1
#print "New atom!", next_atom_index, "count", num_remaining_atoms
visited_atoms.add(next_atom_index)
stack.append(next_atom_index)
#print "==>", num_remaining_atoms, num_remaining_bonds
return num_remaining_atoms, num_remaining_bonds
# Check if a SMARTS is in all targets.
# Uses a dictionary-style API, but please only use matcher[smarts]
# Caches all previous results.
class CachingTargetsMatcher(dict):
def __init__(self, targets):
self.targets = targets
super(dict, self).__init__()
def __missing__(self, smarts):
pat = Chem.MolFromSmarts(smarts)
if pat is None:
raise AssertionError("Bad SMARTS: %r" % (smarts,))
for target in self.targets:
if not MATCH(target, pat):
# Does not match. No need to continue processing
self[smarts] = False
return False
# TODO: should I move the mismatch structure forward
# so that it's tested earlier next time?
# Matches everything
self[smarts] = True
return True
class VerboseCachingTargetsMatcher(object):
def __init__(self, targets):
self.targets = targets
self.cache = {}
self.num_lookups = self.num_cached_true = self.num_cached_false = 0
self.num_search_true = self.num_search_false = self.num_matches = 0
def __getitem__(self, smarts, missing=object()):
self.num_lookups += 1
x = self.cache.get(smarts, missing)
if x is not missing:
if x:
self.num_cached_true += 1
else:
self.num_cached_false += 1
return x
pat = Chem.MolFromSmarts(smarts)
if pat is None:
raise AssertionError("Bad SMARTS: %r" % (smarts,))
for i, target in enumerate(self.targets):
if not MATCH(target, pat):
# Does not match. No need to continue processing
self.num_search_false += 1
self.num_matches += i+1
self.cache[smarts] = False
N = len(self.targets)
return False
# TODO: should I move the mismatch structure forward
# so that it's tested earlier next time?
# Matches everything
self.num_matches += i+1
self.num_search_true += 1
self.cache[smarts] = True
return True
def report(self):
print >>sys.stderr, "%d tests of %d unique SMARTS, cache: %d True %d False, search: %d True %d False (%d substructure tests)" % (self.num_lookups, len(self.cache), self.num_cached_true, self.num_cached_false, self.num_search_true, self.num_search_false, self.num_matches)
##### Different maximization algorithms ######
def prune_maximize_bonds(subgraph, mol, num_remaining_atoms, num_remaining_bonds, best_sizes):
# Quick check if this is a viable search direction
num_atoms = len(subgraph.atom_indices)
num_bonds = len(subgraph.bond_indices)
best_num_atoms, best_num_bonds = best_sizes
# Prune subgraphs which are too small can never become big enough
diff_bonds = (num_bonds + num_remaining_bonds) - best_num_bonds
if diff_bonds < 0:
return True
elif diff_bonds == 0:
# Then we also maximize the number of atoms
diff_atoms = (num_atoms + num_remaining_atoms) - best_num_atoms
if diff_atoms <= 0:
return True
return False
def prune_maximize_atoms(subgraph, mol, num_remaining_atoms, num_remaining_bonds, best_sizes):
# Quick check if this is a viable search direction
num_atoms = len(subgraph.atom_indices)
num_bonds = len(subgraph.bond_indices)
best_num_atoms, best_num_bonds = best_sizes
# Prune subgraphs which are too small can never become big enough
diff_atoms = (num_atoms + num_remaining_atoms) - best_num_atoms
if diff_atoms < 0:
return True
elif diff_atoms == 0:
diff_bonds = (num_bonds + num_remaining_bonds) - best_num_bonds
if diff_bonds <= 0:
return True
else:
#print "Could still have", diff_atoms
#print num_atoms, num_remaining_atoms, best_num_atoms
pass
return False
##### Callback handlers for storing the "best" information #####x
class _SingleBest(object):
def __init__(self, timer, verbose):
self.best_num_atoms = self.best_num_bonds = -1
self.best_smarts = None
self.sizes = (-1, -1)
self.timer = timer
self.verbose = verbose
def _new_best(self, num_atoms, num_bonds, smarts):
self.best_num_atoms = num_atoms
self.best_num_bonds = num_bonds
self.best_smarts = smarts
self.sizes = sizes = (num_atoms, num_bonds)
self.timer.mark("new best")
if self.verbose:
dt = self.timer.mark_times["new best"] - self.timer.mark_times["start fmcs"]
sys.stderr.write("Best after %.1fs: %d atoms %d bonds %s\n" % (dt, num_atoms, num_bonds, smarts))
return sizes
def get_result(self, completed):
return MCSResult(self.best_num_atoms, self.best_num_bonds, self.best_smarts, completed)
class MCSResult(object):
def __init__(self, num_atoms, num_bonds, smarts, completed):
self.num_atoms = num_atoms
self.num_bonds = num_bonds
self.smarts = smarts
self.completed = completed
def __nonzero__(self):
return self.smarts is not None
class SingleBestAtoms(_SingleBest):
def add_new_match(self, subgraph, mol, smarts):
sizes = self.sizes
# See if the subgraph match is better than the previous best
num_subgraph_atoms = len(subgraph.atom_indices)
if num_subgraph_atoms < sizes[0]:
return sizes
num_subgraph_bonds = len(subgraph.bond_indices)
if num_subgraph_atoms == sizes[0]:
if num_subgraph_bonds <= sizes[1]:
return sizes
return self._new_best(num_subgraph_atoms, num_subgraph_bonds, smarts)
class SingleBestBonds(_SingleBest):
def add_new_match(self, subgraph, mol, smarts):
sizes = self.sizes
# See if the subgraph match is better than the previous best
num_subgraph_bonds = len(subgraph.bond_indices)
if num_subgraph_bonds < sizes[1]:
return sizes
num_subgraph_atoms = len(subgraph.atom_indices)
if num_subgraph_bonds == sizes[1] and num_subgraph_atoms <= sizes[0]:
return sizes
return self._new_best(num_subgraph_atoms, num_subgraph_bonds, smarts)
### Check if there are any ring atoms; used in --complete-rings-only
# This is (yet) another depth-first graph search algorithm
def check_complete_rings_only(smarts, subgraph, enumeration_mol):
#print "check", smarts, len(subgraph.atom_indices), len(subgraph.bond_indices)
atoms = enumeration_mol.atoms
bonds = enumeration_mol.bonds
# First, are any of bonds in the subgraph ring bonds in the original structure?
ring_bonds = []
for bond_index in subgraph.bond_indices:
bond = bonds[bond_index]
if bond.is_in_ring:
ring_bonds.append(bond_index)
#print len(ring_bonds), "ring bonds"
if not ring_bonds:
# No need to check .. this is an acceptable structure
return True
if len(ring_bonds) <= 2:
# No need to check .. there are no rings of size 2
return False
# Otherwise there's more work. Need to ensure that
# all ring atoms are still in a ring in the subgraph.
confirmed_ring_bonds = set()
subgraph_ring_bond_indices = set(ring_bonds)
for bond_index in ring_bonds:
#print "start with", bond_index, "in?", bond_index in confirmed_ring_bonds
if bond_index in confirmed_ring_bonds:
continue
# Start a new search, starting from this bond
from_atom_index, to_atom_index = bonds[bond_index].atom_indices
# Map from atom index to depth in the bond stack
atom_depth = {from_atom_index: 0,
to_atom_index: 1}
bond_stack = [bond_index]
backtrack_stack = []
prev_bond_index = bond_index
current_atom_index = to_atom_index
while 1:
# Dive downwards, ever downwards
next_bond_index = next_atom_index = None
this_is_a_ring = False
for outgoing_edge in enumeration_mol.directed_edges[current_atom_index]:
if outgoing_edge.bond_index == prev_bond_index:
# Don't loop back
continue
if outgoing_edge.bond_index not in subgraph_ring_bond_indices:
# Only advance along ring edges which are in the subgraph
continue
if outgoing_edge.end_atom_index in atom_depth:
#print "We have a ring"
# It's a ring! Mark everything as being in a ring
confirmed_ring_bonds.update(bond_stack[atom_depth[outgoing_edge.end_atom_index]:])
confirmed_ring_bonds.add(outgoing_edge.bond_index)
if len(confirmed_ring_bonds) == len(ring_bonds):
#print "Success!"
return True
this_is_a_ring = True
continue
# New atom. Need to explore it.
#print "we have a new bond", outgoing_edge.bond_index, "to atom", outgoing_edge.end_atom_index
if next_bond_index is None:
# This will be the immediate next bond to search in the DFS
next_bond_index = outgoing_edge.bond_index
next_atom_index = outgoing_edge.end_atom_index
else:
# Otherwise, backtrack and examine the other bonds
backtrack_stack.append(
(len(bond_stack), outgoing_edge.bond_index, outgoing_edge.end_atom_index) )
if next_bond_index is None:
# Could not find a path to take. Might be because we looped back.
if this_is_a_ring:
#assert prev_bond_index in confirmed_ring_bonds, (prev_bond_index, confirmed_ring_bonds)
# We did! That means we can backtrack
while backtrack_stack:
old_size, prev_bond_index, current_atom_index = backtrack_stack.pop()
if bond_index not in confirmed_ring_bonds:
# Need to explore this path.
# Back up and start the search from here
del bond_stack[old_size:]
break
else:
# No more backtracking. We fail. Try next bond?
# (If it had been sucessful then the
# len(confirmed_ring_bonds) == len(ring_bonds)
# would have return True)
break
else:
# Didn't find a ring, nowhere to advance
return False
else:
# Continue deeper
bond_stack.append(next_bond_index)
atom_depth[next_atom_index] = len(bond_stack)
prev_bond_index = next_bond_index
current_atom_index = next_atom_index
# If we reached here then try the next bond
#print "Try again"
class SingleBestAtomsCompleteRingsOnly(_SingleBest):
def add_new_match(self, subgraph, mol, smarts):
sizes = self.sizes
# See if the subgraph match is better than the previous best
num_subgraph_atoms = len(subgraph.atom_indices)
if num_subgraph_atoms < sizes[0]:
return sizes
num_subgraph_bonds = len(subgraph.bond_indices)
if num_subgraph_atoms == sizes[0] and num_subgraph_bonds <= sizes[1]:
return sizes
if check_complete_rings_only(smarts, subgraph, mol):
return self._new_best(num_subgraph_atoms, num_subgraph_bonds, smarts)
return sizes
class SingleBestBondsCompleteRingsOnly(_SingleBest):
def add_new_match(self, subgraph, mol, smarts):
sizes = self.sizes
# See if the subgraph match is better than the previous best
num_subgraph_bonds = len(subgraph.bond_indices)
if num_subgraph_bonds < sizes[1]:
return sizes
num_subgraph_atoms = len(subgraph.atom_indices)
if num_subgraph_bonds == sizes[1] and num_subgraph_atoms <= sizes[0]:
return sizes
if check_complete_rings_only(smarts, subgraph, mol):
return self._new_best(num_subgraph_atoms, num_subgraph_bonds, smarts)
return sizes
_maximize_options = {
("atoms", False): (prune_maximize_atoms, SingleBestAtoms),
("atoms", True): (prune_maximize_atoms, SingleBestAtomsCompleteRingsOnly),
("bonds", False): (prune_maximize_bonds, SingleBestBonds),
("bonds", True): (prune_maximize_bonds, SingleBestBondsCompleteRingsOnly),
}
###### The engine of the entire system. Enumerate subgraphs and see if they match. #####
def enumerate_subgraphs(enumeration_mols, prune, atom_assignment, matches_all_targets, hits, timeout,
heappush, heappop):
if timeout is None:
end_time = None
else:
end_time = time.time() + timeout
seeds = []
best_sizes = (0, 0)
# Do a quick check for the not uncommon case where one of the input fragments
# is the largest substructure or one off from the largest.
for mol in enumeration_mols:
atom_range = range(len(mol.atoms))
bond_set = set(range(len(mol.bonds)))
subgraph = Subgraph(atom_range, bond_set)
if not prune(subgraph, mol, 0, 0, best_sizes):
# Micro-optimization: the largest fragment SMARTS doesn't
# need to be canonicalized because there will only ever be
# one match. It's also unlikely that the other largest
# fragments need canonicalization.
smarts = make_arbitrary_smarts(subgraph, mol, atom_assignment)
if matches_all_targets[smarts]:
best_sizes = hits.add_new_match(subgraph, mol, smarts)
for mol in enumeration_mols:
directed_edges = mol.directed_edges
# Using 20001 random ChEMBL pairs, timeout=15.0 seconds
# 1202.6s with original order
# 1051.9s sorting by (bond.is_in_ring, bond_index)
# 1009.7s sorting by (bond.is_in_ring + atom1.is_in_ring + atom2.is_in_ring)
# 1055.2s sorting by (if bond.is_in_ring: 2; else: -(atom1.is_in_ring + atom2.is_in_ring))
# 1037.4s sorting by (atom1.is_in_ring + atom2.is_in_ring)
sorted_bonds = list(enumerate(mol.bonds))
def get_bond_ring_score((bond_index, bond), atoms=mol.atoms):
a1, a2 = bond.atom_indices
return bond.is_in_ring + atoms[a1].is_in_ring + atoms[a2].is_in_ring
sorted_bonds.sort(key = get_bond_ring_score)
visited_bond_indices = set()
num_remaining_atoms = len(mol.atoms)-2
num_remaining_bonds = len(mol.bonds)
for bond_index, bond in sorted_bonds: #enumerate(mol.bonds): #
#print "bond_index", bond_index, len(mol.bonds)
visited_bond_indices.add(bond_index)
num_remaining_bonds -= 1
subgraph = Subgraph(bond.atom_indices, frozenset([bond_index]))
# I lie about the remaining atom/bond sizes here.
if prune(subgraph, mol, num_remaining_atoms, num_remaining_bonds, best_sizes):
continue
# bond.canonical_bondtype doesn't necessarily give the same
# SMARTS as make_canonical_smarts, but that doesn't matter.
# 1) I know it's canonical, 2) it's faster, and 3) there is
# no place else which generates single-bond canonical SMARTS.
#smarts = make_canonical_smarts(subgraph, mol, atom_assignment)
smarts = bond.canonical_bondtype
if matches_all_targets[smarts]:
best_sizes = hits.add_new_match(subgraph, mol, smarts)
else:
raise AssertionError("This should never happen: %r" % (smarts,))
continue
a1, a2 = bond.atom_indices
outgoing_edges = [e for e in (directed_edges[a1] + directed_edges[a2])
if e.end_atom_index not in bond.atom_indices and e.bond_index not in visited_bond_indices]
empty_internal = frozenset()
if not outgoing_edges:
pass
else:
# The priority is the number of bonds in the subgraph, ordered so
# that the subgraph with the most bonds comes first. Since heapq
# puts the smallest value first, I reverse the number. The initial
# subgraphs have 1 bond, so the initial score is -1.
heappush(seeds, (-1, tiebreaker(), subgraph,
visited_bond_indices.copy(), empty_internal, outgoing_edges,
mol, directed_edges))
# I made so many subtle mistakes where I used 'subgraph' instead
# of 'new_subgraph' in the following section that I finally
# decided to get rid of 'subgraph' and use 'old_subgraph' instead.
del subgraph
while seeds:
if end_time:
if time.time() >= end_time:
return False
#print "There are", len(seeds), "seeds", seeds[0][:2]
score, _, old_subgraph, visited_bond_indices, internal_bonds, external_edges, mol, directed_edges = heappop(seeds)
new_visited_bond_indices = visited_bond_indices.copy()
new_visited_bond_indices.update(internal_bonds)
## for edge in external_edges:
## assert edge.bond_index not in new_visited_bond_indices
new_visited_bond_indices.update(edge.bond_index for edge in external_edges)
for new_atoms, new_subgraph, num_remaining_atoms, num_remaining_bonds in \
all_subgraph_extensions(mol, old_subgraph, visited_bond_indices, internal_bonds, external_edges):
if prune(new_subgraph, mol, num_remaining_atoms, num_remaining_bonds, best_sizes):
#print "PRUNE", make_canonical_smarts(new_subgraph, mol, atom_assignment)
continue
smarts = make_canonical_smarts(new_subgraph, mol, atom_assignment)
if matches_all_targets[smarts]:
#print "YES", smarts
best_sizes = hits.add_new_match(new_subgraph, mol, smarts)
else:
#print "NO", smarts
continue
if not new_atoms:
continue
new_internal_bonds, new_external_edges = find_extensions(
new_atoms, new_visited_bond_indices, directed_edges)
if new_internal_bonds or new_external_edges:
# Rank so the subgraph with the highest number of bonds comes first
heappush(seeds, (-len(new_subgraph.bond_indices), tiebreaker(), new_subgraph,
new_visited_bond_indices, new_internal_bonds, new_external_edges,
mol, directed_edges))
return True
# Assign a unique identifier to every unique key
class Uniquer(dict):
def __init__(self):
self.counter = itertools.count().next
def __missing__(self, key):
self[key] = count = self.counter()
return count
# This is here only so I can see it in the profile statistics
def MATCH(mol, pat):
return mol.HasSubstructMatch(pat)
class VerboseHeapOps(object):
def __init__(self, trigger, verbose_delay):
self.num_seeds_added = 0
self.num_seeds_processed = 0
self.verbose_delay = verbose_delay
self._time_for_next_report = time.time() + verbose_delay
self.trigger = trigger
def heappush(self, seeds, item):
self.num_seeds_added += 1
return heappush(seeds, item)
def heappop(self, seeds):
if time.time() >= self._time_for_next_report:
self.trigger()
self.report()
self._time_for_next_report = time.time() + self.verbose_delay
self.num_seeds_processed += 1
return heappop(seeds)
def trigger_report(self):
self.trigger()
self.report()
def report(self):
print >>sys.stderr, " %d subgraphs enumerated, %d processed" % (
self.num_seeds_added, self.num_seeds_processed)
def compute_mcs(enumeration_mols, targets, maximize = Default.maximize,
complete_rings_only = Default.complete_rings_only,
timeout = Default.timeout,
timer = None, verbose=False, verbose_delay=1.0):
assert timer is not None
atom_assignment = Uniquer()
if verbose:
if verbose_delay < 0.0:
raise ValueError("verbose_delay may not be negative")
matches_all_targets = VerboseCachingTargetsMatcher(list(targets))
heapops = VerboseHeapOps(matches_all_targets.report, verbose_delay)
push = heapops.heappush
pop = heapops.heappop
end_verbose = heapops.trigger_report
else:
matches_all_targets = CachingTargetsMatcher(list(targets))
push = heappush
pop = heappop
end_verbose = lambda: 1
try:
prune, hits_class = _maximize_options[(maximize, bool(complete_rings_only))]
except KeyError:
raise ValueError("Unknown 'maximize' option %r" % (maximize,))
hits = hits_class(timer, verbose)
success = enumerate_subgraphs(enumeration_mols, prune, atom_assignment, matches_all_targets, hits,
timeout, push, pop)
end_verbose()
return hits.get_result(success)
########## Main driver for the MCS code
class Timer(object):
def __init__(self):
self.mark_times = {}
def mark(self, name):
self.mark_times[name] = time.time()
def _update_times(timer, times):
if times is None:
return
for (dest, start, end) in ( ("fragment", "start fmcs", "end fragment"),
("select", "end fragment", "end select"),
("enumerate", "end select", "end fmcs"),
("best_found", "start fmcs", "new best"),
("mcs", "start fmcs", "end fmcs") ):
try:
diff = timer.mark_times[end] - timer.mark_times[start]
except KeyError:
diff = None
times[dest] = diff
def fmcs(mols, min_num_atoms=2,
maximize = Default.maximize,
atom_compare = Default.atom_compare,
bond_compare = Default.bond_compare,
match_valences = Default.match_valences,
ring_matches_ring_only = False,
complete_rings_only = False,
timeout=Default.timeout,
times=None,
verbose=False,
verbose_delay=1.0,
):
timer = Timer()
timer.mark("start fmcs")
if min_num_atoms < 2:
raise ValueError("min_num_atoms must be at least 2")
if timeout is not None:
if timeout <= 0.0:
raise ValueError("timeout must be None or a positive value")
if complete_rings_only:
ring_matches_ring_only = True
try:
atom_typer = atom_typers[atom_compare]
except KeyError:
raise ValueError("Unknown atom_compare option %r" % (atom_compare,))
try:
bond_typer = bond_typers[bond_compare]
except KeyError:
raise ValueError("Unknown bond_compare option %r" % (bond_compare,))
# Make copies of all of the molecules so I can edit without worrying about the original
typed_mols = convert_input_to_typed_molecules(mols, atom_typer, bond_typer,
match_valences = match_valences,
ring_matches_ring_only = ring_matches_ring_only)
bondtype_counts = get_canonical_bondtype_counts(typed_mols)
fragmented_mols = [remove_unknown_bondtypes(typed_mol, bondtype_counts) for typed_mol in typed_mols]
timer.mark("end fragment")
sizes = []
max_num_atoms = fragmented_mols[0].rdmol.GetNumAtoms()
max_num_bonds = fragmented_mols[0].rdmol.GetNumBonds()
for tiebreaker, (typed_mol, fragmented_mol) in enumerate(zip(typed_mols, fragmented_mols)):
num_atoms, num_bonds = find_upper_fragment_size_limits(fragmented_mol.rdmol,
fragmented_mol.rdmol_atoms)
if num_atoms < min_num_atoms:
timer.mark("end select")
timer.mark("end fmcs")
_update_times(timer, times)
return MCSResult(-1, -1, None, True)
if num_atoms < max_num_atoms:
max_num_atoms = num_atoms
if num_bonds < max_num_bonds:
max_num_bonds = num_bonds
sizes.append( (num_bonds, num_atoms, tiebreaker, typed_mol, fragmented_mol) )
if sizes is None:
# There was a short-cut exit because one of the molecules didn't have a large enough fragment
timer.mark("end select")
timer.mark("end fmcs")
_update_times(timer, times)
return MCSResult(-1, -1, None, True)
assert min(size[1] for size in sizes) >= min_num_atoms
# Sort so the molecule with the smallest largest fragment (by bonds) comes first.
# Break ties with the smallest number of atoms.
# Break secondary ties by position.
sizes.sort()
#print "Using", Chem.MolToSmiles(sizes[0][4].rdmol)
timer.mark("end select")
# Use the first as the query, the rest as the targets
query_fragments = fragmented_mol_to_enumeration_mols(sizes[0][4], min_num_atoms)
targets = [size[3].rdmol for size in sizes[1:]]
timer.mark("start enumeration")
mcs_result = compute_mcs(query_fragments, targets, maximize=maximize,
complete_rings_only=complete_rings_only, timeout=timeout,
timer=timer, verbose=verbose, verbose_delay=verbose_delay)
timer.mark("end fmcs")
_update_times(timer, times)
return mcs_result
######### Helper functions to generate structure/fragment output given an MCS match
# Given a Subgraph (with atom and bond indices) describing a
# fragment, make a new molecule object with only that fragment
def subgraph_to_fragment(mol, subgraph):
emol = Chem.EditableMol(Chem.Mol())
atom_map = {}
for atom_index in subgraph.atom_indices:
emol.AddAtom(mol.GetAtomWithIdx(atom_index))
atom_map[atom_index] = len(atom_map)
for bond_index in subgraph.bond_indices:
bond = mol.GetBondWithIdx(bond_index)
emol.AddBond(atom_map[bond.GetBeginAtomIdx()],
atom_map[bond.GetEndAtomIdx()],
bond.GetBondType())
return emol.GetMol()
# Convert a subgraph into a SMILES
def make_fragment_smiles(mcs, mol, subgraph, args=None):
fragment = subgraph_to_fragment(mol, subgraph)
new_smiles = Chem.MolToSmiles(fragment)
return "%s %s\n" % (new_smiles, mol.GetProp("_Name"))
def _copy_sd_tags(mol, fragment):
fragment.SetProp("_Name", mol.GetProp("_Name"))
# Copy the existing names over
for name in mol.GetPropNames():
if name.startswith("_"):
continue
fragment.SetProp(name, mol.GetProp(name))
def _MolToSDBlock(mol):
# Huh?! There's no way to get the entire SD record?
mol_block = Chem.MolToMolBlock(mol, kekulize=False)
tag_data = []
for name in mol.GetPropNames():
if name.startswith("_"):
continue
value = mol.GetProp(name)
tag_data.append("> <" + name + ">\n")
tag_data.append(value + "\n")
tag_data.append("\n")
tag_data.append("$$$$\n")
return mol_block + "".join(tag_data)
def _save_other_tags(mol, fragment, mcs, orig_mol, subgraph, args):
if args.save_counts_tag is not None:
if not mcs:
line = "-1 -1 -1"
elif mcs.num_atoms == 0:
line = "0 0 0"
else:
line = "1 %d %d" % (mcs.num_atoms, mcs.num_bonds)
mol.SetProp(args.save_counts_tag, line)
if args.save_smiles_tag is not None:
if mcs and mcs.num_atoms > 0:
smiles = Chem.MolToSmiles(fragment)
else:
smiles = "-"
mol.SetProp(args.save_smiles_tag, smiles)
if args.save_smarts_tag is not None:
if mcs and mcs.num_atoms > 0:
smarts = mcs.smarts
else:
smarts = "-"
mol.SetProp(args.save_smarts_tag, smarts)
# Convert a subgraph into an SD file
def make_fragment_sdf(mcs, mol, subgraph, args):
fragment = subgraph_to_fragment(mol, subgraph)
Chem.FastFindRings(fragment)
_copy_sd_tags(mol, fragment)
if args.save_atom_class_tag is not None:
output_tag = args.save_atom_class_tag
atom_classes = get_selected_atom_classes(mol, subgraph.atom_indices)
if atom_classes is not None:
fragment.SetProp(output_tag, " ".join(map(str, atom_classes)))
_save_other_tags(fragment, fragment, mcs, mol, subgraph, args)
return _MolToSDBlock(fragment)
#
def make_complete_sdf(mcs, mol, subgraph, args):
fragment = copy.copy(mol)
_copy_sd_tags(mol, fragment)
if args.save_atom_indices_tag is not None:
output_tag = args.save_atom_indices_tag
s = " ".join(str(index) for index in subgraph.atom_indices)
fragment.SetProp(output_tag, s)
_save_other_tags(fragment, subgraph_to_fragment(mol, subgraph), mcs, mol, subgraph, args)
return _MolToSDBlock(fragment)
structure_format_functions = {
"fragment-smiles": make_fragment_smiles,
"fragment-sdf": make_fragment_sdf,
"complete-sdf": make_complete_sdf,
}
def make_structure_format(format_name, mcs, mol, subgraph, args):
try:
func = structure_format_functions[format_name]
except KeyError:
raise ValueError("Unknown format %r" % (format_name,))
return func(mcs, mol, subgraph, args)
def parse_num_atoms(s):
num_atoms = int(s)
if num_atoms < 2:
raise argparse.ArgumentTypeError("must be at least 2, not %s" % s)
return num_atoms
def parse_timeout(s):
if s == "none":
return None
timeout = float(s)
if timeout < 0.0:
raise argparse.ArgumentTypeError("Must be a non-negative value, not %r" % (s,))
return timeout
class starting_from(object):
def __init__(self, left):
self.left = left
def __contains__(self, value):
return self.left <= value
range_pat = re.compile(r"(\d+)-(\d*)")
value_pat = re.compile("(\d+)")
def parse_select(s):
ranges = []
start = 0
while 1:
m = range_pat.match(s, start)
if m is not None:
# Selected from 'left' to (and including) 'right'
# Convert into xrange fields, starting from 0
left = int(m.group(1))
right = m.group(2)
if not right:
ranges.append(starting_from(left-1))
else:
ranges.append( xrange(left-1, int(right)) )
else:
# Selected a single value
m = value_pat.match(s, start)
if m is not None:
val = int(m.group(1))
ranges.append( xrange(val-1, val) )
else:
raise argparse.ArgumentTypeError("Unknown character at position %d of %r" %(
start+1, s))
start = m.end()
# Check if this is the end of string or a ','
t = s[start:start+1]
if not t:
break
if t == ",":
start += 1
continue
raise argparse.ArgumentTypeError("Unknown character at position %d of %r" % (
start+1, s))
return ranges
parser = argparse.ArgumentParser(description="Find the maximum common substructure of a set of structures",
epilog = "For more details on these options, see https://bitbucket.org/dalke/fmcs/")
parser.add_argument("filename", nargs=1,
help="SDF or SMILES file")
parser.add_argument("--maximize", choices=["atoms", "bonds"],
default=Default.maximize,
help="Maximize the number of 'atoms' or 'bonds' in the MCS. (Default: %s)" % (Default.maximize,))
parser.add_argument("--min-num-atoms", type=parse_num_atoms, default=2,
metavar="INT",
help="Minimimum number of atoms in the MCS (Default: 2)")
compare_shortcuts = {
"topology": ("any", "any"),
"elements": ("elements", "any"),
"types": ("elements", "bondtypes"),
}
class CompareAction(argparse.Action):
def __call__(self, parser, namespace, value, option_string=None):
atom_compare_name, bond_compare_name = compare_shortcuts[value]
namespace.atom_compare = atom_compare_name
namespace.bond_compare = bond_compare_name
parser.add_argument("--compare", choices = ["topology", "elements", "types"],
default=None, action=CompareAction, help=
"Use 'topology' as a shorthand for '--atom-compare any --bond-compare any', "
"'elements' is '--atom-compare elements --bond-compare any', "
"and 'types' is '--atom-compare elements --bond-compare bondtypes' "
"(Default: types)")
parser.add_argument("--atom-compare", choices=["any", "elements", "isotopes"],
default=None, help=(
"Specify the atom comparison method. With 'any', every atom matches every "
"other atom. With 'elements', atoms match only if they contain the same element. "
"With 'isotopes', atoms match only if they have the same isotope number; element "
"information is ignored so [5C] and [5P] are identical. This can be used to "
"implement user-defined atom typing. "
"(Default: elements)"))
parser.add_argument("--bond-compare", choices=["any", "bondtypes"],
default="bondtypes", help=(
"Specify the bond comparison method. With 'any', every bond matches every "
"other bond. With 'bondtypes', bonds are the same only if their bond types "
"are the same. (Default: bondtypes)"))
parser.add_argument("--atom-class-tag", metavar="TAG", help=
"Use atom class assignments from the field 'TAG'. The tag data must contain a space "
"separated list of integers in the range 1-10000, one for each atom. Atoms are "
"identical if and only if their corresponding atom classes are the same. Note "
"that '003' and '3' are treated as identical values. (Not used by default)")
## parser.add_argument("--match-valences", action="store_true",
## help=
## "Modify the atom comparison so that two atoms must also have the same total "
## "bond order in order to match.")
parser.add_argument("--ring-matches-ring-only", action="store_true",
help=
"Modify the bond comparison so that ring bonds only match ring bonds and chain "
"bonds only match chain bonds. (Ring atoms can still match non-ring atoms.) ")
parser.add_argument("--complete-rings-only", action="store_true",
help=
"If a bond is a ring bond in the input structures and a bond is in the MCS "
"then the bond must also be in a ring in the MCS. Selecting this option also "
"enables --ring-matches-ring-only.")
parser.add_argument("--select", type=parse_select, action="store",
default="1-",
help=
"Select a subset of the input records to process. Example: 1-10,13,20,50- "
"(Default: '1-', which selects all structures)")
parser.add_argument("--timeout", type=parse_timeout, metavar="SECONDS",
default=Default.timeout,
help=
"Report the best solution after running for at most 'timeout' seconds. "
"Use 'none' for no timeout. (Default: %s)" % (Default.timeout_string,))
parser.add_argument("--output", "-o", metavar="FILENAME",
help="Write the results to FILENAME (Default: use stdout)")
parser.add_argument("--output-format", choices = ["smarts", "fragment-smiles", "fragment-sdf", "complete-sdf"],
default="smarts", help=
"'smarts' writes the SMARTS pattern including the atom and bond criteria. "
"'fragment-smiles' writes a matching fragment as a SMILES string. "
"'fragment-sdf' writes a matching fragment as a SD file; see --save-atom-class for "
"details on how atom class information is saved. "
"'complete-sdf' writes the entire SD file with the fragment information stored in "
"the tag specified by --save-fragment-indices-tag. (Default: smarts)")
parser.add_argument("--output-all", action="store_true",
help=
"By default the structure output formats only show an MCS for the first input structure. "
"If this option is enabled then an MCS for all of the structures are shown.")
parser.add_argument("--save-atom-class-tag", metavar="TAG", help=
"If atom classes are specified (via --class-tag) and the output format is 'fragment-sdf' "
"then save the substructure atom classes to the tag TAG, in fragment atom order. By "
"default this is the value of --atom-class-tag.")
parser.add_argument("--save-counts-tag", metavar="TAG", help=
"Save the fragment count, atom count, and bond count to the specified SD tag as "
"space separated integers, like '1 9 8'. (The fragment count will not be larger than "
"1 until fmcs supports disconnected MCSes.)")
parser.add_argument("--save-atom-indices-tag", metavar="TAG", help=
"If atom classes are specified and the output format is 'complete-sdf' "
"then save the MCS fragment atom indices to the tag TAG, in MCS order. "
"(Default: mcs-atom-indices)")
parser.add_argument("--save-smarts-tag", metavar="TAG", help=
"Save the MCS SMARTS to the specified SD tag. Uses '-' if there is no MCS")
parser.add_argument("--save-smiles-tag", metavar="TAG", help=
"Save the fragment SMILES to the specified SD tag. Uses '-' if there is no MCS")
parser.add_argument("--times", action="store_true",
help="Print timing information to stderr")
parser.add_argument("-v", "--verbose", action="count", dest="verbosity",
help="Print progress statistics to stderr. Use twice for higher verbosity.")
parser.add_argument("--version", action="version", version="%(prog)s " + __version__)
# RDKit's match function only returns the atom indices of the match.
# To get the bond indices, I need to go through the pattern molecule.
def _get_match_bond_indices(pat, mol, match_atom_indices):
bond_indices = []
for bond in pat.GetBonds():
mol_atom1 = match_atom_indices[bond.GetBeginAtomIdx()]
mol_atom2 = match_atom_indices[bond.GetEndAtomIdx()]
bond = mol.GetBondBetweenAtoms(mol_atom1, mol_atom2)
assert bond is not None
bond_indices.append(bond.GetIdx())
return bond_indices
def main(args=None):
args = parser.parse_args(args)
filename = args.filename[0]
fname = filename.lower()
if fname.endswith(".smi"):
try:
reader = Chem.SmilesMolSupplier(filename, titleLine=False)
except IOError:
raise SystemExit("Unable to open SMILES file %r" % (filename,))
elif fname.endswith(".sdf"):
try:
reader = Chem.SDMolSupplier(filename)
except IOError:
raise SystemExit("Unable to open SD file %r" % (filename,))
elif fname.endswith(".gz"):
raise SystemExit("gzip compressed files not yet supported")
else:
raise SystemExit("Only SMILES (.smi) and SDF (.sdf) files are supported")
if args.min_num_atoms < 2:
parser.error("--min-num-atoms must be at least 2")
if args.atom_compare is None:
if args.atom_class_tag is None:
args.atom_compare = "elements" # Default atom comparison
else:
args.atom_compare = "isotopes" # Assing the atom classes to the isotope fields
else:
if args.atom_class_tag is not None:
parser.error("Cannot specify both --atom-compare and --atom-class-tag fields")
# RDKit uses special property names starting with "_"
# It's dangerous to use some of them directly
for name in ("atom_class_tag", "save_atom_class_tag", "save_counts_tag", "save_atom_indices_tag",
"save_smarts_tag", "save_smiles_tag"):
value = getattr(args, name)
if value is not None:
if value.startswith("_"):
parser.error("--%s value may not start with a '_': %r" % (name.replace("_", "-"), value))
# Set up some defaults depending on the output format
atom_class_tag = args.atom_class_tag
if args.output_format == "fragment-sdf":
if atom_class_tag is not None:
if args.save_atom_class_tag is None:
args.save_atom_class_tag = atom_class_tag
if args.output_format == "complete-sdf":
if (args.save_atom_indices_tag is None and
args.save_counts_tag is None and
args.save_smiles_tag is None and
args.save_smarts_tag is None):
parser.error("Using --output-format complete-sdf is useless without at least one "
"of --save-atom-indices-tag, --save-smarts-tag, --save-smiles-tag, "
"or --save-counts-tag")
t1 = time.time()
structures = []
if args.verbosity > 1:
sys.stderr.write("Loading structures from %s ..." % (filename,))
for molno, mol in enumerate(reader):
if not any(molno in range_ for range_ in args.select):
continue
if mol is None:
print >>sys.stderr, "Skipping unreadable structure #%d" % (molno+1,)
continue
if atom_class_tag is not None:
try:
assign_isotopes_from_class_tag(mol, atom_class_tag)
except ValueError, err:
raise SystemExit("Structure #%d: %s" % (molno+1, err))
structures.append(mol)
if args.verbosity > 1:
if len(structures) % 100 == 0:
sys.stderr.write("\rLoaded %d structures from %s ..." % (len(structures), filename))
sys.stderr.flush() # not needed; it's stderr. But I'm cautious.
if args.verbosity > 1:
sys.stderr.write("\r")
times = {"load": time.time()-t1}
if args.verbosity:
print >>sys.stderr, "Loaded", len(structures), "structures from", filename, " "
if len(structures) < 2:
raise SystemExit("Input file %r must contain at least two structures" % (filename,))
mcs = fmcs(structures,
min_num_atoms = args.min_num_atoms,
maximize = args.maximize,
atom_compare = args.atom_compare,
bond_compare = args.bond_compare,
#match_valences = args.match_valences,
match_valences = False, # Do I really want to support this?
ring_matches_ring_only = args.ring_matches_ring_only,
complete_rings_only = args.complete_rings_only,
timeout = args.timeout,
times = times,
verbose = args.verbosity > 1,
verbose_delay = 1.0,
)
msg_format = "Total time %(total).2f seconds: load %(load).2f fragment %(fragment).2f select %(select).2f enumerate %(enumerate).2f"
times["total"] = times["mcs"] + times["load"]
if mcs and mcs.completed:
msg_format += " (MCS found after %(best_found).2f)"
del mol
if args.output:
outfile = open(args.output, "w")
else:
outfile = sys.stdout
if args.output_format == "smarts":
if not mcs:
outfile.write("No MCS found\n")
else:
if mcs.completed:
status = "(complete search)"
else:
status = "(timed out)"
outfile.write("%s %d atoms %d bonds %s\n" % (
mcs.smarts, mcs.num_atoms, mcs.num_bonds, status))
else:
if mcs.smarts is None:
# There is no MCS. Use something which can't match.
pat = Chem.MolFromSmarts("[CN]")
else:
# Need to make a structure output
pat = Chem.MolFromSmarts(mcs.smarts)
for structure in structures:
atom_indices = structure.GetSubstructMatch(pat)
bond_indices = _get_match_bond_indices(pat, structure, atom_indices)
subgraph = Subgraph(atom_indices, bond_indices)
if atom_class_tag:
restore_isotopes(structure)
outfile.write(make_structure_format(args.output_format, mcs, structure, subgraph, args))
if not args.output_all:
break
if args.output:
outfile.close()
if args.times or args.verbosity:
print >>sys.stderr, msg_format % times
if __name__ == "__main__":
main(sys.argv[1:])
|